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Two-dimensional spatial optical solitons in bulk Kerr media stabihzed by self-induced
multiphoton ionization: Variational approach
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The beam parameters of spatial two-dimensional solitons in a bulk medium under the inhuence of the

combined effects of diffraction, Kerr nonlinearity, and nonlinear index change by plasma creation will be
studied with the help of a variational approach. A simple analytical relation for the power of a spatial two-

dimensional soliton is derived which shows a two-valued behavior in dependence on the beam diameter. The
variational approximation is compared with numerical and experimental results. The solution is proven to be
stable against small perturbations in the whole parameter region.

PACS number(s): 42.65.Tg

Bright spatial solitons are self-trapped beams in a material
where the diffraction is balanced by a nonlinear index
change. In a pure Kerr-medium stable self-trapping is only
possible for two-dimensional geometries as, for example, in
planar waveguides, limiting the diffraction to one spatial di-
rection [I].In this case the obtained basic equation (nonlin-
ear Schrodinger equation) and the physical properties for
timelike solitons in fibers are completely analogous to that of
a spatial soliton in 1+1 dimensions. For a bulk medium the
stationary solitary wave solution of the multidimensional ex-
tension of the cubic nonlinear Schrodinger equation is ex-
tremely unstable against propagation [2]. This instability is
catastrophic in the sense that if the incident beam power
exceeds the critical power transverse fluctuations can suffer a
rapid expansion and the beam breaks up into a random pat-
tern of several filaments [3].However, this pessimistic con-
clusion concerning the possibility of realizing stable spatial
solitary waves in 2+1 dimensions in a bulk medium does not
exclude the generation of multidimensional solitons under
other physical conditions, this possibility is a promising topic
of investigations with attractive applications. Recently it has
been reported on some attempts of theoretical as well as
experimental investigations of two-dimensional spatial soli-
tons. For an extreme high-power laser pulse in the order of
the 10 TW re1ativistic self-channeling in an underdense
plasma has been predicted [4] and also lately experimentally
demonstrated over a plasma length of 3 mm [5]. In such an
extreme high-power region nearly all neutral molecules of
the medium are ionized and relativistic self-focusing devel-
ops from an increase of electron inertia under the influence
of the intense electromagnetic wave. For a lower power in
the nonrelativistic region recently the self-channeling of a
small-scale filament formed from a high-peak power femto-
second laser pulse of about 20 GW over a distance of 20 m
in air has been observed in Ref. [6]. In this region of laser
power only a portion of the molecules is ionized by the laser
pulse and the Kerr nonlinearity of the neutral molecules is
the reason for self-focusing, whereas the additional self-
defocusing nonlinear index change by the self-induced pho-
tonionization leads to a counteracting which stabilizes the
beam for a certain spot size. Spatial solitary waves with a
much lower power in the order of pW has been predicted
and observed [7] in photorefractive media, where the refrac-

tive index change of the medium is associated with the light-
induced nonuniform screening of an external field or with the
photovoltaic current.

In the present paper we investigate the evolution of an
optical high-power beam in a Kerr medium under the inhu-
ence of self-induced multiphoton ionization and analyze the
possible existence of two-dimensional spatial solitons gener-
ated by the combined effects of Kerr nonlinearity and non-
linear index change by self-induced ionization. By the coun-
teracting self-defocusing effect of the photoionized free
electrons the unbounded growth of the Kerr nonlinearity is
restricted. Under such conditions the beam breakup into fila-
ments due to self-focusing is prevented and under certain
conditions a stabilized multidimensional soliton can exist.

We start by deriving the nonlinear wave equation which
describes the beam propagation of an intense optical pulse in
a bulk Kerr medium under the inhuence of multiphoton ion-
ization. In order to obtain an analytical expression we use the
variational approach based on a suitable choice of a trial
function for the radial dependence of the electric field enve-
lope F= I/2[A (r, t) exp(i toot —kz) +c.c.]. The variational
procedure leads to a system of ordinary differential equations
for the beam parameters which are analogous to a one-
dimensional movement of a mechanical particle in a given
potential U(y). The solution of these equations shows in

general periodical changes of the radius, the curvature, and
the intensity of the beam in dependence on the axial coordi-
nate z. Special emphasis is laid on the possibility of self-
trapped beams or two-dimensional spatial solitons with beam
parameters not changing during the propagation. A simple
analytical formula describing the relation between the power
and the beam radius for a spatial soliton is derived which is
analogous to the relation for a timelike soliton in fibers be-
tween the soliton power and the pulse duration. The soliton
power in dependence on the beam radius shows a two valued
behavior similar to the timelike solitons in a medium with
saturable nonlinearity [8].The analytical results will be com-
pared with an exact numerical integration. Further on the
stability of the spatial soliton against small fluctuations will
be analyzed and both solution branches will be proven to be
stable.

The refraction index change by the Kerr effect and the
self-induced ionization can be described by the relation
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where T(r/) is the normalized input shape. With ansatz (4)
the Lagrangian for Eq. (3) becomes

where A is the slowly varying amplitude of the electric field
strength, no the linear refractive index, n2 is the nonlinear
coefficient due to the Kerr effect, N„=(mes ohio)/e the criti-2 2

cal plasma density, and N, the number density of free elec-
trons. Multiphoton and tunneling ionization are two limiting
cases of optical-field induced ionization [9] and are often
distinguished by using the Keldysh parameter I =(I,/W )",
where I; is the ionization energy and W the free electron
quiver energy. In the following we consider the case I'&1,
where multiphoton ionization dominates compared with the
tunneling ionization and neglect secondary ionization by free
electrons. The electron density is then given by

(2)

L= —ik .8
Bz

BB
T+

BB
4 3

Bz j Br

with g(p) =I" T "(t)dt. To find a solution for Eq. (3) now
is equivalent to the variational procedure

$ co

rLdr = 0.
Jo

For the solution of the variational problem (6) we use a
Gaussian beam ansatz

where n is the number of quanta necessary to ionize the
molecules (nkcoo~I;), N the number density of molecules,
and a=coon' [eo/(8N, g;)]". The spatial and temporal dy-
namics of a pulse in a bulk Kerr medium under the influence
of self-induced ionization are determined by the competitive
interaction of diffraction, self-ionization, and self-defocusing
by the multiphoton ionization. The reduced Maxwell equa-
tion for the slowly varying amplitude A then with (1) and (2)
has the form

8A 1 8 ~ BA~
2ik ———r —2k+lAl A+ paA lA(t')l "dt'

Olz r Br
~ Br] J--

(
B(z,r)=C(z)exp —

2 +ib(z)r +i%(z)w'(z) /

' (7)

1
4 2db 1 2 2dCLrdr= ——kw C T——kw C T

0 2 dz

(27+ b2~4C2 T Q ~~2 C473

where the maximum amplitude C(z), the beam radius w(z),
the curvature parameter b(z), and the phase %(z) are func-
tions of z. Using (7) the integration in (6) can be done ex-
plicitly with respect to the radial variable r which yields

=0, (3)

A(z, r, r/) =B(z,r) T( rg), (4)

where r is the radial coordinate, z the longitudinal coordi-
nate, k the linear wave number, r/=t (z/v) the tim—e of the
moving frame of the pulse maximum, a =kn 2l no, and
p=(k N)/(n ON„). We solve approximately Eq. (3) by means
of the variational approach f10] based on a suitable choice of
a trial function. In Eq. (3) we have restricted our analysis to
the condition when the relaxation time of the Kerr effect and
the group velocity dispersion can be neglected, while the
time g appears just as a parameter. For air parameters the
group velocity dispersion parameter is k"=1.8X10 (s /m)
and consequently the dispersion length of a 200 fs pulse is
about 2.2 km. However note that the critical physical time
scale which determines the inhuence of dispersion is given
by the rise time of the pulse shape and not by the pulse
duration. As we wi11 see later in the framework of our model
after nonlinear propagation a nearly rectangular pulse shape
with a very short rise time arises. Group velocity dispersion
with k"~0 combined with a self-focusing Kerr contribution
to the refractive index even would enforce the formation of a
nearly rectangular shape (as in a fiber-grating compression),
but the counteraction of the self-defocusing plasma contribu-
tion could remove such a shape. The same is true for the
relaxation time of the Kerr effect as well as for dispersion of
the plasma generated by light. For the solution of Eq. (3) the
time dependence of the beam can be taken into account by
the ansatz

1 p+ —
2 w'C2"+2aTg(rg).

4 (n+1) (8)

The varitation of the reduced Lagrangian (8) with respect
to +, b, C, and ~ gives the following system of ordinary
differential equations:

d—(w C )=0, (9)

d& 2= ——wb,
dz k

(10)

db 2 1 2
b2+ C2T2

dz k ~4 k 2w2

n p
+1)2 k 2 C "ag(v)

dC 2 1 3
2 2

2n+ 1 P
2
——~CT+ 2

—C "ag( r/). (12)
dz k w 4 2(n+1) k

The relation (9) implies the conservation of the power
P(z) =

Po= (vr/4) eocnow C T (r/). —Since (8) does not ex-
plicitly depend on the variable z the Hamiltonian H =Ho is a
second constant of motion:
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FIG. 1. Potential U in dependence on the normalized beam ra-
dius y. The parameters in (a) are y=2.725X10 . Cu

0 cr . , curve 2: Po/Pcr =1.0014; curve 3: Po( Pcr =1.5. The
parameters in (b) are Po/P„=1.0014. Curve 1:

; curve 3: y=2.725X10; curve 4: y=2.725X10
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n ensi y increases anding potential. As a consequence the int t I '

t e ionization of the neutral molecules comes into la . The

g due to the plasma creation leads then finally
again to an increase of the potential for ( . Th

o e potential, where both effects balance each other,
can be determined from Eq. (14) and is given by

r
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A minimum in the potential is a necessary condition for
the existence of a spatial soliton or a self-trapped beam. The
characteristic of a spatial soliton is the constance of the beam
radius during the propagation and that the curvature param-
eter is equal to zero. Consequently the potential has its
minimum at y=1. Therefore we fi d f E .n rom q. 16) the rela-
tion of a spatial soliton P =P,0

Using (9) and (10) we obtain from (13) with the n

variable = I k
wit t e normalized

y = w(z)/wo
e =z ( w o) for the relative beam dam ra ius

P, 1 (Pl"—1 = —ynlP„2 [P„) (17)

1 rdy' (1 r p, 1 r 1 ~ rp, )"
2 P
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Here wo=w(z=O), bo=b(z=0), Po=P(z=O are the in-

put parameters at z =0, )i. is th 1

[3], and
„=7r no n2 )]roc is the critical power of self-fse — ocu sing

1.5

(15)

With the solution y(z) we find from relation (10) the cur-
vature parameter b(z) and from the conservation of the
power the amplitude C(z). With the help of the variational
approach the nonlinear wave propagation has been reduced

roblp em with a potential U(y), where the particle's coordi-
anica

nate is related to the beam radiu th
corresponding to Eq. (10) to the curvature parameter b, and
the time to the axial coordinate . I F . 1~ ~

y is depicted for air parameters under norm 1 d' '

wi n2=7 4X 10 (m /V ), no=1.0, P„=1.82 GW
I;=1454 eV n=1, n=10 and the laser parameters X=800 nm

0 . ~ cr

w =526 mp,m, and b0=0 for the maximum of the i t 1

=0 a
e inpu pu se

7 =200 s
r/=, a shape function T(r/) =sech(1.76 / ) 'dwi th

P IP . Fora
s, and for the three different input 1u pu se powers
or a power P0IP«=0.8 below the critical one in

curve 1 the oe e potential decreases monotonously since th d'f

E. 17 re re
or xed material parameters and a fi d

q. (17) represents a relation between the power and the
beam radius wo (via the coefficient y) analogous to the rela-

ers etween the solitontion for the timelike solitons in fiber b t
pea power and the pulse duration. Curve 2 of Fig. 1(a)
shows the potential for a power P0IP«=1.0014 fulfilling the
soliton relation (17) for r/=0 and th the ot er parameters given

U has it
a ove. As seen in the enlarged inset i th'in is case the potential

(y) has its minimum at y=l and therefore th "p '
1
"

rests in this point.
e e partic e"

In Fig. 1(b) the potential is depicted for four diff t

p ers y for a fixed input power P0IP«=1.0014. Inarameters
ur i erent

curve 1 for =0 they= e potential decreases monotonously with
decreasin

'

g y, i.e., the beam radius decreases, and the known
catastrophic self-focusing appears [2 3] hs, , w ereas in curve 2
an " 'ue to a finite y a minimum exists. Here curve 2

n q. wit the mini-corresponds to the soliton relation in E . 17 with
mum at y=1. The behavior of the potential for y=2.725
X10 is depicted in curve 4, which shows a minimum f
y . g. 2 the normalized beam radius y and the nor-
malized curvature 2

as fun
parameter bIw0 are shown respect 1,ive y,

14 10
unctions of the axial coordinate bt d bz o aine y solving

( ), ( ), and (11) with a Runge-Kutta method with adap-
tive stepsize control, where C(z) is replaced by the power
conservation. The parameters in th thc .

'
e ree curves are the

same as in the corresponding curves of Fig. 1(a). As ex-
pected and in accordance with th t 1e potentia curve for an
input power P0IP«=0.8 in curve 1 the beam radius in-
creases monotonously during the propagation as a result of
the predominance of the diffraction. In curve 2 of the same
figure with P IP =1. 014 the soliton condition is realized
and conse uentl thq y e beam radius does not change and the
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FIG. 5. Normalized soliton power in dependence on the wave
number shift P. Since dP, /dP)0 both soliton solution branches are
stable.

rion for the stability of the soliton states of Eq. (3) against
small perturbations is the condition (dP, /dP) )0, where P,
is the soliton power (17) and P is the wave number shift
(d4&/dj) = —P. The result of our numerical calculation for
the function P(P) is depicted in Fig. 5. As seen the function
P(P) shows a monotonously increase with P, therefore the
soliton solution is stable in the whole parameter region.
However note that the criterion (dP/dP) ~0 for soliton sta-
bility in the case of the higher order nonlinearities ensures
only stability against small perturbations and has to be dis-
tinguished from the stability against large perturbations [13].
For large perturbations as in the case of the collisions of two
solitons which are stable against small perturbations for the
different nonlinear models a variety of effects can be found
reaching from an elastic collision behavior, i.e., stability
against large perturbations (robust solitons) [13], a "qua-
sisoliton' behavior which is accompanied by an appreciable
radiative peak or background [14], or a fusion or alterna-
tively a pulse splitting at collisions [15]. We must bear in
mind that in our discussion we have mainly referred to a
fixed time, as e.g. , the time of the pulse maximum g=0, but
the general time dependence of all relations is included in the
input parameters Pp(r/) and y(r/). However, the nonlinear
refractive index change and the diffraction act in a different
way on the various parts of the pulse leading to a narrowing
of the pulse shape. Using the explicit time dependence of
relation (17) in Fig. 6(a) the pulse shape /(r/) on the axis
r =0 is depicted for a soliton beam radius wo=52, 6 p,m and
with the other material parameters given above. As seen the
two-dimensional soliton shows a nearly rectangular shape
with a normalized intensity near unity. As mentioned at the
beginning dispersion effects neglected in our analysis could
remove such behavior. In our model the sharp cutoff of the
shape is caused by the decrease of the input function
T(r/)=sech(1. 76r//wp) which corresponding to (15) yields an
increase of the parameter y(r/) on the pulse wings because
the function g(r/) changes only slowly with time. Therefore
at the pulse wings the parameter y reaches the critical value
of relation (18) with y„=7.748X10 . For the subcritical
parts of the pulse the soliton relation (17) cannot be fulfilled
and the pulse wings are suppressed by diffraction induced
erosion. The small increase of the intensity near the edges of

I-0.5

//r/rrrrrrrrrrrrrrr
/IIIIIIIIIIIIIIIIII
IIIIIIII//////////II
/I/III/i/'///////li/I/
iifiiliiiiiiiiliiiii
I/'/ll/'/I!IIIIIIIII/
/II/IIIIIIIIII/'IIIII
/I/ii/I/I////ii/III/
/i/ill/////////iii//
////////////////////
IIIIIIIIIII/IIIIIIII
/IIIIIII/III/I//II/
//////r/////r'//////

//////////r///////////I//////////////rrrrraaarrrrrarrrrrrrarrrrrarrra

a. x 0.4

o

FIG. 6. Soliton shape on the axial axis (a) and three-dimensional
plot of the normalized soliton intensity versus the time g and the
radial variable r for a soliton beam radius ~o=52, 6 p,m.

the shape in Fig. 6(a) is connected with the slight increase of
the soliton peak power near the critical parameter y„ in Fig.
4. In Fig. 6(b) in a three-dimensional plot the normalized
intensity versus the time y and the radial variable r for the
soliton is illustrated where the radial shape here is described
by the fixed Gaussian shape approximation used in the
present approach.

Let us finally compare our theoretical results with the ex-
perimental observations in Ref. [6]where the self-channeling
of a filament formed from an ultrashort laser pulse was re-
ported. In the initial stage of propagation of about 10 m after
a decrease of the beam diameter and an increase of the in-
tensity a filament was formed with a diameter of about 80
p,rn and 0.75 mJ whose diameter remained constant during a
propagation distance of about 20 m. The initial stage of the
beam evolution as observed in [6] cannot be described by
our theoretical results which predict a periodical change of
the beam diameter or the intensity above the critical power.
The main reason for the difference can be found in the ap-
plication of the fixed-shape approximation in our approach.
From the numerical study we found that a beam with an
arbitrary initial shape and with a power somewhat larger than
the soliton power will change its shape and power by diffrac-
tion erosion until the soliton condition is fulfilled. Then dur-

ing the further propagation the beam parameters remain con-
stant. This is in agreement with the experimental results
where only a fraction of the initial radiation was trapped.
However, the stable propagation and the parameters of the
self-channeled filament agree rather well with our soliton
relation in Eq. (17) for a two-dimensional spatial soliton in a
Kerr medium stabilized by the refraction from the plasma
created by the intense laser pulse.

In conclusion, with the help of the variational approach
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the evolution of a high-power beam under the inhuence of
the combined effects of diffraction, Kerr nonlinearity, and
refraction from the plasma created by multiphoton ionization
by the intense laser pulse has been investigated. The condi-
tions for the existence and the properties of two-dimensional
spatial solitons have been derived and studied in detail and

an analytical formula for the soliton power in depence on the
beam radius has been derived. The power of the two-
dimensional spatial soliton shows a two-valued behavior.
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