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Complex dynamical behavior in RC L-shunted Josephson tunnel junctions
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We report an extensive numerical study of the nonlinear dynamical effects in Josephson tunnel
junctions externally shunted by a resistor and an inductor in series. In the three-dimensional pa-
rameter space composed of the junction capacitance C, shunt inductance L, and the bias current
I, we found the dynamics of the system extremely rich. At relatively low inductance L, we observe
period doubling as well as an intermittency route to chaos. At higher values of the inductance, long
chaotic transients were observed. We also studied the effect of thermal Johnson noise in the circuit
and discuss the implications of our results in experiments using real Josephson tunnel junctions.

PACS number(s): 05.45.+b, 85.25.Cp, 74.40.+k, 74.50.+r

I. INTRODUCTION

In the last decade, we have witnessed a tremendous
growth of research activities in chaos and nonlinear dy-
namics in many different branches of natural and social
sciences. Josephson junctions, due to their intrinsic non-
linearity and their importance in practical applications,
were among important early example systems that show
chaotic behavior. Since the initial discoveries [1-5], chaos
in Josephson junctions has been extensively studied in
simulations, both digital [6] and analog [7], as well as in
laboratory experiments [8,9] on real Josephson junctions.
A recent review of the subject can be found in Ref. [10].

In most studies, a Josephson junction is described
by some variation of the resistively-capacitively shunted
junction (RCSJ) model, which was proposed by Stewart
[11] and McCumber [12] in the late 1960’s. In its sim-
plest form, the RCSJ model uses a circuit schematically
sketched in Fig. 1(a) to represent the Josephson junction.
If the circuit is driven by external current Iy, the circuit
equation is the following:

vV .
CE + 7 + Icsm(’y) = lext, (1)
h dv
bl A, 2
2e dt ’ (2)

where I., C, and R are the junction critical current, the
junction capacitance, and the junction resistance, respec-
tively. V is the voltage and -~ is the phase difference of
the superconducting order parameter across the junction.
As one can see from Eq. (1), the nonlinearity is due to the
supercurrent term I sin(-y). If the external drive current
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Iy is purely dc (Iext = Io), we have a second-order au-
tonomous system and therefore chaotic motion is ruled
out [13]. In order to make chaos possible, we need an
equation of third order or higher. One way to accom-
plish this is to add an ac or rf (radio-frequency) current
to the external drive, i.e.,

Iext = Iy + I1sin(wt). (3)

This makes Eq. (1) a second-order nonautonomous sys-
tem, which can be cast into a standard third-order au-
tonomous equation form by treating 8 = wt as the third
dynamical variable besides v and V. The vast majority of
the existing literature on chaotic behavior in Josephson
junctions is based on Egs. (1) and (3). This is partially
due to the fact that this system has readily available a
simple mechanical analog, namely, a pendulum driven by
a combined constant and sinusoidal torque.

There are, of course, other ways to get a third-order
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FIG. 1. Schematic sketch of (a) the RCSJ model and (b)
the RCLSJ model. A Josephson tunnel junction is represented
by three parallel current channels, the supercurrent I.sin(v),
a capacitor C due to the overlap geometry, and a resistive
channel modeling the quasiparticle leakage current.

405 ©1996 The American Physical Society



406 C. B. WHAN AND C. J. LOBB 53

equation out of a Josephson junction circuit without
resorting to an rf drive. The resistively-capacitively-
inductively-shunted (RC L-shunted) Josephson junction,
shown in Fig. 1(b), is such an example. In this circuit,
we simply added a shunt branch, which is an inductance
L in series with a shunt resistance R,, to the original
junction. We then current bias the entire circuit with a
pure dc current Iy = I. The equation of motion for this
system is,

dv 14 .
CE-'_W +Isin(y)+ I, + In =1,
R dy
2y, 4
2e dt ’ (4)
LY LRty =V,

dt

where I, is the current flowing in the shunt branch. L
and R, are, respectively, the shunt inductance and shunt
resistance. I and Vj represent the fluctuating current
noise and voltage noise that are present in the dissipa-
tive elements R(V) and R,, respectively. Here we use a
voltage-dependent junction resistance, given by

_ Ry if |V| > Vg,
R(V) = { Ry if [V <V, ®)

to reflect the existence of the gap voltage V; = 2A/e in
the tunnel junction I-V curve. Ry and R,4 are the junc-
tion normal-state resistance and the subgap resistance,
respectively.

Theoretical study of chaos in a system similar to the
present one was reported by Marcus, Imry, and Ben-
Jacob [14]. Miracky, Clarke, and Koch [9] measured
noise and found experimental evidence for chaotic mo-
tion in this system. The same group also did analog sim-
ulations and mapped out a very rough parameter space
indicating the regions where different types of dynamics
occur. Along those lines, there is also the experiment
by Smith et al. [15] who measured the linewidth of a
voltage-controlled Josephson oscillator and explained the
linewidth broadening in terms of chaos.

In a previous paper [16], we reported our experimen-
tal investigation of the RC L-shunted Josephson tunnel
junctions. By comparing our experimental dc I-V char-
acteristics with numerical simulations, we found that the
parameter values of our samples fell in a region where
either Josephson oscillations or subharmonic relaxation
oscillations dominate the dynamics. In this paper we
present more numerical simulation results, which cover a
wider range of parameter space and some details of the
nonlinear dynamical behavior in this system. In the pa-
rameter ranges that have been explored previously, our
results are in agreement with the analog simulations of
Miracky, Clarke, and Koch [9], although we have discov-
ered some interesting dynamical details in this regime.
Among the new results in this paper are the existence
of chaotic transients in a wide range of parameter space
and the effects of thermal Johnson noise. We also discuss
the implications of our work in real Josephson junction
experiments.

The circuit model we use here is the same as Ref. [16].
The dynamical equation, Eq. (4), can be put into the
following standard form for nonlinear dynamical analysis:

dx

- = F(x),

> = F(x) ©)

where
z v mod 2w
\%
X=|%2| = | TR, )
I3 %:-
T2
F(x) = l%c [i — gz2 — sin(z1) — z3] | |

ar (z2 — z3)

and the normalized time 7 = w.t, with w. = 2el.R,/k.
Notice that we neglected the noise terms Iy and Vi here
for simplicity. We will continue to do so until Sec. III,
where we will explicitly discuss the noise effects.

We notice that Eq. (6) contains four parameters, the
Stewart-McCumber parameter ¢ = 2el.R2C/A, the di-
mensionless inductance 8 = 2el.L/k, the external dc
bias 2 = I/I., and the tunnel junction conductance g =
R,/R(V). Therefore we have a four-dimensional param-
eter space to explore, which apparently is a formidable
task. Since our original interest was motivated by our
experimental study of the effects of shunt inductance in
this system [16], we will first discuss the bifurcation di-
agrams by changing the parameter 81, while keeping the
other parameters fixed at values that are appropriate for
the samples we used in our experiment. Later, we will
also look at some bifurcation diagrams where we use (¢
or i as the control parameters. We will not change g in
this paper (i.e., we will deal with a three-dimensional pa-
rameter space), its value will be determined, according
to Eq. (5), by

_ [ R,/Ry if |z2| > V,/(I.R.), )
9=\ R./Raq if |2z2| < V,/(IR,),

with the values of all the relevant variables appropriate
for a typical Nb/Al;O3/Nb tunnel junction. In particu-
lar, for the samples that we have studied in Ref. [16],
at temperature T = 7.60 K, V,/(I.R,) =~ 6.9, and
R,/R,q =~ 0.0478.

In practical circuit design, it is useful to have a de-
tailed knowledge about the dynamical behavior of the
system in different parameter ranges, so that one can
avoid certain undesirable regions in the parameter space
to optimize the circuit performance. To this end, bifur-
cation diagrams are very useful tools for visualizing the
global dynamical behavior of a system under design. In
this paper we will use bifurcation diagrams extensively
to illustrate various oscillations that are present in our
system. The voltage bifurcation diagrams are obtained
by recording the local maxima in the voltage time series
13].
[ ’%‘he quantitative criterion for a time series to be
chaotic is the positivity of one of its Lyapunov expo-
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nents (there are three of them, for our three-dimensional
system). In this paper, we will compute only the largest
Lyapunov exponent, which is sufficient to distinguish a
chaotic signal from a periodic signal. Assume we perturb
the system trajectory at 7 = 0 by dx(0), then we expect,

ox(1)|  aur
5x(0) , T — 00 (8)
and the largest Lyapunov exponent A; is given by
A= 7_li*n;o A(T), (9)
1, |éx(7)
= — . 10
AT =TI 550) (10)

In order to avoid computer overflow, Benettin et al. [17]
suggested that one should normalize |§x| frequently and
keep track of the growth (or shrinkage) factor, i.e.,

Alr) = ._._1_210 ‘M . (11)

nAT & Ix(iAT)

Here we divided 7 into n subintervals (7 = nA7). In
the limit n — oo, Eq. (11) gives us A;. In practice A; is
always approximated by some A(7) with a large finite 7.
As we can see from the definition, Egs. (9) and (10), if
A1 > 0, any error will be amplified exponentially, which
is a characteristic often used to define chaos.

II. BIFURCATION DIAGRAMS: AN OVERVIEW
OF THE GLOBAL DYNAMICS

In Fig. 2, we show a bifurcation diagram obtained us-
ing the local maxima method, while changing the control
parameter (7, in the range 0 < (r < 10. The other
parameters are held constant at values B¢ = 0.707 and

FIG. 2. A bifurcation diagram with 8. as the control pa-
rameter. The other parameters are fixed at ¢ = 1.20 and
Bc = 0.707.

i = 1.20. At Br = 0, the junction is shunted by a pure
resistor and the usual RCSJ model applies. In this limit,
we know the dynamics are pure ac Josephson oscillations
and the bifurcation diagram shows a single dot indicating
periodic motion. Also from a dynamical systems point of
view, zero-inductance value (8 = 0) means the system
is reduced to a second-order system [see Egs. (4)—(6)],
therefore chaotic motion is necessarily ruled out [13]. As
we increase the shunt inductance value gradually from
zero, the system goes through some regions where the
dynamics appear to be quite complex.

In order to reveal some more details of the dynam-
ics in this complicated regime, we focus on the region
2 < Br £ 3. The result is shown in Fig. 3, together
with the largest Lyapunov exponent A; in the same pa-
rameter region. We see that for Gr < 2.198, the motion
is periodic, which is indicated by two distinct dots for a
given value of By, in the bifurcation diagram [Fig. 3(a)] as
well as the zero value for the largest Lyapunov exponent
[Fig. 3(b)]. The system becomes chaotic at B, ~ 2.198.
A closer look at the time series and the Poincaré map
(not shown), right before and after the transition shows
that the transition is that of a type I intermittency via
saddle-node bifurcation [18]. As the 8y, value is increased
further, we see fully developed chaotic motions occasion-
ally interrupted by periodic windows. Looking from the
high Br, end of Fig. 3(a), we see a period-doubling bifur-
cation route to chaos.

Notice the period doublings we see here are different
from that in a driven system [such as the system de-
scribed by Egs. (1) and (3)] where one has a natural fun-
damental frequency, the drive frequency w. There, all the

FIG. 3. (a) Detail of the bifurcation diagram of Fig. 2. (b)
The corresponding largest Lyapunov exponent.
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period doublings are in reference to w, while here we do
not have such a natural time scale built in. What turns
out to be important is the Josephson frequency, defined
by

wyg=—V = wZs. (12)

Here the overbar denotes time average. The period-
doubling bifurcation also manifests itself as subharmonic
peaks in the power spectra (not shown) at frequencies,

A (13)

the usual behavior at higher 81, where chaos is generally
absent and one sees subharmonic relaxation oscillations
at frequencies [16,19]

w=uwj/n, (14)

and generally, n < Gr.

By constructing bifurcation diagrams with a wider
range of B, values, we found that chaos is generally ab-
sent at high fr, roughly Br > 50. In this regime, the
dynamics is dominated by relaxation oscillations [20-22]
In an intermediate range, roughly 10 < 81 < 50, the dy-
namics get complicated by the presence of chaotic tran-
sients. We will discuss chaotic transients in the next sec-
tion.

In the bifurcation diagrams shown in Fig. 2 and
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FIG. 4. A two-dimensional generalization of the bifurcation diagrams. Here the bias current is fixed at ¢ = 1.20 and the other
two parameters 31, and B¢ are varied on a 250 x 200 grid. The color code for several low-periodicity solutions are indicated by
the numbers in small circles. All solutions with periodicity higher than 20, including chaotic solutions, are marked black. The
horizontal white line corresponds to the bifurcation diagram of Fig. 3(a).



Fig. 3(a), we selected (1, as our control parameter. The
other two parameters B¢ and i were held constant. The
reason we chose (1 is simply because our initial inter-
ests were motivated by our experimental conditions, as
we mentioned earlier. From a more general point of
view, we could choose any one of the three available
parameters, ¢, B¢, and Br, while holding the remain-
ing two parameters constant. Moreover, since we have a
three-dimensional parameter space, the dynamics of our
system would depend on the location of our operating
point in this three-dimensional space. Bifurcation dia-
grams obtained by changing one of the parameters pro-
vide information about the dynamics only along short
line segments parallel to the corresponding axis in the
three-dimensional parameter space. We can visualize the
system dynamics more efficiently by generalizing the bi-
furcation diagrams in the following way. We can imag-
ine cutting the three-dimensional parameter space with
a plane and examine the dynamics in a rectangular re-
gion on this plane. We divide this rectangle into a two-
dimensional grid and use color coding at each node of the
grid to denote its periodicity (in the rest of this section,
we will loosely use the term “periodicity” to refer to the
number of peaks in the voltage wave form, which should
not be confused with the time period of the voltage os-
cillations).

Figure 4 is such a construction. Here we fix the bias
current at ¢ = 1.20. The other two parameters, (r,
and B¢, are varied on a 250 x 200 grid. In this plot
we illustrate only some low periodicity solutions. The
periodicity-color correspondence is marked by the num-
bers in small white circles. Any point with periodicity
greater than 20 is marked black as are the points whose
periodicity needs to be determined with higher accuracy
[23,24] In particular, the chaotic solutions are buried in
those dark regions.

The bifurcaticn diagram in Fig. 3(a) corresponds to
the white horizontal line in Fig. 4. Similarly, if we were
to construct a bifurcation diagram using (B¢ as the con-
trol parameter, it would be a vertical line. In this sense,
we can think of plots like Fig. 4 as generalizations of the
one-dimensional bifurcation diagrams. This observation
has important practical implications. Although we know
chaos is absent in the zero-inductance (i.e., 8, = 0) cir-
cuit, it becomes a possible solution for relatively small
(Br > 1) inductance. Furthermore, the chaotic solutions
in general cannot be “tuned away” by simply changing
the inductance alone. One needs to look at the full pa-
rameter space and decide the optimal operating region
and subsequently design all the relevant parameters in
the desired regime in order to avoid chaos. While it is
difficult to imagine a three-dimensional construction il-
lustrating the complete dependence of the system dynam-
ics on all the parameters, a two-dimensional construction
such as Fig. 4 is certainly a big step forward.

The parameter space structure of multiparameter non-
linear dynamical systems is an interesting research sub-
ject on its own. For example, Gallas [25] has stud-
ied the Henon map and other discrete maps with two-
dimensional parameter spaces, and found “shrimplike”
clusters of period k (where k is an integer) orbits and
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their infinite period-doubling sequences that extend into
the surrounding chaotic “sea”. Our parameter space
is three dimensional and whether the shrimplike struc-
tures exist on a two-dimensional cross section of it re-
mains to be seen. Clearly, the structure of parameter
space in RC L-shunted Josephson junction needs further
study, both from the viewpoints of nonlinear dynamics
and practical design of devices.

III. CHAOTIC TRANSIENTS AND EFFECTS
OF THERMAL NOISE

A chaotic transient is a metastable stage in the trajec-
tory of a nonlinear dynamical system before it eventually
converges to its true attractor. During the transient pe-
riod, the trajectory is often indistinguishable from a true
chaotic trajectory. Chaotic transients were first observed
numerically in the study of Lorenz systems [26,27], and
subsequently there have been reports on experimental
observations of chaotic transients in various physical and
biological systems. More details can be found in the re-
view paper by Tél [28].

We found in our system, Eq. (4), chaotic transients
are fairly common for intermediate range values of 8.
In Fig. 5(a), we show a voltage time series at parame-
ter values, B, = 29.215, B¢ = 0.707, and 7 = 1.25. We
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FIG. 5. A chaotic transient is illustrated here in the

voltage wave form (a), and also by the approximate Lya-
punov exponent A(7) (b). The parameter values are
Br = 29.215,8¢ = 0.707, and 7 = 1.25. The lifetime of the
chaotic transient is 7 &~ 36 000. Notice that as soon as the
trajectory reaches the periodic attractor, A(7) starts to decay
as 1/7, eventually giving A\, = 0.
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see that the voltage starts off with a very irregular and
seemingly chaotic motion but at 7 = 7, = 36 000 it sud-
denly switches back to a regular periodic motion. Here
we use T¢; to denote the lifetime of the chaotic transient.
The periodic solution, in this case a regular Josephson
oscillation, is the real attractor, i.e., once the system is
in this oscillation mode, it stays there indefinitely. We
have followed the wave form up to 5 x 10° time steps,
and never saw it change again.

Transient chaos can also be illustrated by computing
the Lyapunov exponents. In Fig. 5(b), shown together
with the time series is the approximate (maximum) Lya-
punov exponent A(7) as a function of time 7. According
to the definition, Egs. (9) and (10), in a true chaotic tra-
jectory A(7) should approach the constant value A; > 0
as we increase 7, indicating exponential magnification of
errors. On the other hand, if the trajectory is periodic,
the error will either shrink exponentially fast (if the per-
turbation is normal to trajectory) or stay unchanged (if
perturbation is tangential to the trajectory). Since we
are computing the largest Lyapunov exponent for pertur-
bation in arbitrary directions, we should get a zero A;
value for periodic solutions [29]. When there is a chaotic
transient in the trajectory, we see from Fig. 5(b) that
A(7) starts off with a fluctuating part and tends to con-
verge to a positive value 0.02 for 7 < 7¢,. But as soon as
the transient is over (i.e., for 7 > 7,), the amplification
of error ceases and A(T) starts to decrease as 1/7, giving
A1 = 0 in the 7 — oo limit as we expected.

The lifetime of the chaotic transients depends sensi-
tively on the initial conditions. If we repeat the simu-
lation of Fig. 5(a) with identical parameter values but
with a different initial condition we get a different value
for the transient lifetime 7i;. If we consider an ensem-
ble consisting of N(0) trajectories, each starting with a
different initial condition, the lifetimes of transients in
each trajectory are different. Therefore the number of
trajectories remaining in the transient state will decrease
as time evolves, as there will be more and more trajec-
tories that leave the transient and approach the periodic
attractor. At time 7, the number of trajectories remain-
ing in the transient state is expected to follow the decay
law [27]

N(r) = N(0)e~™/(mer), (15)
In Fig. 6, we show that in our system Eq. (15) holds
rather nicely. This figure is obtained from an ensemble of
N(0) = 393 trajectories. The average transient lifetime
(T¢r) is obtained by simply taking the algebraic mean
of all 393 7i,’s [note there are no fitting parameters in
Eq. (15)]. The simulation result is shown by the solid
curve and the dashed line is from Eq. (15).

Up until now, all our simulations have neglected the
effect of noise. Real measurements are always done at
a finite temperature, and there will always be some in-
terference from the environment. This includes instru-
ment noise, thermal Johnson noise due to the resistors in
the circuit, and shot noise in the quasiparticle tunneling
current. We will now discuss the noise effects in our sys-
tem limiting ourselves only to the thermal Johnson noise,
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FIG. 6. The decay of 393 trajectories starting from ran-
domly chosen initial conditions with identical parameter val-
ues. The number of trajectories remaining in the chaotic tran-
sient state decays exponentially, according to Eq. (15), due to
finite lifetime of the transient chaotic states. The solid line is
the simulation result and the dashed line is Eq. (15). The av-
erage lifetime of all transients is (7¢,) = 8293. The parameter
values are 81 = 29.215, 8¢ = 0.707, and 7 = 1.25.

which is expected to be the dominant noise source at low
voltages [19].

We treat the noise terms in Eq. (4) using a method
introduced by Tesche and Clarke [30], where the noise
voltage and noise current are represented by Gaussian
distributed random forces, with the distribution widths
appropriate for the white noise background for the given
temperature. The correlation functions for the noise
terms are given, in reduced dimensionless units, by

(in(7)in(7)) = 2gT8(t —7'),
(16)
(vn(T)on (7)) = 206(T — 7'),

where I' = 2ekgT /(I k) is the relative strength of the
thermal fluctuations at temperature T'. For the junctions
studied in [16], I, = 0.275 mA at T = 7.60 K, which
corresponds to ' = 1.16 x 1073,

Figure 7 shows the effect of thermal noise on the bi-
furcation diagrams at four different temperatures. At
the top of Fig. 7 is a portion of the bifurcation dia-
gram of Fig. 3(a) and the three diagrams below it are
the same diagram in the presence of increasing level of
thermal noise at T' = 0.076,0.76, and 7.60 K, correspond-
ing to I' = 1.16 x 10~5,1.16 x 10~%, and 1.16 x 1073,
Most Josephson devices are expected to operate at liquid-
helium temperature (4.2 K) or higher. We see from
Fig. 7, at this temperature range, bifurcation diagrams
that we saw in the last sections are completely obliterated
by the noise effect. In order to resolve major structures
in the bifurcation diagrams, one needs to lower the tem-
perature by at least two orders of magnitude (i.e., < 100
mK). This requires special cooling techniques, such as a
dilution refrigerator [31]. We note that our results here
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are consistent with previous studies of noise effects in
discrete maps [32] and driven pendulum [33].

Another interesting phenomenon is the profound effect
that the noise has on the chaotic transients. Grebogi,
Ott, and Yorke [34] argued that the effect of noise on
chaotic transient will be to increase the average lifetime of
the transient. Kautz [35] has studied the noise effect in rf-
driven Josephson junctions and observed that even with
a very low level of noise the chaotic transients effectively
turn themselves into permanent chaotic states, which he
calls noise-induced chaos.

In Fig. 8, we show the effect of noise on two chaotic
transient states in our system using the approximate Lya-
punov exponents. Here A(7)’s are computed along the
noisy trajectory using same initial conditions at different
levels of noise. At ¢ = 1.20 [Fig. 8(a)], even a noise level
as low as I' = 1.16 x 10~5 (corresponding to T = 7.6 mK,
which is close to the practical limit of modern dilution
refrigerators) is sufficient to drive the chaotic transient

T =0.000K

eniakioe s nta b B T D e i 0 e i 1 e e ]
6.0 t 1 t +

4.0 + ]

2.75 2.80 2.85 2.90 2.95 3.00
B

FIG. 7. A section of the bifurcation diagram in Fig. 3 af-
fected by increasing levels of noise. From top to bottom, the
temperature values are T' = 0.0,0.076,0.76, and 7.6 K. It is
clear from this picture that most details of the bifurcation
diagrams that we showed earlier will be completely obliter-
ated by thermal fluctuations even at liquid-helium tempera-
ture (T' = 4.2 K).

into chaos, indicated by the converging of A(T) to a pos-
itive value. We have repeated the A(7) calculation sev-
eral times using different initial conditions at this lowest
noise level (T = 0.0076 K), we saw no sign of it switch-
ing to a periodic motion (as it does for T' = 0) for time
T < 200000. At ¢ = 1.25 [Fig. 8(b)], however, the situ-
ation is slightly different. Noise-induced chaos is absent
in this case until the noise level reaches some minimum.
It is obvious from Figs. 8(a) and 8(b), that the mini-
mum noise required for the noise-induced chaos to occur
depends upon the system parameters, as we might have
anticipated.

Chaotic transients and their behavior in the presence
of noise have important implications in laboratory exper-
iments on Josephson devices. Typical Josephson junc-
tions operate at a frequency range of several hundred
GHz, corresponding to time scale of about 1 ps. There is
no instrument (such as an oscilloscope) fast enough that
one can use to monitor the dynamics of the circuit in real
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FIG. 8. The noise-induced chaos. The A(7)-7 plot is shown
here for five different temperatures for ¢ = 1.20 (a) and
i = 1.25 (b). In (a), chaotic transient that existed at T = 0
K turns itself into permanent chaos for all four finite temper-
ature values. In (b), however, we see that a minimum level of
noise is required for noise induced chaos to occur. The other
parameter values are 8 = 29.215 and B¢ = 0.707.
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time.

Due to such a handicap, one often has to rely on nu-
merical solutions of the corresponding circuit equations
to gain knowledge of the detailed dynamics. The numer-
ical model is usually tested against the experiment by
requiring some averaged properties of the circuit (such
as a current-voltage characteristic), which are available
both numerically and experimentally, to agree with one
another. One should note, though, the averages done in
experiments and in numerical simulations are often at
very different time scales. For example, a modern digital
voltmeter will average on a time scale of about 1 ms or
even longer. In our normalized time unit, taking a typ-
ical value w, = 10! Hz, this means an averaging time
of Tave = 1073 s x 101! Hz= 10%. Assuming the inte-
gration time step is A7 = 0.01, one needs to integrate
and average the circuit differential equations for around
100 time steps for every single point in the I-V charac-
teristic. This is certainly impractical for most purposes.
In practice, most numerical averaging is done on a time
scale of about 7,y = 1000, which corresponds to 10~2
s in real time. Therefore the typical averaging time in
a voltmeter and a simulation differ by as much as 5 or-
ders of magnitude. Normally it is not a concern, since
we do not expect a voltage signal of 1 Thz averaged over
1 ms to be much different from the same signal averaged
over 1 ns. Such is not the case, however, if chaotic tran-
sients are present. We saw earlier that the lifetime of
these chaotic transients can be as long as 7;; ~ 10% —105.
It is easy to imagine a situation where the simulation
averaging is done on a transient chaotic state while the
experimental averaging is on the true attractor, simply
due to their vastly different time scales. The situation is
further complicated by thermal noise, which could push
some of the chaotic transients into permanent chaotic
states (noise-induced chaos). With these difficulties, one
certainly cannot use the agreement of the two averaging
schemes to check the validity of the numerical model.

IV. CONCLUSION

In conclusion, we have numerically studied the global
dynamical behavior of RCL-shunted Josephson junc-
tions. Complicated solutions, such as chaos, exist at
relatively low inductance values of the junction. One
should be aware of this in practical circuit design, since
the inductance from the shunt can easily put the cir-
cuit into the chaotic region unless special care is taken
to reduce the inductance. At higher values of the induc-
tance the dynamics is complicated by the existence of
chaotic transients. At even higher inductance, the rela-
tively simple relaxation oscillations dominate the dynam-
ics. Complicated dynamical behavior is also revealed by
changing circuit parameters other than the inductance
and the structure of the parameter space where differ-
ent types of dynamics occur are quite complicated. We
found that the period-doubling bifurcations that existed
in the absence of noise are severely obliterated by thermal
noise at normal operating temperature of these devices.
We also observed noise-induced chaos in our system,
where the chaotic transient effectively turns itself into
permanent chaos in the presence of noise. A parameter-
dependent minimum noise level seems to be required for
noise-induced chaos. Finally, we note that the existence
of chaotic transients and their complex noise behavior
pose some difficulty in comparing numerical simulations
with laboratory experiments, due to the drastically dif-
ferent time scales involved in these two approaches.
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FIG. 2. A bifurcation diagram with 8. as the control pa-
rameter. The other parameters are fixed at ¢ = 1.20 and
Be = 0.707.



,

|
B e
o o (=] o o

FIG. 3. (a) Detail of the bifurcation diagram of Fig. 2. (b)

The corresponding largest Lyapunov exponent.



FIG. 4. A two-dimensional generalization of the bifurcation diagrams. Here the bias current is fixed at ¢« = 1.20 and the other
two parameters 3z and (B¢ are varied on a 250 x 200 grid. The color code for several low-periodicity solutions are indicated by
the numbers in small circles. All solutions with periodicity higher than 20, including chaotic solutions, are marked black. The
horizontal white line corresponds to the bifurcation diagram of Fig. 3(a).
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FIG. 5. A chaotic transient is illustrated here in the
voltage wave form (a), and also by the approximate Lya-
punov exponent A(7) (b). The parameter values are
B = 29.215,8¢c = 0.707, and i = 1.25. The lifetime of the
chaotic transient is 7¢, & 36 000. Notice that as soon as the
trajectory reaches the periodic attractor, A(7) starts to decay
as 1/7, eventually giving A; = 0.



