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Transfer matrices for multiport devices made from solitons
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The linear Schrodinger equation is explicitly solved for the case of a refractive index profile created by

the interaction of N bright solitons in a Kerr medium. The bound states give exact solutions to the prob-

lem of determining how a beam of light is split as it passes through the collision of N solitons; the main

result of this work is an analytical formula for the power transmission matrix of this linear problem. As

specific examples, the cases of the two-soliton and three-soliton linear couplers are considered, and the

power transmission characteristics for bound states are explicitly calculated in both cases. It is further

shown that the behavior of linear waves propagating through an arbitrary collision of N solitons can be

completely understood in terms of the scattering of linear waves from a soliton X junction. The unbound

states of an ¹oliton waveguide are also explicitly computable and describe the evolution of radiation

modes.

PACS number(s): 42.79.Ta, 42.65.Tg

I. INTRQDUCTIGN

Light-guiding-light effects [l] are promising for all-
optical information processing. One such effect is the
spatial soliton created by a strong beam, which can act as
a linear waveguide, carrying a weak probe beam [2]. This
guiding can be accomplished using either bright [3] or
dark [4] spatial solitons.

Further, colliding solitons can serve as X junctions
[5,6], and more generally as 2N-port devices. Several of
these devices have been analyzed to date [6,7]. Using a
probe beam of the same frequency as the solitons is
preferable because losses to radiation modes in the im-
pact area of two solitons are avoided [6]. Moreover, such
a probe beam sent into one of the channels is not reAected
back into any of the input channels, but passes through
the impact area of the solitons and is distributed among
the output channels —an ideal feature of a multiport
switch. However, in practice probe beams of the soliton
frequency cannot be effectively separated from the pump,
and it is more convenient to use probe beams at another
frequency [7,8], which can be resolved by spectral filter-
ing. The cost of this convenience is the partial reAection
of the probe back into some of the input channels and
some loss to radiation in the soliton impact area [7].

We can keep all the advantages of a purely solitonic
device by supposing either that the shift in refractive in-
dex induced by the pump is initially fixed in the medium
by some process so that a strong beam need not be simul-
taneously present with the probe at all, or that the pump
and probe beams are orthogonally polarized. We study
the case when this device arises from the collision of 1V

bright Kerr solitons, use this 2N-port device as an X XIV
switch (see Fig. l for an example of a refractive index
profile corresponding to N =3), and investigate its
transmission properties for linear waves of the same fre-
quency as the pump field (which may or may not actually
be present). These properties are encoded in the ampli-
tude and power transfer matrices, which we will calculate
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FIG. 1. The refractive index profile of a three-soliton col-
lision. This profile may be considered as a six-port linear de-

vice, with three inputs at the bottom of the figure and three out-
puts at the top.

exactly.
We begin in Sec. II by casting the problem of linear

wave propagation in a multisoliton waveguide in a con-
crete mathematical form. Section III contains a detailed
description of the method we will use, which is based
upon the integrability of the nonlinear Schrodinger equa-
tion. In this section we will also isolate the bound and
unbound linear waves that propagate through the mul-
tisoliton waveguide. Section IV is devoted to the asymp-
totic analysis of the bound states of the waveguide, and it
is here that we obtain our main result —a precise analyti-
cal characterization of the wave transmission properties
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of a waveguide made from the arbitrary collision of N
solitons in a Kerr medium. We will find that the
transmission characteristics are independent of the rela-
tive optical phases of the interacting solitons and also of
any detail of the geometry of the interaction. Only the
soliton amplitudes and propagation angles are involved in
any of the final formulas. This fact will permit us to in-
terpret an X-soliton waveguide as a network of soliton X
junctions. We will then demonstrate the simplicity of the
formulas by specific calculations for the cases of N =2
and 3. Finally, in Sec. V, we will point out some related
problems that we plan to address, and discuss the gen-
erality X-soliton waveguide as a 2N-port linear device. In
all that follows, the complex conjugate of a number A, is
written as A, .

II. STATEMENT OF THE PROBLEM

ia y+,'a'y+ v(x, z)y=o, (3)

with the potential function determined from the solution
of(2) as

v(x, z) =
~ 1i(x,z) ~' . (4)

Of course, we always know one solution of this linear
equation, namely P=P. In the case when g is a one-

In this short section, we present the problem we are go-
ing to solve in precise mathematical form, in order to fix
our notation. Consider a spatially modulated mono-
chromatic plane light beam propagating in the z direction
in a two-dimensional slab Kerr medium. This beam can
be described by an electric field of the form

E(x,z, t) =eg(x, z)exp[i (Pz cot )]+c.—c. ,

where X=cx, Z=cz, c is the small ratio between the
wavelength of the carrier wave and the characteristic
length scale of the modulation, and e is a unit vector indi-
cating the polarization direction. In the case when the
Kerr nonlinearity acts against diffraction, the complex
envelope 1it(X,Z) describing the spatial modulation will
satisfy the focusing cubic nonlinear Schrodinger equation

ia, @+-,'a' y+ (@('@=0,

which we have written in dimensionless variables. A
solution f(X,Z) of (2) induces an effective refractive in-
dex in the material proportional to

~ g(x, Z)
~

.
We want to consider the linear propagation of spatially

modulated phase waves propagating in the z direction in
materials with a spatially dependent refractive index
given by ~

tP(X, Z) ~, where P is a solution of (2). The cor-
responding theory that we develop below will apply to
problems in which the nonlinear induced refractive index
is fixed by a photolithographic process, or maintained
after the pump has been switched off in a nonlinear medi-
um with memory (e.g., a photorefractive material [9,10)),
or when weak beams of frequency co orthogonally polar-
ized with respect to the pump interact with the material
in the presence of the (strong) field (1). In any of these
cases, the weak field envelope P(X,Z) solves the linear
Schrodinger equation

soliton solution of (2), this special solution P=g is the
only bound (finite power) state, up to scaling. On the oth-
er hand, if itj is a multisoliton solution of (2), there will be
more bound states. Below, we will obtain a linear space
of solutions of (3) in the case where the solution g(X,Z)
of (2) corresponds to an arbitrary interaction of N bright
solitons, analyzing the asymptotic behavior of bound
states and scattering states. We believe that this space of
solutions is complete, so that it contains the solution of
(3) for arbitrary L (R) initial data at Z =0. Some aspects
of this complicated problem have been considered previ-
ously by Dubrovin et al. [11]

III. GENERAL METHOD

Our method, which is developed in greater detail in
[12], is based upon the integrability of the nonlinear equa-
tion (2), which means that (2) is the consistency condition
for the following two linear problems for a two-
component vector u=(u„uz):

iA— ,

iA, (5)

lazu=SU=
is@—

—,'a y

t~@ ,'a—y ——~—'+-,'fyf'

P(X,Z) =u, (X,Z; A, )exp[ i ( Ax+ A—Z)], (8)

is a solution of the linear Schrodinger equation (3).
The theorem is proved simply by substituting (8) into

the linear Schrodinger equation (3) and eliminating
derivatives with respect to X and Z by the linear prob-
lems (5) and (6). The motiuation for transformation (8) is
more subtle. One embeds the two problems (2) and (3)
into the integrable Manakov (or coupled nonlinear
Schrodinger) system [14], from which (8) arises from
infinitesimal Backlund transformations. See [12] for de-
tails. At face value, theorem 1 merely connects the solu-
tion of the linear problem (3) with the solution of the oth-
er linear problems (5) and (6) that also involve the given
function f(x,z) as nonconstant coefficients. However,

where A, is an arbitrary complex parameter [13]. In the
problem (5), A, plays the role of an eigenvalue. Each
bound state eigenvalue A, indicates a soliton component
in the field g. The compatibility condition for these two
ordinary differential equations with nonconstant
coefficients depending on P(x, Z) is exactly

ia L—a B+LB—BL=O,

a matrix partial differential equation that is satisfied for
all A, if and only if P(X,Z) solves (2). For each solution
g(x, z) of (2), there is then a basis of two linearly in-
dependent simultaneous solutions to (5) and (6)
parametrized by A, . The link between these solutions
u(X, Z;A, ) and the solutions P of (3) is given by

Theorem 1. Suppose that g(X, Z) solves the nonlinear
Schrodinger equation (2). Let u(X, Z;A, ) be any simul-
taneous solution of the linear problems (5) and (6), for
any complex A, . Then the function
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many exact methods for finding functions 1t(X,Z) that
solve the nonlinear Schrodinger equation (2) also produce
a basis of simultaneous solutions to (5) and (6) as a by-
product, and thus for functions g constructed by such
methods, theorem 1 gives us many [recall that in the
transformation formula (8) there is an arbitrary complex
parameter A,] exact solutions to the problem of interest,
(3).

Let us present the construction of the N-soliton solu-
tion of (2) and the corresponding basis of simultaneous
solutions to (5) and (6), using a method due to Krichever
[15] and Manin [16], and elaborated by Date [17].
Choose an integer N, the number of solitons. Define

P+(X,Z;A)=u,+(X,Z;A)exp[ i—(AX+A, Z)]
N —1

A„(X,Z)A,",
n=0

(X,Z;A, )=u, (X,Z;A)exp[ i(—AX+AZ), ]
N —1

+ g C„(X,Z)A, "

(15)

We now use this basis of simultaneous solutions to (5)
and (6) and appeal to theorem 1 to give two families of
solutions, each parametrized by the arbitrary complex
parameter A, , to the linear Schrodinger equation (3).
Define

u+(X, Z;A, ) =

u (X,Z;A, ) =

N —1

A„(X,Z)A, "
n=0

N —1

X~+ y a„(X,Z)X"
n=0

Xexp[i(~+A, Z)],
N —1

X"+ y C„(X,Zg."
n=0

N —1

D„(X,Z) A,
"

n=0

Xexp[ i (AX—+AZ)] ., (10)

Xexp[ —2i(AX+X Z)] . (16)

A. Bound states

The function P+(X,Z;A, ) sweeps out an X-dimensional
vector space of solutions to (3), as the parameter A. varies.
We will see that these solutions correspond to the bound
states. On the other hand, the function P (X,Z; k)
sweeps out an infinite-dimensional linear space of solu-
tions to (3). For real values of X, these solutions are com-
plex exponentials in parts of the (X,Z) plane that are dis-
tant from the centers of mass of any of the solitons. As k
range over all real values, the function P (X,Z; A, )

sweeps out the linear space of scattering states of (3).

Choose N complex numbers k, and N complex numbers
y~, j= 1, . . . , N. Then determine the 4N coefficient func-
tions A„,B„,C„,and D„byimposing the linear relations

u+(X, Z;AJ)=yju (X,Z;A, ),
—y u+(X, Z;AJ)=u (X,Z;Ai) . (12)

f(X,Z}=2iA~ )(X,Z) . (13)

Then, g(X,Z) solves the nonlinear Schrodinger equation
(2), and the vector functions u+(X, Z;X) and u (X,Z;A, )
form a basis of the simultaneous solutions of the Lax pair
(5) and (6) for all complex A, (except at the points A, and
X, where the basis degenerates, forming a bound state).
The solutions of (2) so constructed correspond to the in-
teraction of N bright solitons of the form

QJ(X,Z}=2b sech(2b~X+4ajbJZ —5 )

XexpI —i[2a~X+2(a —b )Z —8 ]},
(14)

where a, bj, 5J, and 8. are all real, and AJ. =a +ib~ and

y~
= —exp(i 81 —5J ). In all that follows, we assume

without loss of generality that aj &ak whenever j &k,
and that b & 0 for all j.

If the numbers A, are distinct and nonreal [note that
without loss of generality we can assume Im(A, ) &0 for
all j ], then these relations are independent linear condi-
tions on the coe%cient functions, and thus the vector
functions given in (9) and (10}are uniquely defined. Now
define

Xexp[ 2i(AJX+—AJZ)],
N —1

X~~+ g C„(X,Z)A, ".

n=0

X exp[ 2i ( A~X+—A JZ )],

N —1

A„(X,Z)Xi =—
(17)

where j =1, . . . , N. Taking U &a for all j puts us in the

Of particular interest in the theory of guided waves are
the bound states of the linear Schrodinger equation (3).
We will see in this section that in the case when the P is
an ¹oliton solution of the nonlinear Schrodinger equa-
tion (2), then the bound states of (3) are all contained in
the family of solutions P+(X,Z;A. ). This family is X-
dimensional, as can be seen from formula (15). First, we
claim that formula (15) represents a family of bound state
solutions to (3).

Theorem 2. For each complex A, , the function
P+ (X,Z; A, ) is a bound state of the linear Schrodinger
equation (3).

Proof: It is a consequence of theorem 1 that for each
complex A. , P+(X,Z;A, ) solves (3). We now analyze
P+(X,Z;A, ) along straight lines through the origin in the
(X,Z) plane. Choose a real slope u and introduce the
variables X=X+2UZ and g=Z. We want to examine the
behavior of p+ in the limits g —+k 0O for fixed X. Condi-
tions (11) and (12) determine P+ and P by giving the
coefficients A„(X,Z) and C„(X,Z) as solutions of the
linear system

N —1 N —1

A„(X,Z)A, "=y A, + g C„(X,Z)A, ".
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moving frame of an observer moving far to the right (left)
of the solitons for large negative (positive) g. Then, using
b~ & 0 for all j, in the limit of ~g~ ~~ one obtains the re-
lations Co

—1V(~1««~k«~k+1» . «4)

N
1

N —1

A„(X—2u g, g)A,
"=0, g—++~, j=l, . . . , N, CN —1

N —1

A„(X—2ug, g)A,
"=0, g~ —ao, j=1, . . . , N .

(21)

Likewise, taking U (a. for all j yields and, as g~ —ao,

A„(X—2ug, g)A, "=0,
n=0
N —1

A„(X—2ug, g)A, "=0,
n=0

g~+ ~, j= 1, . . . , N,

g~ —co, j= 1, . . . , N .

Co
—1V(~1« ' ' ' « ~k«~k+1« ' ' ' « ~N } N

~k+1

The NXN matrix V(A,„.. . , A,&)= I Vjk=AJ. 'J is a
Vandermonde matrix which is invertible because the X.
are distinct [the same is true of V(X„.. . , Az)]. Thus the
limiting values of 3„are identically zero for all
n =0, . . . , X—I. Inserting these limiting values into for-
mula (15) we see that p+(X —2ug, g;A, ) vanishes far to the
right and left of all the solitons for all values of the arbi-
trary parameter A, .

It is easy to extend the arguments in the above proof to
show that as long as UXa. for j=1, . . . , N one has
/+ ~0 for all I, as g~+ ~. Thus the solutions (15) of (3)
are asymptotically confined to the individual soliton
waveguides. These solutions are essentially characterized
by the power confined in each guide as g~+ ao. We will
calculate this power shortly. But first, we consider the
class of solutions of (3) described by the function

(X,Z;A, ).

(22)

Again, the Vandermonde matrices are invertible because
the soliton eigenvalues are distinct, and thus the func-
tions C„(X,Z) have asymptotically constant values along
the lines of constant g. The only dependence on X and Z
that remains in P (X,Z;A, ) in these limits is thus in the
exponential factor, which is bounded because P. is real.
The linear independence of these functions for different
real values of k then follows from the linear independence
of the exponentials.

From formulas (21) and (22) it is possible to normalize
the functions P (X,Z;A, } appropriately and calculate the
transmission and reflection due to each arm of the mul-
tisoliton waveguide in turn. We leave this calculation for
a future publication.

B. Scattering states
IV. TRANSFER MATRICES

FOR BOUND STATES

Here we begin to investigate the solutions of the linear
Schrodinger equation (3) that are built from the function

(X,Z; A, ) which was defined by (16}. As A, ranges over
all real numbers, the function P (X,Z;A, ) sweeps out an
infinite-dimensional space of unbound radiation modes of
(3). We state this as follows.

Theorem 3. Let A, be real. Then, the function
(X,Z; A, ) is a solution of (3) that for large Z behaves as

a constant times the bounded exponential
exp[ 2i (A,x +At)—] in an, y constant velocity moving
frame that is not the frame of any of the solitons. More-
over, if A,Ap, then»I} (X,Z; A, ) and P (X,Z;p ) are linear-
ly independent.

Proof: As with P+, theorem 1 guarantees that
(X,Z;A, ) solves (3) for all complex A, , and in particular

for all real A, . Now, arguing as in the proof of theorem 2,
we choose a moving frame described by the change of
coordinates X=X+2vZ and g=Z and analyze the linear
system (17) and (18) as ~g~ ~ ~. Suppose that
ak & U & ak+, . Then, as g~+ ao, one obtains

N —1

A„(X 2ug, g)A—,"=0, j& k,
n=0
N —1

A„(X—2ug, g)X~ =0, j& k,
(23)

and, as g —+ —~,
N —1

A„(X—2ug, g}A,"=0, j&k,
n=0

N —1

A„(X—2ug, g)A, ". =0, j& k .
n=0

(24)

We now return to the calculation of the asymptotic
confinement properties of bound states of the N-soliton
waveguide. Let U =ak for some k =1, . . . , X describe
the frame of reference in which the soliton gk defined by
(14) (modulo phase shifts) is stationary. Then Eqs. (17)
and (18) imply that, as g~+ ao,



4102 P. D. MILLER AND N. N. AKHMEDIEV 53

In each of the two limits g~+oo, we thus have N 2—

equations among the asymptotic values of Ao through
AN 1. Recall that AN, (X,Z) is distinguished by (13) as
being proportional to the ¹oliton collision, whose

asymptotic behavior is known. Thus, we can use (23) and
(24) to eliminate A„,n =0, . . . , N —2 in favor of AN
We find as g~+ oo that

gN —1
1

AO gN —1
k —1—1

~N —1V(~l» ' ' ' » ~k —1»~k+1» ' ' » 4 } gN 1
k+1

(25)

gN —1
N

and, as g~ —oo, that

gN —1
1

AO gN —1
k —1—1

~N —1 (~1» ' ' »~k —l»~k+1» . . »~N} ~N —1~k+1

gN —1
N

ak
k m=1

N —1

(a, —ak)
k =1,k&i

(27)

where the sum is taken over all vectors
k=(k„.. . , kN;), where k (k„whenever m (n and
k Aj for all m. This means that there are constants A„",
found by solving these linear systems, such that as
~+ OO,

A„(X—2vg, g}=A„"AN,(X—2vg, g),

Again, we have the guarantee that the Vandermonde ma-
trices are invertible. This might be a good place to give
the formula for the inverse of a Vandermonde matrix.
The matrix elements of V(a 1, . . . , aN )

' are given by

N —i

one waveguide at g= —oo, say, the waveguide indexed by
the soliton eigenvalue A, . Let us call an element of this
latter space @ (X,Z). Expanding in our basis with
coefficients f~k gives the following representation for

4J (X,Z}:
N

4 (X,Z)= g f krak (X,Z),
k=1

N —1= g f k g A„(X,Z)A, k
k=1 n=O

(30)

The coefficients f k are determined by imposing the con-
ditions that N~ vanish as g~ —oo in all waveguides m

except for m =j, in which we will normalize by taking N.
to be asymptotically equal to the X-soliton collision
f(X,Z). As g~ —oo, we have, in waveguide m,

E1 =0, . . . , N —2,
and as g~ —oo,

A„(X—2vg, g) = A„"AN,(X—2vg, g),
n =0, . . . , X —2.

(28)

(29)

N N —2

N (X,Z)= g f,k k,k
'+ g A„A,k

k=1

X AN i(X,Z)

=1 N= 2. 8»» X f,kgk
k=1

(31)

We now can calculate the behavior of P+(X,Z;A, ) as
Z~+ ~ in any of the waveguide arms. To proceed, we
take as a convenient basis of the vector space of all bound
state solutions to (3) the collection of N functions
pk (X,Z)=p+(X, Z;A, k). By taking linear combinations
of these basis elements, we want to find a one-dimensional
space of bound state solutions of (3) that vanish in all but

where we have defined

N —2

g =XN '+ y AmX"
n=0

(32)

Thus we determine the elements f k of the matrix F in
terms of the elements gk of the matrix Cr by
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F=2iCx

Now, as g~+ ~, in waveguide m we have

4 (X,Z)=T Jg(X, Z),

(33)

(34)

Finally, we turn our attention to the calculation of the
power transfer. The power of the free soliton beam
g.(X,Z) is

X,Z dX=Sb (39)

where we have defined the complex amplitude transfer
matrix by

T= —.[FG+]T=1
2l

Then the power transfer matrix is defined in terms of the
amplitude transfer matrix by

(40)

[G
—1G ]T (35)

and the elements gk+ of the matrix Ci+ are given by

N —2
g+ —) N —1+ y gn pm (36)

N

P(X,Z)= g a g, (X,Z), (37)

will be scattered by the ¹oliton refractive index
~
itt(X, Z)

~
to become

P(X,Z) = g
m=1

N

g T a 1' (X,Z.), (38}

as Z —++ 00. A very important observation that can be
made at this point is that the complex amplitude transfer
matrix depends only on the soliton eigenvalues A, ,- which
contain the soliton amplitude and propagation angle in-
formation; there is no dependence mhatsoeuer on the rela-
tive phases involved in the ¹oliton collision which are
contained in the parameters y; (see Fig. 2).

5-

Thus an arbitrary bound beam, which as Z ~—~ is of
the form

The interpretation of this matrix is that p units of power
input into waveguide j at Z = —~ (with no power input
into any of the other waveguides) will be split among all
the waveguides at Z = + ~, with power pP in
waveguide m. If more than one waveguide is illuminated
at Z= —~, then there will be interference effects that
are taken into account by the complex amplitude transfer
matrix —for which there is a superposition principle-
but not by the simple definition of power transfer that we
have given above. However, from the complex amplitude
transfer matrix, the power transfer matrix inherits the
important property that it does not depend on the exact
geometry of the X-soliton collision that forms the
waveguide, only on the sizes of the solitons and their an-
gles of propagation.

The essential results of this section are summarized in
the following.

Theorem 4 (transfer characteristics of ¹oli ton
waveguides) The c. omplete transfer characteristics for
bound states of an ¹oliton junction waveguide are given
in terms of the N soliton eigenvalues A, by the following
simple algebraic algorithm:

(1}For 1 k ~ N and 0 ~ n ~ N —2, calculate the num-
bers A„bysolving the linear equations

N —1

n=1
N —1

g X". '3" =X ', k+1~ ~N . '

n=1

(2) Then construct the N XN matrices G+ and G ac-
cording to

N —2 N —2+ gN —1+ y gmgn — )N —1+ y gmgn
N p. n=0 n=0

(3) The complex amplitude transfer matrix is then
given explicitly as

T= [G 'G+ ]

(4} The elements of the N XN power transfer matrix
are then

-5-
-15 15

FICx. 2. The refractive index profile of a three-soliton col-
lision. This waveguide has the same transmission properties as
that shown in Fig. 1.

The fact that the transfer characteristics are indepen-
dent of the phase shifts or optical phases of the X indivi-
dual soliton beams making up the waveguide indicates
that a remarkably simple and beautiful idea lies behind
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A. Fundamental example: The general soliton
X junction

As an illustration, let us calculate the transfer matrices
for the special case of a soliton X junction, for which
X =2. First, we calculate A o, and obtain the simple re-
sult that

0 1

The complex amplitude transfer matrix is given by

A)+ A2 A~+ A2 A(+ A2 2A2

(41)

(42)

As we have noted, this 2 X 2 matrix is of fundamental im-
portance, since all N XN complex amplitude transfer ma-
trices can be built out of it. We will see how shortly. Fi-
nally, using (40), we obtain the power transfer matrix for
the soliton X junction:

P= 1

b, ~, +(b2+b, )

h~, +(b2 b,)—4b, b2

4b)b~ b, 2, +(b2 b,)—(43)

where we have introduced the notation h,j.=a; —
a~ for

the angle difference between the soliton waveguides.
Thus we observe that, in addition to the power transfer
not depending on any phase information about the in-
teraction of the waveguides, there is also no dependence
on the overall angle of the guides in the medium —only
the angle difference is involved. It is easy to check that,
for each j,

Pk- =1, (44)

which expresses the conservation of norm in Eq. (3).

the algorithm given in theorem 4. Suppose one wanted to
calculate the complex amplitude transfer matrix for a
given ¹oliton waveguide. Armed with the knowledge
that phase shifts cannot affect the final asymptotic prop-
erties, one can spatially translate the individual solitons
participating in the collision until the N XN collision is
well resolved into (N N—)I2 isolated 2X2 soliton col-
lisions. The guidance properties of an ¹oliton tcaveguide
can be completely deduced from the guidance properties of
the two-soliton taaUeguide. In this context, an X-soliton
collision is nothing more than the sum total of the pairwise
collisions among the N solitons. This property is clearly
analogous to the well known fact that the phase shift that
a soliton accrues as it simultaneously collides with N —1

others is exactly equal to the sum of the pairwise phase
shifts, as if the collision were in fact with one soliton at a
time. We now consider some concrete examples of the al-
gorithm described in theorem 4.

1 —r r
1 1 —r (45)

one must only choose the angle between the solitons ac-
cording to hz& =4(r ' —1).

B. Another example: The general soliton
six-port device

As a further demonstration, we consider the case of a
three-armed waveguide constructed out of the collision of
three soliton solutions of (2), that is we take N =3 (see
Figs. 1 and 2 for example index profiles). Rather than
calculating the amplitude transfer matrix elements from
the algorithm in theorem 4, let us show how elements of
the 3 X 3 complex amplitude transfer matrix can be calcu-
lated simply from knowledge of the fundamental 2X2
complex amplitude transfer matrix (42). Let us adopt the
notation T' (AJ, A, k ) for the 2X2 amplitude transfer ma-
trix associated with the collision of the solitons indexed
by A,J. and A, k with k )j. In Fig. 3 we diagram a collision
among three solitons indexed by the eigenvalues A, „X2,
and A, 3, where we have used the freedom of the phase
shifts of the solitons to separate the impact into three iso-
lated 2X2 impacts. There are several ways to separate

Another interesting property of the transmission matrix
(43) is its symmetry. The matrix is symmetric even if the
amplitudes of the two colliding solitons are unequal.
When the soliton amplitudes coincide, matrix (43) de-
scribes transmission properties obtained numerically in
[6]. Also, observe that if the colliding solitons have un-
equal amplitudes the diagonal elements of the matrix are
nonzero even when two solitons are almost parallel
(&~) 0).

One of the obvious applications of our results is to the
design of eKcient signal routing devices like the optical X
junction, a device meant to take two optical signals as in-
puts, redistributing the power in a predictable way
among two output ports. The X junctions typically fabri-
cated today guide signals imperfectly through the device,
in the sense that some power is lost to radiation in the in-
teraction region [18]. However, it is now clear that if a
device is designed with the index profile of the junction
given by the geometry of a two Kerr soliton collision,
these losses wi11 be reduced to zero. Moreover, the size of
a device made in this way can in principle be comparable
to the operating wavelength, in contrast to existing de-
vices whose lengths are comparable to the beat length of
their linear modes —much greater than a wavelength.
These features suggest strongly that the soliton based X
junctions considered here can be efhciently used in in-
tegrated optical circuits.

Moreover, since their transmission behavior is now es-
tablished, such devices are easy to design to specification.
As a concrete example, we show how to use the power
transfer matrix for the X junction to design a signal
splitter. Choose a splitting ratio 0&r &1, and imagine
building the index profile of the device from two solitons
of the same amplitude b =1. Then, to have the signal-
splitter power transfer matrix
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l(k l, XP)

FIG. 3. Calculation of the N =3 matrix ele-
ment T» from the N =2 matrix elements.

+ T21 (~ yA23) T(1A2p 13))1T(2A11pA2) (46)

This procedure concretely establishes the link between
the properties of an X-soliton waveguide and those of the
soliton X junction. In practice, one may choose between
calculating the amplitude transfer matrix either by this
method or directly from the algorithm given in theorem
4. Of course the results are the same in both cases.

the soliton collisions like this; however, the final expres-
sion for the amplitude transfer matrix is, of course, in-
dependent of any particular choice. Let us use the dia-
gram in Fig. 3 to calculate the element Tzz of the 3 X 3
amplitude transfer matrix. We assume that for large neg-
ative Z only the waveguide indexed by X2 is illuminated,
and that the field envelope there agrees with the three-
soliton interaction that created the waveguide. As this
beam passes through the impact with the waveguide in-
dexed by A,

„

the beam is split into two components. The
field component that remains in the A, 2 waveguide picks
up a complex factor of Tz2'(A, A,2), and the component
that is conducted into the other waveguide picks up a
complex factor of Tz1'(A, 1, A,2). This other component
propagates in the A,

&
waveguide until collision with the A, 3

waveguide, whereupon it is again split into two. We are
not concerned with the part that remains in the A, 1

waveguide, since it cannot exit through the A, 2 guide; the
other part picks up a complex factor of Tp2'(A, 1,A3). Now
this beam propagating in the A.3 waveguide collides with
the beam that emerged from the very first collision of the
A,2 waveguide, and the superposition is split among the
output waveguides indexed by A.2 and A,3. We are only
concerned with the beam that exists from the A, 2

waveguide; the overall factor output in this waveguide is

T22 11 (~2&~3)T22 (~1&~2)

With the complex amplitude transfer matrix calculated
by either one of these methods, we can obtain the ele-
ments of the 3X3 power transfer matrix for the general
soliton six-port device. The power transfer matrix is
symmetric, the independent elements being

4b, b2[b3, +(b3 b, ) ]-
[EZ1+(b2+b, ) ][631+(b3+ 1) ]

4b, b3

53, +(b3+b, )

4b2b3[b, 31+(b3 b, ) ]—
~23 =~32 =

[631+(b3+b, ) ][632+(b3+b2) ]

and the diagonal elements are given in terms of the others
as

~ii =
&
—~2i —~3i

~22 —
&
—~i2 —~32

~33 =1—~i3 —~z3

which expresses conservation of power. We have again
used the notation 6; =a; —a, and it is again clear that
there is no dependence of the overall angle of the
waveguide structure in the medium with respect to the Z
axis. Note that the power transmission matrix for the
three-soliton waveguide is less symmetrical than it was
for a soliton X junction in the sense that P»AP22. The
reason for the broken symmetry is that there now is a dis-
tinguished waveguide corresponding to the eigenvalue A, 2

that is between the other two. Also, observe that the
power transfer matrix for the soliton X junction can be
recovered from the upper left corner of this matrix upon
setting b3 =0. There are five independent parameters in
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the above formulas (three amplitudes and two angles be-
tween the solitons), which feed into the three independent
elements of the power transfer matrix. This means that
we can design a 3 X3 switch with diverse properties by
controlling the independent parameters. Examples will
be considered elsewhere.

V. (CQNCLUSIONS

The main results of this work are the analytical formu-
las for the transfer matrices (35) of linear wave propaga-
tion through the impact area of multisoliton collisions.
Using them, we can calculate the complex amplitudes
(and powers) of linear waves in each of the output chan-
nels from the amplitudes of the input linear waves.
Clearly, this is the response function of a 2N-port device
made from a multisoliton collision. The elements of these
matrices depend only on the amplitudes of colliding soli-
tons and the angles of collision between them —there is
never any dependence on the initial relative optical
phases of the solitons or on the overall spatial geometry
of the soliton interaction. Hence we can control the
switching properties of this 2N-port device by specifying
only the angles of collision and amplitudes of the solitons.
The lack of dependence on the relative phases of the soli-
tons also means that the linear properties of an ¹oliton
collision can be completely described in terms of
(N N) l2 pai—rwise collisions.

We can also comment on the generality of multiport
linear devices made from the interaction of N solitons. A
symmetric N XN power transfer matrix that conserves
power can only have (N —N)/2 independent real ele-
ments. We have seen that exactly 2N real quantities (the
real and imaginary parts of the soliton eigenvalues) feed
into the power transfer matrix for a multiport linear de-
vice made from solitons. Thus, for N & 5, we expect mul-
tiport devices made from solitons to have quite general

properties, while for N ) 5 the multiport devices made
from solitons will be very special cases of the general
linear multiport device.

The scattering description encoded in the transfer ma-
trices is only strictly valid for signals that are injected
into the device at Z= —ao with form (37) for arbitrary
a . More general signals, or signals that are imperfectly
matched to the device at Z= —00 will contain a radia-
tion component whose evolution in Z is described by the
functions P (X,Z; A, ) that will carry away a small
amount of the input power.

Regarding our mathematical procedure, one issue that
we have not addressed here is the question of the com-
pleteness of the solutions to the linear Schrodinger equa-
tion (3) represented by formulas (15) and (16). In the fu-
ture, we would like to prove that the space of functions
with convergent expansions (for fixed but arbitrary Z) of
the form

N

f(X)= g akim+(X, Z;A,„)+I g(A)p (X,Z;A, )dA,
k=1

(49)
is exactly L (IR ) for appropriate functions g ( X ). We
would also like to establish orthogonality relations among
solutions (15) and (16) of (3) that allow the easy projection
of f (X) onto its components. With these tools, in fact
the general solution to the initial value problem for (3)
will be written in the form of (49).

We also plan to treat the problem of solving the linear
Schrodinger equation (3) in the case when the potential
V(X,Z) is equal to the negative square modulus of a N
dark soliton solution of the defocusing cubic nonlinear
Schrodinger equation. The basic calculations are much
the same, but the techniques for writing down the exact
¹oliton solution and its associated basis of simulations
solutions to the linear problems (5) and (6) are slightly
more involved.
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