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Uniaxial nonlinear surface waves
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In this paper, we present calculations describing the fundamental and higher-order stationary nonlinear
surface waves that exist at the boundary between a nonlinear self-focusing medium and a uniaxial linear
medium. Purely TE or TM solutions do not exist. The solutions obtained are elliptically polarized, and the
polarization varies as a function of the transverse coordinate normal to the dielectric interface plane. As a
result, these nonlinear surface waves exhibit the phenomenon of a self-walkoff in the Poynting vector. Power
dispersion curves and simple analytic expressions for the surface wave threshold as a function of the angle
between the crystal axis and propagation direction for the surface wave are obtained and presented.

PACS number(s): 42.65.Wi

I. INTRODUCTION

The field of nonlinear integrated optics is rapidly becom-
ing an important one because of its promise in the areas of
optical interconnects and optical communications. Nonlinear
optical waveguides typically exhibit strikingly different
properties than their linear counterparts, including power
thresholds in the dispersion relation. Such properties suggest
that these nonlinear waveguides may be ideally suited for
nonlinear optical signal processing applications.

Many different nonlinear integrated optical waveguides
have been proposed and analyzed. In this paper, we wish to
focus the reader's attention on the simplest of all possible
guiding structures, the single dielectric boundary. Specifi-
cally, the questions we address in this paper concern the
existence of nonlinear states localized at the boundary. These
states are typically named nonlinear surface waves (NSW).

There is a rich literature concerning the NSW, beginning
with the original investigation of such waves existing in a
structure comprised of a homogeneous linear dielectric
bounded by a homogeneous nonlinear self-focusing dielec-
tric [1,2]. These investigations were motivated by experi-
mental evidence suggesting the existence of such a bound
state excited by light obliquely incident on the dielectric
boundary. Following the initial development various cases
have been examined, including multiple dielectric bound-
aries [3], TE- and TM-type waves [4—9], nonlocal [10] and
self-defocusing nonlinearities [11],etc. [12].However a uni-

fying simplification inherent in all of these investigations has
been the assumption that the media exhibit an isotropic di-
electric tensor. In this paper, we compute field profiles and
dispersion relations for the fundamental and higher-order
NSW's that exist in anisotropic dielectric media, specifically
at the boundary between a uniaxial linear dielectric and a
homogeneous nonlinear self-focusing dielectric. Addition-
ally, we identify the phenomenon of self-walkoff that is char-
acteristic of these waves.

The anisotropic dielectric NSW problem is an important
one, motivated by the fact that strain is present to some de-
gree in all coherently grown crystal systems. The strain,
whether tensile or compressive, induces an anisotropy in the
dielectric tensor through a modification of the crystal band

II. PROBLEM FORMULATION

The geometry of the NSW problem we consider here is
shown in Fig. 1. A semi-infinite linear uniaxial crystal exists
for g'~0, and a semi-infinite nonlinear homogeneous crystal
exists in the region z'~0, where the primed coordinate sys-
tem represents the crystal axis coordinate system. The
uniaxial crystal is characterized by the dielectric tensor:

e, 0
0 eY

0 0

0
(2.1)

For g'~0, the nonlinear polarization is described by the re-
lationship

FIG. 1. Uniaxial nonlinear surface wave problem geometry.

structure near the boundary. Because all nonlinear integrated
optical waveguides involve dielectric boundaries, and
many proposed waveguide schemes use coherently grown
crystals (e.g. , nonlinear waveguides fabricated from the
GaAs/AlGaAs semiconductor system) it is very important to
understand the impact that this underlying anisotropy has on
the characteristics of the NSW.
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BP= A~E~'E+ —(K K)K*,
2

(2.2)

V x(V XK) =K+ iEi'K+ —,'(K. K)K+ (2.3)

and the corresponding wave equation in the linear uniaxial
medium is written in normalized form as

where A =6~»22 and B=6~&22, are the nonlinear susceptibil-(3) (3)

ity parameters, first discussed by Maker and Terhune [13].
For the results presented here, we will consider A =B, cor-
responding to a nonresonant bound electronic nonlinearity,
although the technique described in this paper may be ap-
plied for arbitrary A and B. The NSW will be described in
the unprimed coordinate system, which is rotated through an
angle n from the crystal axis. Thus the NSW propagation
direction will be along the x axis.

For the problem geometry discussed above, beginning
with Maxwell's equations a wave equation can be derived for
the NSW field in each of the two dielectrics. The wave equa-
tion in the nonlinear medium may be written in normalized
form as:

E= [A,8' e" '+A, 8;e" ']e'"', (3.1)

where the subscripts refer to the ordinary and extraordinary
waves, respectively, and the two extinction coefficients are
n, = —(n e,)—" for the ordinary wave and

n,'= —(n (I+[(e —e,)/e, ]sin (u))—e )' for the extraordi-
nary wave, respectively. The parameter n is the normalized
effective refractive index for the surface wave. The vectors8" and 8' are written as

III. SOLUTION TECHNIQUE

In order to solve the uniaxial NSW problem, we folio~
the standard technique of computing solutions of the form
K=K'(z) exp(inx) [where 5'(z) is the mode profile for the
surface wave] in each of the two media (nonlinear and
uniaxial), and then match boundary conditions imposed on
the field components at the dielectric interface to obtain a
complete solution. In this particular problem, the solution to
the wave equation in the linear region can be written analyti-
cally as

where

VX(VXK)=e, E, (2.4)
(n2 e )(nz n eye)

(3.2)

with

&xx

&xy

0

ey 0
eyy 0
0 e,

(2.5)
where n, =n, for the ordinary mode, and n, =n,' for the
extraordinary mode.

In the nonlinear medium, we can write the mode profile in
terms of its three components as

e =eq cos (A)+ey sin (n),

e&&
= ez sin (ct')+ e& cos (ct),

U

(3.3)

( ey
—e,)

e,~
= sin(2 a) (2.6)

and all dielectric constants have been normalized by the lin-
ear dielectric constant in the nonlinear material (i.e., e in the
normalized equations may be less than 1).

Because the NSW must remain bound to the interface, the
real part of the z component of the Poynting vector must be
zero. This constraint forces the z component of 8'to be in a
phase quadrature with the other two field components, and as
a result we obtain from the nonlinear wave equation a set of
real equations of motion for the field components U, V, and
W:

BU 1= —[—P W+(1 —y)(U + V )W+(1+ y)W ], (3 4)

BV
(3.5)

+ U+(1+ y)(U + V ) U+(1 —y) W U
BV 2 BU—(1—y) VW + —(1 —y) UW

n Bz n 8$

1+ m [—P'+(I —y)(U'+ V')+3(1 —y)W'1
n

(3 6)
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A, (z) 1 8'
y
—8' ' U(z)

A, (z) =~.8" 8"8 8;8; V(z) (38)

This expression permits an immediate determination of the
necessary tangential linear field amplitudes for any interface
location z. In an effort to further simplifying the boundary
conditions, we make the following observations: B will be
matched when D, is matched, and B, is matched as a result
of the assumption that the phase velocity for the entire wave
is the same, requiring excitations on both sides of the bound-
ary to propagate as exp(inx). Thus the problem of matching
boundary conditions between the uniaxial linear medium and
the nonlinear medium reduces to matching D, and B . The
mismatch in these two components can be expressed as:

b, D,(z) = iW[1+(U'+ V')(1 —y)+ W'(1+ y)]
—e,(A, 8';+A, rY;), (3.9)

= ——[—P V+(1+ y)(U + V )V+(1 —y)W V],
8g n

(3.7)

where p=(n —1)" is the bound mode parameter and Q is
defined by Eq. (3.5) so that the system of equations may be
written as a coupled set of first order differential equations.

The set of first-order Eqs. (3.4)—(3.7) can then be inte-
grated using standard numerical techniques. The initial con-
dition required for the integration consists of the field ampli-
tude at a distance far from the interface on the nonlinear side.
This field amplitude must be sufficiently small so that the
nonlinearity is not manifest. In this limit, the initial condition
can be characterized by two parameters: @, shown in Fig.
1, which is the polarization angle of the field with respect to
the x-y plane, and 6 which parametrizes the field amplitude.
Using these two parameters, the initial condition is
written: U= icos(@)exp(Pz), V= 8'sin(@)exp(Pz), W=
—nlP U and Q = Pln V.

Now that a technique for computing the fields on both
sides of the dielectric interface has been established, the ap-
propriate boundary conditions are imposed on the fields at
the interface. The tangential boundary condition is written

see the Appendix) and the polarization varied as a function
of the transverse coordinate normal to the interface plane.
The solutions obtained are classified according to the number
of zero crossings in their various field components (these
mode index numbers are similar to those used to classify
linear waveguide modes). Interestingly, however, this classi-
fication scheme alone is not sufficient to uniquely identify
each of the surface wave modes. An alphabetic designator
was also used to distinguish qualitatively dissimilar solutions
with the same mode index numbers.

We present results for several of the lowest order nonlin-
ear uniaxial surface wave modes in Figs. 2. Figure 2(a) illus-
trates the field profile and Poynting vector computed for the
[001]mode, the lowest-order mode attainable in the uniaxial
NSW geometry. The presence of the single zero crossing in
the z component of the field for this solution is a result of the
differing extinction coefficients for different polarizations in
the uniaxial medium. This zero crossing gives rise to a rather
unique characteristic of these uniaxial NSW solutions, and
that is the existence of a peaked field profile on the linear
side of the dielectric boundary. This peak is not found in the
homogeneous NSW case and is a consequence of the
uniaxial nature of the linear medium.

Figure 2(b) illustrates the field profile and Poynting vector
obtained for the [102]mode. In this case, the additional zero
crossings are manifest, corresponding to the higher-order
mode number. Figures 2(c), 2(d), 2(e), and 2(f) illustrate the
field profile and Poynting vector obtained for the [110],
[211a], [211b], and [312] modes, respectively. These six
modes represent the six lowest-order modes for the uniaxial
NSW system.

The [211a] mode and the [211b] mode are interesting to
examine. Both of these modes exhibit the same number of
zero crossings, however the qualitative nature of the field
profiles are quite different. The [211a] field profile closely
resembles the [110]field profile with components U and W
shifted in phase by 180 . The presence of the two field ex-
tinction coefficients in the uniaxial medium modifies the
mode index and forces a slight nondegeneracy in the power
contained the two modes. A similar effect is present when the
[211b] and [312]modes are examined.

AB,(z) = n Q —(A, n,
'

PZ '+ A, n,'8' ') . (3.10) B. Poynting vector self-walkoff

Thus the solution technique becomes one of searching the
initial condition parameter space to find field distributions
for which the mismatches in D, and B are simultaneously
zero. Integration of the nonlinear evolution equations in this
phase of the work was performed using a seventh-order
Adams-Bashforth-Moulton scheme [14], and the initial con-
dition amplitude as well as the grid spacing were varied to
assure correct results.

IV. RESULTS

A. Uniaxial NSW modes

A hierarchy of nonlinear uniaxial surface wave solutions
was obtained using the technique described above. Each of
the solutions was elliptically polarized (purely TE and TM
modes are not supported in this problem geometry, for a
summary of the argument supporting this conclusion, please

In order to examine the polarization characteristics of the
uniaxial NSW, we highlight the [211a]mode in Fig. 3. In this
figure are plotted the y and z components of the electric field
vector (the x component is small enough to be neglected in a
plot of this type). As illustrated in the figure, the polarization
is essentially elliptical in the y-z plane, with the characteris-
tics of the ellipse changing as a function of position in the
transverse direction normal to the interface plane. Such a
rotation polarization ellipse gives rise to a Poynting vector
that also varies as a function of the transverse position nor-
mal to the interface plane. In fact, the largest component of
the Poynting vector lies in the x direction, as expected, how-
ever each of the intensity lobes of the surface wave have a
component of the Poynting vector oriented in the y direction.
This y component gives rise to a phenomenon we have
called self-walkoff. The energy in the wave at various posi-
tions z propagates in slightly different directions. In fact, the
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FIG. 2. Electric field and Poynting vector profiles for the six lowest-order uniaxial NSW modes. Parameters used in computing these
results are: n=0.4, E' 6z 0.99E'& 6'y 1.002m&;„. e&;„is the linear dielectric constant in the nonlinear material. The following modes a e
shown: (a) [001], (b) [102], (c) [110],(d) [211a], (e) [211b], and (f) [312].All quantities plotted are normalized (unitless).

NSW typically organizes itself so that adjacent intensity
lobes possess alternating positive and negative y components
of the Poynting vector. This phenomenon is particularly ob-
vious in the [312] mode, and is illustrated in Fig. 4. The
alternating nature of this walkoff leads to the term, stratified
self-walkoff. Although this does not cause a problem for the
existence of the uniaxial wave theoretically, it is unclear

what the impact of this self-walkoff will be in an experimen-
tal implementation of the uniaxial NSW.

C. Power dispersion curves

The power dispersion curve for the uniaxial NSW is plot-
ted in Fig. 5 for the six different modes illustrated in Fig. 2.
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t Z ,
Z Z

Walkoff Angle

Interface

FIG. 4. Schematic illustration of the st.atified self-walkoff phe-
nomenon that occurs as a result of the anisotropic character of the
linear medium. Each of the intensity lobes of the uniaxial NSW
propagates in a slightly different direction (walkoff angle). This
figure illustrates the behavior of the [312] mode, although all

uniaxial NSW modes exhibit similar behavior.

FIG. 3. Illustration of the transverse z dependence of the polar-
ization ellipse of the [211a] mode (the x component of the field is
sufficiently small that it may be ignored).

As is typical for the more familiar guided modes (e.g. , linear
guided modes), as the mode index increases, the power con-
tained in the mode increases. Each of the modes exhibits the
characteristic power and mode index thresholds characteris-
tic of NSW's in general. A feature of the uniaxial NSW,
however, is that it is possible to adjust these thresholds by
angle tuning the crystal relative to the propagation direction
(in other words, by varying u) [15]. The relationship be-
tween u and the mode parameter cutoff is plotted in Fig. 6.
and is given by

0.25 I I I

i

I I I I

(

I I I I

I

I I I I

0.20—

0.15—

0.05—

It is interesting to note that at the angle a, the resulting
solutions do not exhibit a power threshold, but exist even in
the linear polarization limit. This angle u, was shown in [15]
to exist nearly in the center of the range of allowed linear
surface wave angles presented in [16].It should be noted that
the angle u in the current paper equals m/2 —P from Ref.
[16].The ability to angle tune the mode parameter P in this
fashion suggests that the uniaxial NSW may be more easily
observed, because of the extra degree of freedom such angle
tuning provides. However, at this point, we are unable to
make any comment regarding the stability of the uniaxial
NSW, because the solutions rely on a full vector treatment of
the Maxwell's equations. Thus they are not amenable to the
scalar perturbation-type stability analysis commonly used on

r'
Ey E'z

I e, cos u+e~ sin u
i

I/2

—1 (4 1)

The angle at which the mode parameter cutoff approaches
zero is given by

0.00
0.01 0.08 0.03 0.04 0.05
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( 1 )
1/2

A'~ = cos
6Y 6'z

(4.2)

FIG. 5. Nonlinear power dispersion curves for the lowest six
uniaxial NSW modes. Parameters used in calculating this result are
shown in the figure inset. All quantities plotted are normalized
(unitless).
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metrical argument. The field on the linear side of the inter-
face must be a linear combination of the two polarization
modes 8' and 8".To show that a TE mode with polariza-
tion

0
(A. 1)
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Ey Ez

0.01—
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) Cz COS A+Cy SIIl
C 2 ' 2-

cannot be supported as a surface wave, it is only necessary to
show that F is not in the vector space spanned by c~ and
8".This can be expressed as

Q QQ i I I
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I t i i i I i i i i 1 i i i i I

Q. i 0.2 0.3 0.4 O.f
Crystal Angle (a)

(/&''X c~ ') FPO, (A.2)

FIG. 6. Mode parameter cutoff (P, , normalized) as a function of
crystal rotation angle (u) in radians for the parameters listed in Fig.
5.

and can be proved by contradiction. Assuming the inequality
to be an equality one arrives at the expression

previous NSW problems [17j. Thus stability of these new
NSW's remains an open problem.

pope ~ego
Z X Z

(A.3)

V. CONCLUSIONS

En this paper we have described our analysis leading to the
calculation of uniaxial NSW modes. We have computed the
electric field profiles and Poynting vectors for the six lowest-
order modes, identified the phenomenon of self-walkoff
present in these waves, and computed power dispersion
curves and the angle-tuned cutoff in the mode parameter
characteristic of these uniaxial NSW's.
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APPENDIX: NONEXISTENCE OF TE AND TM
SOLUTIONS

1. TE waves

The fact that TE surface waves can not be supported in a
linear uniaxial medium can be explained with a simple geo-

Using the explicit solutions for the linear surface modes, Eq.
3.2 can only be satisfied when e = e, , Therefore it follows
that the TE surface waves do not exist in a uniaxial crystal.

For TM waves, we require E =0 and 8 =0. At the linear
side of the interface, the latter condition can be stated as
8/dzE~ =0. This means that the following two equations must
be satisfied:

A K'+A, K'=0,

(A.4)

These are only satisfied when n, =n,' which only happens
when the linear crystal is isotropic instead of uniaxial. There-
fore the TM surface modes are not supported in a uniaxial
crystal.
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