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Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion
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The model presented overcomes past inconsistencies by applying matching asymptotic techniques.
The obtained growth rate, y =a(k)&kg —2kv, (where v, is the ablation velocity), could reproduce nu-

merical simulations and experiments in a more complete way than the Takabe formula [Phys. Fluids 28,
3676 (1985)] y =0.9&kg —3k v, . Here a(k)—:[1—(k/k, )"]', represents the stabilization heat conduc-
tion effect and the cutoff wave number k, is much smaller than the inverse of the density scale length at
the ablation front. Such a rigorously derived stabilization mechanism clarifies many of the numerical,
analytical, and simulation results found in the literature.

PACS number(s): 52.35.Py, 52.40.Nk

I. INTRODUCTION

The Rayleigh-Taylor instability (RTI) [1] in inertial
confinement fusion (ICF) is critical for the achievement
of appropriate implosions. In the direct drive approach,
laser beams simultaneously illuminate the outer surface
of a spherical capsule. In indirect drive, lasers or ion
beams first convert to x rays inside a high-Z enclosure
(hohlraum target), which then drives the implosion. Re-
gardless of the approach, a low-density plasma blowoff
accelerates a higher density pusher radially inwards at
the ablation front, and this is the standard situation for
the occurrence of the Rayleigh-Taylor instability [2].
Since 1974, the RTI in ICF has been the goal of arduous
theoretical as well as numerical or experimental work.
The theoretical knowledge of the different physical
mechanisms involved and the scaling laws are fundamen-
tal. In 1974, Bodner [3] reported a simple discontinuity
model of such instability, however, he needed to intro-
duce an "ad hoc" assumption to close the problem. He
found that the growth rate y could be reduced below the
classical value (&kg ) due to mass ablation and described
it as y =&kg —kv„where k is the transverse wave num-

ber, v, is the flow velocity across the ablation front, and g
the target acceleration. All the numerical simulations [4]
and experimental results [5] that followed suggested
larger stabilization effects.

Numerous attempts have been made to develop an
analytical model by means of a surface discontinuity (ab-
lation surface) separating two uniform fiuids [6]. Since
this approach leaves the solution undetermined, other ap-
proximations circumvent these difficulties either by in-
cluding in the analysis a layer with a diffuse boundary
centered at the ablation front (with a thickness of order
of the density gradient scale length) and solving numeri-
cally a linearized eigenvalue problem [7—9], or by using a
WKB model [10] (assuming very small wavelength per-
turbations).

Although the general belief is that the reduction is due
to mass ablation, the single theoreticaI support for such a
large stabilization is the so-called Takabe formula [7]:

y=0. 9&kg —3kv, ,

which was obtained by means of a numerical JYtting and it
is repeatedly referenced in the literature. Laser fusion
simulations seem to agree well with this formula, howev-
er, a recent set of indirect-drive experiments conducted
on the Nova laser [11]could suggest a not so large stabili-
zation ablative efFect [factor 3 Eq. (1)].

It is well known that flow expanding through an inter-
face may require additional information besides the con-
servation relations across it [12]. Obtaining these addi-
tional conditions has been the most speculative part of
the models about RTI in ICF and a recurrent incon-
sistency for the last 20 years; all this becomes worse by
the extra difhculty of approximating the near hot plasma
corona region, dominated by the inhomogeneity of the
fluid, in a realistic way. The model presented here over-
comes this obstacle by considering on the one hand the
inner structure of a thin transition layer (ablation sur-
face), as in studying the stability of slow-combustion
fronts [13], and on the other hand by performing, in a
rigorous way, an asymptotic matching (no jump condi-
tions) to both sides of it [14]. The result that is obtained
is independent of the type of driver (direct or indirect)
and also of the physical details about the form in which
energy is absorbed. The application of the matching
asymptotic technique to RTI in ICF is a novelty, and the
first results already have been published [15]; the main
stabilization mechanism found is due to the overpressure
produced by heat conduction and such a stabilization
mechanism underlies many of the numerical, analytical,
and simulation results. In the work that we are present-
ing here, additional results are shown explaining to a
large extent the technique that is carried out. The sound-
ness of the physical model is based both on the assump-
tion of a sharp ablation front and on the smallness of
Mach number of the flow through it.

In the rest of this section we present the general equa-
tions, a discussion about the different lengths and charac-
teristic times of the hydrodynamics, and a brief review of
the boundary conditions used in the past. In Sec. II the
analysis of the problem is carried out. In Sec. III the
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dispersion relation is discussed. Section IV is dedicated
to different comparisons and Sec. V to conclusions.

region 1

region 2 (ablation front)

region 3

A. General equations: Lengths and characteristic
times of the hydrodynamics

In order to obtain physical insight into the analysis of
the problem, it is basic to discuss in terms of the physical
parameters, lengths and characteristic times of the
different regions and their comparison. For simplicity,
we are considering a planar foil of thickness 1 (small com-
pared with the ablation radius r, of the shell if spherical),
which is moving with an acceleration g due to the abla-
tion pressure p, =p,„lg (p,„=—slab average density), gen-
erated by the heat fIux coming from the corona. This
slab is continuously ablating with a mass ablation rate m.

We use the same one-fiuid equations as Bodner [3] (in
the frame moving with the unperturbed ablation front),
but we do not assume incompressibility and moreover the
heat conduction is explicitly taken into account:

ap/at+V. (pv) =0.
a(pv) /at+ V (pvv) = V(pT)+ pg-,
BIr3t(pv /2+3pT/2)+V [pv(5T/2+v /2) KVT]—

—pv g

(2)

(3)

(4)

KT"a
m p),"

(5)

The characteristic Mach number of the flow velocity,
M, —:v, /Qp, /p„ is assumed to be a small parameter,

We also assume the Quid to be a monatomic perfect gas,
the temperature is conveniently normalized (measured in
energy per unit mass units), g=ge and K is the thermal
conductivity. Equation (4) does not contain an energy
deposition term, for instance, by means of laser energy,
because the absorption region is located at a large dis-
tance from the ablation surface compared with the wave-
length perturbations we are considering. The thermal
conductivity is assumed to have a power law dependence
on the temperature and the density, K =KT" "/p",
1 &p &2, 5 & n & 8 [16], in order to roughly describe oth-
er possible transport energy mechanisms, such as radia-
tion. In Laser fusion and for electronic heat conduction
we have p =0 and n =5/2 [17].

One can distinguish three asymptotic regions to be
matched (see Fig. 1): (i) a cold and adiabatically
compressed zone (region 1) of thickness l, which presents
a maximum of the density p„where its values for the
pressure and temperature are p, and T„respectively; (ii)
an adjacent thin layer (region 2), where the material is be-
ing heated and expanding towards the corona, the pres-
sure is approximately constant, pT =p„but not the den-
sity, which is of the order of magnitude ofp„ the charac-
teristic thickness 5 of region 2 (approximately equal to
the gradient scale length at the ablation front) [8], which
is obtained by means of a simple energy balance
mT, -KT,"+' "/(p", b), is defi'ned as

profile
density

FIG. 1. Schematic profile of density.

with v, =—m /p, defining the ablation velocity. (iii) Final-
ly, the hot plasma corona (region 3) where the fiow
reaches sonic conditions and the order of magnitude of
the characteristic density p„„velocity v„„temperature
T„„and the layer thickness I. are estimated in a simple
way through mass, momentum, and energy balance:

Pcor+cor

2
pcorvcor IL pcor Tear J a

5p„,v„,T„,/2-KT,",+,
' "/(p"„g),

then we get
2

(7)

Pcor Pa "~a & Tcor +cor
m

2K

Snmp,"
where the factor n, appearing in the denominator of the
formula for I, has been introduced for convenience.
Thus, one can obtain, using Eq. (5), a relation between
the characteristic lengths of regions 2 and 3:

2h
SnM, "

and therefore, since usually M, «1, the characteristic
length of region 3 is much larger than the characteristic
length of region 2. We will also assume the target thick-
ness l such that 6 « l «L, which may correspond to a
reasonable typical configuration in ICF.

Let us suppose that the order of magnitude of the
characteristic time of the duration of the process is that
of the existence of the target until it is evaporated totally,
t, =p, l Im. The RTI is developed in a characteristic
time y, ,

' —=(&kg ) '. Attention is restricted to instabili-
ty wave numbers k & 1/l because the stabilization occurs,
as will be proved shortly, for such wave numbers
[kl-(kL)'~" in the limit M, ~O], and therefore, the
equilibrium does not change on the time scale of the
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growth rate, y, &t, »1, so a perturbation analysis of the
type ~ e~', where y is the time growth rate of the insta-
bility, may be carried out. Typical targets could have ra-
tio i/L values such that kv, /'g —klM, —(kL)' "M, « 1

(main assumption of the model), and therefore using Eq.
(9) we obtain kb, « 1. For instance, the simulations per-
formed by Gardner, Bodner, and Dahlburg [4] have
kl'M, -0.04.

In order to prove the occurrence of that stabilization
mechanism for such wave numbers, let p, , v„and T,
denote the characteristic pressure, velocity, and tempera-
ture, respectively„at a distance k ' from the ablation
surface inside region 3, and let us also assume
6 «k ' «L. Then using mass, mome~turn, and energy
conservation we get

pg&g p~ —p, ——mv~,
~Tn +1

mT
k

—1 Ppg

therefore one can obtain

v„-m lp„-v„,(kL) '/", T, —T„,(kL)

8 xg -kg 1—
Bf.

kl
X~

(kL )
i/n

Ifp, I is the perturbed ablation pressure due to the defor-
mation x, of the rippled ablation front. with wave number
k (kx, « 1), using the last of Eq. (11)we obtain

p„-kx,p, (kL)

Then, the heat conduction causes the pressure to increase
on the crest of the rippled ablation front and to decrease
on the valley, damping the growth. Now, using a
mechanical balance [18] and p, -p, gl, one can obtain,
apart of numerical factors,

the stability of a Game front cannot be applied to ICF).
To connect regions 1 and 3 the use of conservation laws
is not enough; one must study partially the structure of
region 2 and an asymptotic matching of the region 3 solu-
tion to the one that emerges from region 2 is necessary.
The peculiar behavior of the density, temperature, and
velocity near the ablation surface from the side of the
corona causes every attempt that uses patching or purely
jump conditions in a standard way through the interface
to fail. %'e should note that, as indicated already by
Manheimer and Colombant [6], the values of the unper-
turbed variables, just behind the ablation surface, are not
well defined. The puzzle of the boundary conditions
coming all the way from Bodner [3], and which we briefly
summarize in this section, can be clarified if on the one
hand the more basic (in the limit kb, ~0) structure of re-
gion 2 and the nearest hot plasma of region 3 (consider-
ing the heat Aux) are held and on the other hand an
asymptotic matching of both regions is carried out [14],
which is rigorously necessary in order to connect regions
1 and 3 without ambiguities.

All the models in the past have considered a uniform
Quid to each side of the surface discontinuity and, in par-
ticular on the side of region 3. Then, the perturbations
obey a system of ordinary differential equations of con-
stant coe%cients whose solutions are of the type
exp(qx +iky +yt), where x and y are the coordinates
along the main Aow and the unperturbed front, respec-
tively. The number of modes depends on the physical
effects that the equations are taking into account: com-
monly they are four modes (four roots q) for incompressi-
ble and adiabatic Aows and five for the Rows with thermal
conduction; to these, one must add one mode more, the
mode corresponding to the deformation of the front
/exp(yt+iky) Only .those modes with Re(q) )0 as
x ~—~ and Re(q) & 0 as x ~+ ~ are physically al-
lowed.

Certainly, the convection of the material through the in-
terface would also damp the growth and, in some cases,
both effects could be numerically comparable.

1. I'Iows without thermal conduction
to both sides of the discontinuity

B. Brief review of the diferent boundary conditions
used in the past

The use of a model with a discontinuity surface is a
physically reasonable assumption if the wavelength of the
disturbances is large compared with the characteristic
thickness of region 2, kb, « 1 (so region 2 compared with
regions 1 and 3 becomes a surface), though in a recent
work [9] the authors supposed unnecessarily kL « 1, and
such a condition is much more restrictive. The
difhculties presented by the discontinuity surface approx-
imation in the study of RTI in ICF are numerous. The
thermal Qow in region 1 is negligible, in region 3, to the
contrary, it is basic to consider it, even for disturbances
with large wavelength, kL «1, opposite to what occurs
in the study of the stability of a Game [13];not to retain
this effect can lead to questionable conclusions when the
comparison between both problems is carried too far (for
instance, the boundary condition of Landau-Darrieus in

In this case if y is assumed a real number, there are
four real roots q; three of them are positive and a fourth
is negative, hence we should determine five modes: the
only mode that does not explode in the prefront region,
the three modes that do not explode in the postfront re-
gion, and finally the corresponding mode to the perturbed
front g' exp(yt+ iky). Five boundary conditions are
necessary to obtain the dispersion relation.

In Ref. [3], Bodner used the mass and momentum con-
servation laws (along the directions x and y) through the
interface, and he introduced two ad hoe boundary condi-
tions in order to close the problem: energy conservation
through the interface with an arbitrary source term,
which is related to the deformation of the interface and
(the fifth boundary condition is the one that relates)
through an arbitrary constant, the perturbed pressure
just before the front to its deformation.

Book [19]used a very similar model, except that he did
not consider any source term in the energy conservation
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equation and he assumed another relation between the
perturbed pressure just before the front and its deforma-
tion. Baker [6] assumed as additional boundary condi-
tion the fact that the perturbed density vanishes just
behind the front. Bychkov, Golberg, and Liberman [9]
used, for their regime of large wavelength, the Landau-
Darrieus boundary condition [20], which expresses that
the prefront velocity is unchanged. Recently, Wouchuk
and Piriz [21] presented a model that is closed by means
of a phenomenological and modified version of the
Landau-Darrieus boundary condition [22].

We indicate here that a self-consistent model would
have to consider some energy source term in the energy
equation, as in fact only Bodner [3] and Baker [6] have
considered. The omission of such a source term in the
conservation energy law through the ablation front is in-
compatible with a jump of density.

2. I'lows with thermal conduction

Manheimer and Colombant [6] used a model where
they neglected the heat flux in the prefront region, which
then has one bounded mode to be determined, and a post-
front region with thermal conduction (a fifth-order
differential linear system for the perturbations) that con-
tains three bounded modes if the Row is subsonic and
four if supersonic. Then, in addition to the four bound-
ary conditions that are obtained from the conservation
laws through the interface (mass conservation, two of
momentum conservation and one of energy conserva-
tion), one or two additional boundary conditions are
needed if the Bow is subsonic or supersonic, respectively.
For supersonic fIow the authors imposed that the per-
turbed density and temperature vanish just behind the
front. While for subsonic How they used a phenomeno-
logical law about the generation of vorticity at the inter-
face.

Kull and Anisimov [6] assumed thermal conduction to
both sides of the interface and subsonic Row everywhere,
so that there are two possible modes in the prefront re-
gion and three in the postfront. To connect both regions
they imposed, in addition to the four conditions that are
obtained from the usual conservation laws, a fifth bound-
ary condition obtained integrating twice the energy equa-
tion and finally, to close the problem, they assumed, as
the sixth condition, that the interface deformation was
null.

In order to clarify this set of boundary conditions let us
point out the following physical aspects of the problem.
In the long wavelength regime, that is to say greater than
the distance between the ablation and the critical sur-
faces, this region can be dealt with as a discontinuity sur-
face. In the postfront region the How is supersonic and,
as Manheimer and Colombant showed [6], four bounded
modes are possible. The assumption of the fact that this
region is subsonic, with three bounded modes instead of
four, as Bychkov, Golberg, and Liberman [9] supposed in
their work, is then questionable. The two additional
boundary conditions are as follows: one of them is the
same as that which Manheimer and Colombant supposed;
we mean the perturbed density just behind the front

(where we have the critical density) must be zero. "fhe
second boundary condition, which Manheimer and
Colombant did not know how to find (they assumed the
temperature to vanish just behind the front), comes from
the fact that the fIow necessarily has to cross an iso-
thermal sonic point, the one that is a singular point of the
equations. See, for example, the complete discussion of
Ref. [23]. Finally, in the regime that Manheimer and
Colombant call the subsonic Aow, 6 «k ' «I„ the ap-
proach of the problem must be different: the structure. of
the thermal wave that is established in that region, and
whose foot defines the ablation surface, is basic as well as
the determination in part of the structure of region 2,
whose characteristic thickness is 6, and the matching
asymptotic technique must be used.

It would be interesting in order to clarify the situation
to make a qualitative study of the different modes that
can take place in the prefront and postfront regions. For
simplicity in the discussion we suppose the Bow is sub-
sonic, so that the dynamic pressure is small compared
with the thermal one, and therefore an isobaric approxi-
mation is a reasonable assumption. The Quid, however, is
not incompressible since the heat Aux modifies consider-
ably the temperature and therefore the density p=p, /T.
We also assume the derivatives of the unperturbed solu-
tion are negligible. Let p& = —poTI /Tp v&, and p &

denote the perturbed density, velocity, and pressure, re-
spectively, which verify the following equations:

(a/at+ v,a/ax )(p, /p, ) = —V.v, ,

(a/at+ VOB/Bx )v, = —Vpi+ pig,
V.v, = —

—,'hovoV (pi/po),

(14)

(15)

II. ANALYSIS OF THE REGIONS

We look for solutions of perturbed quantities of the
form exp( y t + iky ). Let x =0 be the unperturbed posi-
tion (with a precision of the order of 6) of the ablation
front and x, =g exp(yt+ iky) its perturbation (in the lim-

where b,o=(TO/T, )"h. For wave number perturbations
such that kA «1, the thermal conduction in region 1,
where To —T„ is negligible. The opposite must occur in
region 3, where To)&T„and at distance x-k ' from
the ablation surface we have k ' —b,o (notice that
To/T, -x '~") and consequently, the thermal conduction
is not negligible in this region. For perturbations of the
type exp(qx+iky +yt), in region 1, with V.v, =O, the
corresponding roots to the four modes are q= —y/v„
which is double (corresponding to the vorticity and the
entropy modes) and q =+k (corresponding to the poten-
tial incompressible fiow modes). The fifth mode, which is
strictly not null and corresponds to the heat diffusion, de-
cays very quickly with the distance (q -b, ') and, except
in a very narrow region such as region 2, its effect can be
neglected. In region 3, the five modes have the following
roots for kx ))1: q = —y /vo (vorticity mode) and the
double roots q =+k, two of them (+) correspond to the
heat diffusion and the other two correspond to the poten-
tial incompressible fiow (or sound) modes.
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We also expand the velocity v, density p, and tempera-
ture T:

v=v, (s)exp(yt+iky)e„

+ I vo(s)+ [v',„(s)+yg]exp(y t + iky) I e, , (17)

p=po(s)+p, (s)exp(yt+ iky),

T=To(s)+T (is)exp(yt+iky) .

(18)

Notice that v& is the velocity with respect to the moving
perturbed ablation surface, which is located at s =0.
Though the unperturbed variables have been expressed as
only functions of the coordinate s, they actually could de-
pend on time, but in a slower time scale compared with

y '. We would then proceed with the analysis of Eqs.
(2)—(4) in zero order and linearize in the first order per-
turbations. In Appendix A we show the full equations
for the perturbations.

it kh —+0 region 2, compared with regions 1 and 3, be-
comes a surface discontinuity). It is convenient to strain
the x coordinate [14] defining a new variable in the form
s =x —x, . Then, the partial derivatives are changed in
the following way:

B B xa B B B

Bt Bt Bt Bs Bx Bs

and then
0

pa= po(s )gds =pavgl ~—I
(24)

with p,„being the slab average density. Consequently an
approximate solution by expanding for ~s/1~ && 1, may be
obtained using Eqs. (20), (22), and (23):

Pa s
p -p 1+ —+.

p„ l
P

Pa l d Pa
pp p 1+ + lnp„v, dt p'/'

s + ~ ~ ~

l

(25)

(26)

3 Pa l d s
vo=v, 1 —— + ln(p, ) —+. . .

5 p„v. dt
(27)

If, to the contrary, after an initial transient time, re-
gion 1 were to remain with uniform entropy (homoentro-
pic fiow), a solution through all of region 1, —l &s &0,
may be obtained easily. From Eq. (22) we get

po =p„and vo= v, =m /p„where both p, and m (as-
sumed known) depend mainly on the irradiation condi-
tions of the target; however, p, depends on the initial
conditions and in general on the history of the evolution
of the target. Equation (21) may be integrated since
Pogl ))Povp, giving us

po = J po(s')g ds',

A. Analysis of region 1
(cold and adiabatically compressed zone)

po pa
const =

po/3 pa
(28)

In region 1 (s &0), after a transient time, the fiow ve-
locity becomes very subsonic (M, « 1) in the frame mov-

ing with the target. In general the unperturbed Aow is
not quasisteady in this region.

and using Eq. (23)
2/5

po

pa Pa

2/3
To s—1+—
T, l

(29)

1. Unperturbed solution

Time derivatives must be retained since they are com-
parable to convective terms, B/Bt -voB/Bs. We use the
continuity, momentum, and the entropy equations. No-
tice that the heat conduction is negligible in this region,
since poTovo p, T, v, »EdTo/ds -p, T,v, (b /l):

Bpo B(povo)

Bt Bs

Bvp Bvp
p' at +p' ' as

C)P 0
+pog ~

a

(20)

(21)

a po O po
5/3 0 g 5/3 (22)

where the pressure po—=poT0. The integration of Eqs.
(20)—(22) would need in general, besides the initial condi-
tions, the boundary conditions at the rear side of the tar-
get (s= —l); for instance, if there were vacuum or a
negligible ambient pressure we will have there
vo= —dl/dt, Pp =Pp 0. Also we would need the bound-
ary conditions at just before the ablation surface s =0

dl svo-v + v +
dt

(30)

where the time derivative of the instantaneous target
thickness, dl /dt, through the use of the mass Aow rate at
the ablation surface m =p, v, = —d(p,„l)/dt, is given by

d lnp,———v —l
dt 2 ' dt

(31)

Now, with Eq. (21), one could determine the corrections
to the pressure through region 1:

2/5
dVa

dt
5p,

2Pa

po ——(v —v )
1 2 2

0 ag
pa

va d lnp,
2 l dt

(32)

and then one can obtain, using the fact that the pressure
at the rear side of the slab is zero, the correction to the

from which we obtain the average density p,„=2p, /5.
Following with this approximation we could then in-
tegrate Eq. (20) to get the velocity
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Pa 3 dva
g=

p I 2 dt
31 V I d lnp '+
8 I 2

d lnp,
dt

2

acceleration g of the ablation surface obtained in Eq. (20): Moreover, since the compressibility effects are
0 [(y/kc, ) ]-(kl) '((1, where c, -po/po is the sound
velocity inside the slab, the resulting Eqs. (A 1)—(A3) may
be simplified as follows:

d lnp,2' dt
(33)

d 3 Po
(Povlxh )+ kPovlyh Y plhds 3' (37)

Notice that since d Idt —v, Il, Eq. (33) shows that
g = (p, /p, „l )[ 1+0 (M, ) ]=p, /p, „l.

2. Perturbed solution

d d»h 3 plh
Po 7+vo

d v1~h =
d

+ Pogds ds 5 pp
(38)

The perturbations in region 1 may be easily and con-
sistently treated if their wavelengths are smaller than the
thickness of such a region. The entropy equation (A5)
may be therefore integrated, neglecting heat conduction,
which yields the entropy mode

pp p+ vp l v1yh kp1h
ds

(39)

Then, after some algebra we get

d 2 3 d p1h 23Po
5 ds po 5po»h = Pog +y — p lh, (40)

3 T1

2 Tp

P1 =const X exp —f ds
Po Vp

(34) whose solution corresponds to two modes of the form

Assuming the real part of y is positive, the constant ap-
pearing in Eq. (34) must be zero in order for the solution
to be bounded (s~ —ao ), hence a relation between the
perturbed pressure p, =p, TO+ppT, and the perturbed
density p1 is obtained:

p, „+= a+exp(r+s),

Pov1xh+
'POV 1yh+ =

r+ Ik —3gpo/5kpo

(41)
P1h+

(r /k)(y/r +v, )

3 P1
& po

(35) r+ =+k+ —+kpo 'g
Opo k k

2

(42)

Then, having in mind that we are mainly interested in
wavelength perturbations smaller than the thickness of
the slab, kI ) 1, only the leading terms of the zero order
solution are needed. First of all in order to determine the
different modes we eliminate the inhomogeneous terms of
Eqs. (Al) —(A3), writing the solution in the following
way:

dVp
Pl Plh +4POg~ Vlx Vlxh ye+4 ~ Vly Ulyhds

(36)

Finally we have the vorticity mode

p 1h 0& V1xh
kvp ds

l v1 h 8 exP
y Vp

In order for the solution to remain bounded (s~ —ao ),
we must have A =B =0.

Let C, and C2 be the perturbed mass How rate and
momentum Aux in the x direction, respectively, at s =0
(with respect to the moving perturbed ablation surface);
then using Eqs. (36), (41), and (42) we have

Cl =—(povl +plvo)l =o- = ykp.
k 3p. g

10p. k k

2

(44)

C2 ——(p1 +2Povovl +Plvo) l, o
—= ~+ +gp, g+2v, Cl

'

C1 3gp,
v, =i +yg 1+

s=p Pa 10kp,
3pa

10p,

2

(46)

3Pa
p, ~

= (C2 —2v, C, ) —(kg)p,
5pa s

'2

«(kg)p, , (47)

22
3Pa

10p, k
Pag3

10kp,

3Pa

10p, k
Pag

10kp,
C2=gp, g+C, v, 1— y

kv
~ —ygp, v, 1+

kv,
(4&)

Eliminating the 2+ constant from Eqs. (44) and (45) we get (neglecting kv, /g terms) the following relation between
C„C2, and the ablation surface deformation g:

r
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This last expression is similar to the one obtained by
Bodner [3] except in two aspects. One of them is due to
the fact that we are using here a different formalism,
which produces the g terms in Eq. (48); the other one
comes from the retained compressibility efFects (the fac-
tors proportional to p, /p, -c, ). Such small correction
terms were not taken into account by the author in Ref.
[15] for simplicity in the exposition.

B. Analysis of region 2 (the thin ablation layer)

1. Unperturbed solution

Mass and momentum conservation yield

po&0 ™~ poTo =pa (49)

and to obtain the last of Eq. (49) we have neglected the
I

This region is very thin and its characteristic thickness
is of the order of 5, the one that depends [see Eq. (5)] fun-
damentally on the temperature of the target evaluated
where the density reaches a maximum T, =p, /p, . To
study such a region it is enough to consider distances
s-6; then the equations are simplified to a large extent
since any other characteristic length involved in the
problem, k ', l,I., is much greater. The asymptotic solu-
tions obtained in this layer have to match, taking the ap-
propriate limits s/b, ~+~ (but keeping both ks and
yb, /v, small) to the solutions of regions 1 and 3.

dynamical pressure povo-M, p, and the gravity effect
-p, gb, -p, b, /l. On the other hand the simplified energy
equation, neglecting the same effects, is written as

d 5 —To dTo
Po~oTo (50)

ds 2 p~0 ds
=0.

Now, integrating Eq. (50) once, and imposing the match-
ing condition to region 1 (s/b, ~—~ ) where To = T,
and heat Aux vanishes, we get

5 To dTp 5
po+OTO + pa +a Ta

p d 2 g 0 (51)

5/2
5 s 2 To——+const=—
2 5 5 T,

3/2
2 0+—
3 T.

To+2
a

1/2
( To/T, )'i —1

+ln
(To/T, )' +1

(52)

and the value of the constant appearing above depends on
the choice of the origin, which is obviously arbitrary.
The behavior of the solution of Eq. (51) for large Is/b,

~

and arbitrary n value is

For specified values of n Eq. (51) may be integrated once
more, for instance, in the case of laser fusion (n =5/2,
@=0)we obtain

Sn s
2

1/n
1 + ~ ~ ~

n —1

1/n
Sp,"m

s +, s/A~+ ~,
2K

To
5 sT 1+exp ——+
2 6 s/A~ —~ .

(53)

Note as in the first of the above expressions
(s/h~+ ~ ) the characteristic scale length b, and scale
temperature T, have disappeared.

2. Perturbed solution

Perturbed quantities can be obtained in a simple way
through mass, momentum, and energy conservation,
since kb «1 and yb, /v, «1 and therefore transverse
and time derivatives are negligible. It is straightforward

p1vo+ pov'1„= const =C1,

p1To+poT1 +2povov'1„+p1vo=const= C2 .2

(54)

(55)

Integrating Eq. (A3) through the use of d(poTo)/ds
= —povod vo/ds and matching to region 1 one obtains

I

from Eqs. (Al) and (A2) of the Appendix to obtain the
solution matching (at s/b, ~—~ but keeping ~ks~ &&1)
to region 1:

ivi —kgvo= const =— C, +sr
pa

gpa3

10kp,
3pa

10p, k

'2
—kgv, ,

and finally, integrating once the energy equation, Eq. (A4), and matching to region 1 the leading terms become

C2 5 d KT0 5 C
pp~o T, + C, +p m —To T1 const T C1 +p m + C2 (57)

Integrating once more gives us

T. 5T= (T —T) C+—
1 T 0 + 3 20

C1
+p

m

C 2C T2 s + 2
1

5n ~ (T T )
1 ds

p, b, 5p, 2 To
' To(s) b,

(58)
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with C3 being, as in Eq. (52), an arbitrary constant de-
pending on the choice of the origin.

C. Analysis of region 3
(the near hot plasma corona)

1. Unperturbed solution

In general there is no quasisteady solution throughout
region 3 except in a restricted zone (-k ') next to the
ablation surface. Let gp, 8o, and vp be the normalized
density, temperature, and velocity

pcor
po 0o To 5T 0 8o vo 5vco uo. (59)

The continuity, momentum, and energy equations give us

d (Novo) =0,
d YJ

d o d ko8o +Pa (kL)' "
2

dr) 1g p,„kl

(60)

(61)

d 5 1

d'g 2 2g u —8 + —5v
5n o " do
2 p~ dg

Pa (kL)' "
M, puo,

Pav
(62)

which can be integrated through an asymptotic expan-
sion in the parameter 5 to obtain the solution matching at
g~0+ to the leading term of the emerging solution of re-
gion 2 [see the first of the Eqs. (53)]:

[6+5(n —V)] 5+. . .
5(1+n)

„ir.+ [6+5 n —
V ] „2r.5+. . .

5(n +1)

g 1/n+ I ~2/n5 +(1 —5 )

5(1+n)

(64)

(65)

The unperturbed solution that is emerging from region
2 (s/b. ~+ ~ ) shows us the characteristic feature of the
fact that there exists a free scale length zone 6 «s «L
in region 3. Then, to analyze this region (s &0), because
we are interested in the wavelength perturbations
kl —(kL)' "»1, only a layer of thickness s-k '«L
needs to be considered; let then g = ks be the normalized
space variable in this layer and define the small parame-
ter 5:—(kL) ' ". The discussion presented in a previous
section about the scale of the variables in such a layer, v~,
p„and T~ [see Eq. (11)]suggests normalizing the densi-

ty, temperature, and velocity with those values, p„,/5,
T, ,5, and v„,5, respectively.

2. Perturbed solution

Notice that from Eqs. (9) and (66) we also have
E —[(kL)' "M ]'—:(M /5)' —[(kb, )' "]' On the
other hand, Eq. (59) shows us that the small parameter s
will enter in the unperturbed solution expansion in
second order through the matching condition with region
2, for instance, 8o(r)~0+) —T,M, /5-E . We then nor-
malize as follows, taking into account the size scale of the
perturbations and the fact that they must be proportional
to the deformation g of the ablation surface:

pi Tp +poT~ =5k', P

ppvI~ +p)vp kgniF

v, =5k/v„, V,

T, =5kgT„,e,

(67)

(68)

(69)

(70)

and let the row vector W'= IF,P, V, ge, d(ge)/dgI. We
write the fifth order system Eqs. (Al) —(A4) in vector
form using Eqs. (63)—(65) and (67)—(70):

d8'
A P7T+g T

d'g
(71)

where A is a matrix and B is a row vector coming from
the inhomogeneous terms involving g; both depend on g,
c, and 5.

In order to connect regions 2 and 3 the solution in re-
gion 3 at g~0+ must be matched to the solution emerg-
ing from region 2 at s/h~+ ~ (with ks &&1), which
only contains in such a limit the two unknown constants
C, and C2. Explicitly the perturbed mass Aow rate and
momentum Aux in region 3 must be equal to C& and C2
at g —+0+, respectively, while both the perturbed velocity
v& and temperature in region 3 must match, at g —+0+,
the behavior of the emerging solution from region 2, Eqs.
(56) and (58) at s/b, ~+ ~, which we reproduce below,
up to first order in 5 and c. in the scale of variables of re-
gion 3:

The asymptotic analysis is complex and requires a
power expansion with respect to two assumed small pa-
rameters: one of them is 5, and the other one is
E=y/(kv„, 5), which takes into account the effect of the
time derivative of the perturbed solution (-y) versus
convective derivatives (-kv*-kv„,5). Then, if one is
interested in the wavelength perturbations kl —(kL)'r"
we can derive the following ordering:

e= = M (kL)'r"-Qkv /g —QklM «1 .
kv„,5 kv,

having neglected 0 (5 ) terms and of course O(M, ). No-
tice that the small parameter 5 is of the order of magni-
tude of the characteristic Mach number squared in such a
layer -v~/T„, which is assumed much larger than M, .
Qn the other hand, the assumption of quasisteady
Aow is well satisfied since 8!Bt—v, /I « voB/Bs
-kv /(kL)'r".

LVi 1/n

( kg )5v«&,

+ [6+5(n —p)] qr„5+
5(n +1)

(72)
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TABLE I. Coefficients f„fz for several values of n dw
1 1 1

=a w +b

2.5
4.0
4.5
5.0
5 ~ 5

6.0
6.5
7.0
7.5
8.0

1.026 648
1.010964
1.008 913
1.007 394
1.006 235
1.005 331
1.004 611
1.004 028
1.003 550
1.003 153

—0.520 516
—0.326 075
—0.290 704
—0.262 418
—0.239 249
—0.219 904
—0.203 496
—0.189 396
—0.177 145
—0.166 397

T1 1/n

(kg)5T„, ia + n

C1 C2+p + 0 ~ ~

nkvd p. kk

(73)

Then, the solution in region 3, after using the boundary
conditions at g=0+, will linearly depend on the con-
stants C1 and C2. Moreover, it has two unbounded
modes as g~+ oo [8], hence the condition that the solu-
tion must be bounded will determine C1 and C2. In order
to numerically determine those constants we expand
them, for instance, C, j(mkg)=f, +f2s+f35+ . , as
follows:

C1 f f +f—Y M2(kL ) lin+ f (kL )
—1/n+

mkg

in order c,

dW
1 2 2 2 1

=a w +b +a w (77)

in order 6,

dW =a w +b +a w
7l

(78)

where a1,a2, a3 and b1, b2, b3 are matrix and row vector
functions, respectively, which only depend on g, n, and p
and are given in Appendix B.

The eigenvalues f~, qj are determined in each order
imposing the vanishing of the perturbed solution as
q~+(x). The homogeneous system corresponding to
each equation of the hierarchy of Eqs. (76)—(78), presents
two unbounded modes. To know analytically the
behavior of such modes as g~+ ~ is crucial in order to
determine correctly the numerical values of f,q, mainly
in this case since both modes explode as exp(7)) [for in-

stance, ge -g' — ' ' "'e xp(q)] [24]; this makes the nu-
merical determination of f,qi troublesome. Notice that
this last point has been always unsatisfactorily treated in
the past [7—9], through an incorrect determination of the
behavior of the solution for large g. In Appendix D the
method used for the determination of the asymptotic
behavior of the solution is shown. We give in Tables
I—IV the f , q for differ. ent values of n and p.

C2 —:q =q, +qz M, (kL)'i" +q3(kL) 'i"+
5p kg ' kv,

(75)

III. THE DISPERSION REI.ATION

Once C, and C2 have been determined (or equivalently

fi, qi), Eq. (48) relating both constants will give us the
dispersion relation

where fi and qi represent eigenvalues to be determined.
We also expand 8'=w, +c.w2+6W3+ . , 3 =a, +c.a2
+5a3+. . . , B =b, +sb2+5b3+ . , and Eq. (71) gives
us the following heirarchy of a fifth order system of linear
differential equations with variable coeKcients: in order
unity,

kl
q =0

p, (kL)'i"
Pav—kg 1—

where

(I+a)y +kv, [1+f( I+a)]y

(79)

TABLE II. Coefficient f, for several values of n and p, (notice that f&, f2 are independent on p).

n/p

2.5
4
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8

—0.011 85
0.220 163
0.223 584
0.226 983
0.230 141
0.233 206
0.236 010
0.238 680
0.241 149
0.243 374

3

1.25

0.306 708
0.312 920
0.318 674
0.323 987
0.328 900
0.333 392
0.337 506
0.341 274
0.344 758

1.5

0.393 282
0.402 238
0.410 396
0.417 803
0.424 580
0.430 688
0.436 256
0.441 399
0.446 052

1.75

0.479 851
0.491 554
O.S021SO
0.511 650
0.520 248
0.528 035
0.535 065
0.541 589
0.547 464

O.S66 419
0.580 890
0.593 901
0.60S 521
0.615 932
0.625 385
0.633 928
0.641 689
0.648 755
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3 Pa

10 p. k k

2

10 (kL)1/n
(80)

To obtain Eq. (79) terms like k v, /g —c, have been

neglected and, on the other hand, the approximation used
in Eq. (80) lies in the fact that we are taking the leading
term for y in Eq. (79). The retaining up to first order in 5
and c., the unstable root is

Pavy= kg 1— kl q3
—(3/10)q i 3 p, q i

p (kL)i/" (kL)i/" 10 p
q1+ +

1/2

—kvg(1+ fi+q2)/2 . (81)

A. Stabilization mechanism

k, l'=
~1pav

' n/(n —1) 1/(n —1)
L

~1Pav

Pa

1/(n —1) ' 1/n (n —1)
l
L

(82)

and the condition k, A «1 in order for the model to be
consistent is explained as

TABLE III. Coefficients q&, q2, q4, q5, for several values of n.

2.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

0.667 5622
0.760 6308
0.781 1391
0.798 4274
0.813 1950
0.825 9536
0.837 0855
0.846 8823
0.855 5701
0.863 3266

2.07611
2.04015
2.03351
2.02835
2.02429
2.02103
2.01837
2.01619
2.01437
2.01284

q4

3.74950
3.83162
3.84453
3.85526
3.86491
3.87373
3.88344
3.89055
3.89671
3.90204

—0.105 2360
—0.025 3521
—0.018 6037
—0.0142478
—0.011 2696
—0.009 1417
—0.007 5676
—0.006 3697
—0.005 4366
—'0.004 6954

It is clear that Eqs. (74) and (75) point out the mecha-
nism of stabilization. On the one hand we have the so-
called "fire polishing effect, " as Eq. (74) suggests; the
crest of the rippled ablation surface coming into the coro-
na is evaporating more quickly than the valley, enhancing
this effect by heat conduction (terms involving kL). On
the other hand, Eq. (75) shows the dominant stabiliza-
tion effect, the overpressure generated on the crest of the
corrugated ablation surface due to heat conduction, ' this
effect damps and could stop its growth.

We point out that the factor multiplying kv, above
(the so-called ablative stabilization), ( 1+f, +q2 ) /2,
takes a value of approximately 2 for the entire range of
interest in n and p values (becoming a general feature of
the ablatively accelerated targets), with q2, the term com-
ing from the momentum Aux contribution through the
ablation front, being the largest. Strictly, in the asymp-
totic limit M, ~O, the growth is stabilized (neglecting
kv, ) because the square root term in Eq. (81) vanishes
for a cutoff wave number

5n

l 2

1/n
Pav

g1 a
pa

(83)

For wave numbers k )k„ the modes become oscillatory,
similarly to the effect produced by surface tension in
liquids. The main stabilizing effect is due to heat conduc-
tion, which causes the momentum Aux to increase on the
crests of the rippled ablation front and decrease in the
valley, damping the growth of the unstable ablation front
and being able to stop it. On the other hand, the kv,
term in Eq. (77) or the so-called ablative stabilization
effect also helps to damp the growth. Both stabilizing
effects would be increased substantially by means of re-
duced values of L and the peak density p, (for m fixed),
respectively. Finally, we emphasize that Eq. (81) has
been rigorously derived without any assumption regard-
ing the behavior of the far away plasma corona or laser
energy deposition region, which affects the determination
of L.

B. Theoretical determination of the coronal
characteristic length I.

Throughout the problem, L has been assumed to be a
known parameter. In fact L is an eigenvalue of the un-
perturbed problem, which is in general determined for a
given target and radiation conditions. L is defined [see
Eq. (6)] by means of p, and m values, which can be de-
rived from either one-dimensional numerical simulations,
experiments, or analytical models. For instance, some
known scaling laws for planar analytical models in laser
fusion (p, -IP A,I /, m -IL/ ki /3) [25] leads to
L -II A,I, where IL is laser intensity and A,L is laser
wavelength. On the other hand, spherical and planar
analytical models [7,8], if energy is absorbed in the super-
sonic region of the corona, lead to L/I, depending basi-
cally on the ratio of the sonic, p„ to the ablation, p„den-
sities (or equivalently M, ) and the aspect ratio r, /l (if
spherical), with r, the ablation radius. In fact, the iso-
thermal sonic point of the corona where vo=po /po
represents a singular point of the system of the hydro-
dynamic equations, and the condition for a continuous
transonic solution to exist leads to a universal relation be-
tween ablation pressure and mass fiow rate (such a rela-
tion was implicitly used in the results presented in Ref.
[7] and some numerical values were also given in Ref.
[8]). One can obtain L explicitly in a closed form assum-
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TABLE IV. Coefficient q3 for several values of n and p (notice that q&, q& are independent on p).

n/p

2.5
4
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8

0.606 840
1.185 638
1.242 812
1.293 756
1.339 074
1.379 938
1.416641
1.449 994
1.480 283
1.507 769

1.25

1.305 321
1.370 4S4
1.428 370
1.480 161
1.526 738
1.568 708
1.606 700
1.641 217
1.672 757

1.5

1.425 067
1.498 056
1.563 054
1.621 180
1.673 505
1.720 585
1.763 237
1.802 152
1.837 551

1.75

1.544 803
1.625 653
1.697 811
1.762 270
1.820 244
1.872 57S
1.919907
1.963 232
2.002 602

1.664 539
1.753 293
1.832 560
1.903 413
1.967 022
2.024 573
2.076 694
2.124 110
2.167 387

ing M, «1 and having in mind that it is a roughly ap-
proximated description for the How not too far from the
pellet, say, at some small fraction of r, .

eigenvalue L for each value of the parameter g:

Zi, =o, Z
X 1+ '

u x 1+
(90)

r povo=const=—r, m

dvo d(poTo)
Po o d

=
d +Pogdr dr

(84)

p' pavo To+ vo g(r 1'„)

KTO " dTO—r ~Q
p)o dr

where r is the radial coordinate and the gravity g has
been introduced [7,8] to take into account roughly the
effect of the acceleration of the ablation surface. We then
normalize the variable in the following way:

1. Absorption at the supersonic region

Let us consider as in Refs. [7,8] the mass, momentum,
and energy conservation equations in spherical geometry:

2Z 3Z —g(X —1)
LX2(1+@)Zn + 1 —P/2

~'~x=x, =z~x=x,

X=X
=0,

(91)

where X, is the sonic point coordinate. The first of the
boundary conditions (90) comes from the fact that
Z(x~ 1+)-T, /T„, =0, while the second is expressing
the fact that in normalized variables the pressure as
X~1+ is p, . On the other hand, the boundary condition
(91), corresponding to the vanishing of the right hand
side of Eq. (87) at the sonic point, is the condition for a
continuous transonic solution to exist.

Once the function E(g ) is obtained, similar expressions
also may be derived for the ratios p, /(p, M, )=N, (g ),

po/pear~ + =vo/vcor &

Z =To/T„„X=r/r,
(86)

and after eliminating the density we get the following two
equations: Ns

1 Z du 2 2Z dZ
2 dX X dX

—Z+ —u' —"(X—1)= "I".X"'+~'u~Z" +'
2 2" 2 dX

where

(87)

(88)

0.6

0.4

0.2

Zp

2n

0
0 0.2 0.4 0.6 0.8

L—=
rg r m

2K

5nmp," (89)

The following boundary conditions are imposed in or-
der to solve Eqs. (87) and (88) in X) 1 and to obtain the

FICi. 2. Dimensionless normalized density Ns, temperature
Zs and sonic radius X&, in the case of electronic heat conduc-
tion (n = ~, p =0), vs the normalized aspect ratio g

~a (p a /pav ~ ra /I.
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M, Tos/T, —=Zs(g ), and the sonic (r, ) to ablation radius
ratio r, /r, —=X,(g ) [all this on the basis of the approxima-
tion, as in Refs. [7,8], that in fact the ratio (r, r—, )/r, is
numerically small]. In Fig. 2 we give Xs(g ), Xs(g ), and
Zs(g) for n =5/2, p=O, while in Fig. 3, we show

I

LM, p, /(p, „l) ==%(g ), so

pav 1

p M2

and hence, the cutofF wave number is

(92)

pa
C 2p„q1M, pa

1/( n —1) 1/n (n —1)
p, M,

p„
(93)

We also point out the following features about the behavior of the %(g), which is a monotonic growing function:
%(g )-g for g &(1 (for instance, with low aspect ratio targets) [25] and in the opposite limit, for g )) 1 (for instance, in
the case of large aspect ratio targets or in the planar case) it is %(g )-const. We summarize the results corresponding
to the laser fusion case (n =5/2 and p=0) as follows. Low aspect ratio:

I.=1.8r, ,

pa ~a
k, l =2.88

p„

2/3

1 —0.60
pa

- 4/15-
l

la

(94)

(95)

large aspect ratio or planar case (4=0.85):

L 0 85Pav l

p. M,'
(96)

k l ~ 1 o 17 4/3 1 Oe 73
pavMa

2/3 2 4/15
p, M,

pav
(97)

2. Other situations of interest

When gravity plays an important role in the zone
where the energy deposition takes place, except for those
cases considered in the previous paragraph, it is not pos-
sible to get simple analytical results within the hypothesis

100

p,=1.5

of a quasisteady model. It may be instructive, however,
to summarize some laser fusion analytical results, which
were derived in the literature neglecting (thick targets)
the recoiling of the target or its acceleration.

If the electron mean free path is larger than the
characteristic length for temperature changes, the classi-
cal result for the electron heat Aux, q, = —ET VT,
yields unphysical large values. A simple but crude way
to correct for this has been to saturate, or limit, the value
of q, in the form

(98)

10

n=5, p=]

n=2. 5,

where p, is the electron pressure, m, is the electron mass,
and P is a flux limit factor, which has been discussed in
detail in the literature [26]. As shown in Ref. [27], for P
larger than roughly 0.04, the result I.=1.8r, is un-
changed, but for smaller values the How becomes saturat-
ed before reaching the sonic point, giving in this case

0.1

' 1/2 5
5 Pl Z.

2P I; (99)

0.01 '

0 0.2 0.4 „ 0.6 0.8

FIG. 3. Dimensionless normalized heat conduction charac-
teristic length O'—=I.M,p /(p„l), for several values of n and p,
vs the normalized aspect ratio g =M, (p, /p, „)&,/l.

where m; and Z; are the ion mass and charge number, re-
spectively. Equation (99), strictly valid for very small P,
shows the inefticiency of the stabilization mechanism for
strongly saturated flow.

In some simple planar and quasisteady models [28] ap-
pearing in the literature we fIInd
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1/3I 2/3
pc

2/32'
p

p, 5

4/3 4/3IL

25 5 pe

(100)

where p, and x, are the critical density and the distance
between the ablation and the critical surfaces, respective-
ly. Then, yielding a cutofF wave number

k, l =19.64
tS/3 '

pa X

p„ l

2/3

1 —0.277
pa

. 4/&S

I8/9g28/9
L L (101)

hence, a significant reduction of the cutoff wave number
occurs for short laser wavelength.

IV. COMPARISONS

A. Comparisons with numerical
and theoretical results

In Fig. 4 the numerical results calculated by Takabe
et al. [7] in the laser fusion case (solid squares), using the
same normalization, for several ratios of the ablation to
the sonic densities p, /p„are compared with our results
from Eqs. (81) and (89). For the comparisons we have
used the approximation k = I/r„where l is the Legendre
index of spherical harmonics, and the same variables as
Takabe et al. : G=gr, /C, , C, is the isothermal sound
velocity at the sonic radius r, and Y:yr, /Cs. —The re-
suits of the previous section about the spherical model
have been used to perform a complete comparison, due to
the absence of such complete results in Ref. [7]. In terms
of our variables we have

The results predicted by our Eq. (81) show good agree-
ment with the results of Takabe et al. (solid squares).
The corresponding comparisons to different values from
6 =0.5 are similar but show smaller cutofF wave numbers
than those of Takabe et al. Their calculations ir. fact
were performed by means of a numerical patching of the
solution at different zones. Ours, however, were per-
formed by means of rigorous asymptotic matching at
different zones and hence they provide us with analytical
results that show the real physical stabilization mecha-
nism underlying the numerical Takabe et al. results.

Kull [8] carried out similar calculations to Takabe
et aI. , but with a better defined model, which, on the oth-
er hand, is strictly valid for much shorter wavelength
perturbations; it is in fact applicable to kA-O(1) (notice
that Kull's characteristic length L& is —', times our 6
characteristic length). We could compare here, Figs. 5
and 6, in the case of small I (and hence kb, ((1) the
growth rate, cr(ir, I ), the instability boundary, II, (I ), and

XsG—=g zs Ps
2, Y=—y
1

M, Xs

1/2
XsZsG

(102)

0.05

0.01,

0.2

100

50-

0.005-

0.001

10 O.OG05

0.0001

0.5
0.00001 0.0001 0.001 0.01 0.1

0.1
10 100 1000 10000

FICT. 4. Dimensionless normalized growth rate vs Legendre
index for several values of p, /p, . Curves were obtained from
Eq. (81) in the text and solid squares are points calculated by
Takabe et al. [7]. The straight line corresponds to the classical
growth &kg in normalized units.

FIG. 5. Dimensionless normalized curves of instability
growth rate o., derived from Eq. (104) in the text, vs dimension-
less normalized wave number ~ with l" varying between 0.005
and 0.2 (solid lines for n =2.5). Solid circles were obtained
from the Kull [8] numerical calculations for the same values of
I and n =2.5. Results derived from Eq. (104) for I =0.2, n =5
(short-dashed line) and n =8 (long-dashed line) are shown. The
corresponding numerical calculations [8] also are shown: aster-
isk (n =8) and cross (n =5).
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the wave number of the maximum growth, K (I ), found
numerically by Kull [8] with our results. For instance, it
is straightforward (see Ref. [8]) to derive in terms of the
Kull variables ( I,K, a ) the following relations:

0.2—

0.15-

0.1

L 1 Pav I
n p

K ——— M2kl,
I p,

0.05

0.03

o= ~ v'irI .
v'kg

(103)
0.02-

0.015

Although our analytical formula, Eq. (81), is only appli-
cable in the case when kh(&1 (and hence I (&1), our
results are of interest in two respects. First, Eq. (81) con-
tains additional information to Ref. [8], since we have,
contrary to Kull, a nonisobaric model. On the other
hand, Eq. (81) (for both I and ir small but fixed and
M, =0) reproduces well the numerical results of Ref. [8],
shedding new light on the physical mechanism of stabili-
zation or scale laws implicitly contained in the numerical
results of Kull, at least for small I . Then we get from
Eq. (81)

0.01

0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2

FIG. 6. Comparison of the instability boundary E,(I") and
wave number E (I") of maximum growth, derived from Eqs.
(106) and (105) respectively, with the numerical (solid circles)
obtained from Kull [8].

o =Q~t —q, n 'l"ic 'l" 2ir, — (104)

and from this last equation we obtain the wave number of
the maximum growth:

1/2n l(n —1) r 1—
n

(105)n 4n n (n —i)l'""-"
E

q, (2n —1) q
n l(n —1) (2n 1 )(2n —1)l(n —1)

The cutoff wave number is E, =ir, /I =q 1
"l'" "(I /n)' '" "as a first approximation. In order to obtain a better ap-

proximation, retaining, for instance, the a term in Eq. (104), one must retain also the terms of order ir in the radical,
which means terms of second order in e and 5. This task is very difBcult, except for the case y —=0, which is the one we
are interested in now. Basically, the mathematical problem is limited to consider the expansion

q =q, +q3(kL) 'l"+q4gM, (kL) l"/kv, +q~M, (kL)'l" + . , instead of Eqs. (74) and (75) and similarly for the rest
of the variables. Then we get

Kc
C

' 1/(n —1)
1 I

n/(n —1)
q 1/( 1)( + f / )—

(nq )1l(n —1) (106)

where for the case n =
—,', one has q4 =3.75 and q5 = —0. 1

(see Table III). The results of the comparisons in Figs. 5

and 6 for n =—', show good agreement [notice that Eqs.
(104)—(106) are only valid for small I']. The cutoff wave
number that could be derived from Fig. 5 shows
somehow an error; however, a more exact determination,
which is shown in Fig. 6 using Eq. (106), gives an excel-
lent agreement with Kull's numerical results for the
range of I values that we have used for the comparison.
In Fig. 5, the curves corresponding to n =5 and 8 for the
case I =0.2 are shown (the only values given in Ref. [8])
and as Kull claimed the growth rate curves show only
minor variations. Our work suggests that the stabiliza-
tion mechanism underlying the numerical Kull results
differs from that pointed out in Ref. [8]. In fact, follow-
ing Kull, let g, be the thermal diffusivity at the ablation
front ( -K, /p, ), then for I « 1 stabilization is occur-

I

ring at very small wave numbers,
a.-kb, -ky, /v, =k y, /(kv, ) ((1, and as shown in

previous sections it is caused by the overpressure due
to heat conduction y —v'kg —[k (p, —p~ )/p, ]'
—kv, /(kb, )' ' "'))kv„and hence the regime I &(1 is

not stabilized by the so-called ablative convection.
In a recent paper Bychkov, Golberg, and Liberman [9]

solved numerically the same equations as Kull (isobaric
approximation, etc. ) but with an unclear or ambiguous
discussion or definition of the problem in terms of the
external physical parameters. Their results [9] were
given unnecessarily, by means of two parameters, which
was due partly to the method of patching used in the
solution of the eigenvalue problem. The results, except
for differences due to the method used in the solution,
should be similar to Kull's. In the same paper [9] the au-
thors show an analytical formula for the time growth rate
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in the case of very large wavelength perturbations,
kL ((1,which has little physical interest, and its deriva-
tion is based in the "Landau-Darius boundary condi-
tion, " which is inconsistently derived in the laser fusion
case (heat conduction cannot be neglected in a consistent
way). In fact, notice that from Eq. (74) one may get the
prefront absolute perturbed velocity (v„=v„'i+yg) at
the ablation surface

0.8-

0.6-

blue, 100 pm

trope

mp

v i=yg+kgv, f, +f2 M, (kL)'i"
kv,

0.4-

+(f3 ——3q, )(kL) '~"+ (107)
0.2-

For the case of kL & O(1), the previous equation cannot
be applied. A similar derivation carried out by the au-
thor of the present paper is found in the literature [29]
and it could be expressed as

0.1 0.2 0.3
2

m

g P

0.4

v, =yg+kgv, Q,

1.5

1.25

0.75

0.5

0.25

0

-0.25
0

I

(kL)

FIG. 7. The 0 function entering in the expression of the per-
turbed prefront velocity; see Eq. (108) in the text, vs (kL)

where 0 is a function depending on kI. and on the irradi-
ation conditions (spherical effects, bremsstrahlung ab-
sorption, nonsteady effects, etc). In Fig. 7 we show the
results for planar quasisteady geometry, neglecting in-
verse bremsstrahlung absorption and the deflagration re-
gime (low laser intensity, heat conduction restricted to a
thin layer next to the target [25]): the curve labeled a was
plotted using the Chapman-Jouget condition [25] [one
finds 0 o- (kL)' for kL « 1]; curves labeled b and c cor-
respond to an isothermal Mach number at the critical
surface of 0.5 and 0.9, respectively (as may be seen
0=const%0 for kL « 1). On the other hand in
quasisteady spherical geometry and the deflagration re-
gime too, using k -l lr, (l is the Legendre index) leads to
0= —2/(3l). So only Eq. (107) represents a universal re-
lation, independent of the irradiation target conditions
(notice that curves a, b, and c of Fig. 7 will take asymp-

FIG. 8. Dimensionless normalized growth rate vs dimension-
less normalized wave number. Curves were obtained from Eqs.
(81) and (96) for diff'erent values of M, indicated in the figure.
Dashed line corresponds to the Book results [19]. Results from
the numerical simulations of Gardner et al. [4] are also shown.

totically the value f &
= 1.03 for kL ))1). Consequently,

the Landau-Darrieus boundary condition is never appli-
cable in laser fusion except, clearly, in the case kI. =0,
for which y =v'kg.

The results obtained by Book [19] are surprisingly nu-
merically similar to ours despite the use of an incompres-
sible model and the neglect of heat Aux. In Fig. 8 we
compare our results [with L =0.85(p,„l)l(p,M, ), n =—', ,
and @=0] with the numerical ones of Book [19]. On the
other hand recently, Wouchuk and Piriz [21], using a
similar model to Book's, have derived an analytical for-
mula for the time growth rate. The authors, however, de-
rived the formula un-self-consistently by neglecting the
pressure variation in the momentum conservation along
the front; in fact, the rigorously derived formula for the
cutoA' wave number, for instance, is
k, = A TgrD /(P —1)v2, instead of k, = A TgrD /Pvz (see
page 496 of Ref. [21]), and a similar correction needs to
be made to the formula for y. Taking into account that
the dimensionless number P may be very close to unity (it
may be shown that P=f &

--1.03), this difference is very
important. However, the analytical formula of the au-
thors of that paper is in the right direction, but with an
erroneous interpretation of the underlying physical stabil-
ization mechanism. Actually, our Eq. (13) may be writ-
ten in a diA'erent form, which is more transparent for this
case (showing the same feature as the formula of Ref.
[21]): the stabilization is occurring at 0 ( 1 ) —kl /
(kL)' "-kv~p, /(gp~) [the asterisk denotes the variables
calculated at a distance of one wavelength from the abla-
tion surface; see Eq. (11)]. This stabilization mechanism,
which underlies many of the numerical results found in
the literature, is also indicated at least in the formula of
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tion surface the mass and momentum conservation; on
the one hand, Eq. (74) expresses basically the prefront
perturbed pressure as a function of the interface deforma-
tion [equivalent to the ad hoc Eq. (14) of Bodner in Ref.
[3]],and on the other hand Eq. (75) expresses the prefront
perturbed velocity as a function of the interface deforma-
tion (equivalent to the Landau-Darrieus boundary condi-
tion or an ad hoc modified version of it). Of course the

model has limitations (for instance, targets not too thin)
but it is applicable to real ICF configurations.
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The continuity equation may be written as

APPENDIX A

d
ypi+ (pivo+povix )+ikpoviy =0,

ds

the momentum equation along the main Aow as

'V(pivo+Povi )+ . (P&To+PoTt+2povovix+Pivo)+'kpovoviy =Pig 7 kpo ~

ds

the momentum equation along the unperturbed front as

dl v1 d
&Po'vl +Povo k Pl 0+POT1 k (POTO)

(Al)

(A2)

(A3)

and the energy equation as

)'[—(P&To+PoTi )+ Pivo+P—ovovt ] [Po(vt +3'4)+Pivolg 3'0 [—PoTo+ Povo]—
ds

+ [povo( —,
' T, +vov', „)+(p,vo+pov', „)(—,'To+ —,'vo)]+ikpov, ( —,'To+ —,'vo)

ds

k
[(poTo) " (KToT()]—k (poTo) "KToT, + (poTo) " (KTo+')

ds ds n+1 ds

p d (Pl 0+POT1 )
(KTo+' )n+1 ds (poTo)'+~ ds

The entropy equation may be more convenient to use sometimes instead of Eq. (A4):

(A4)

PoTo
Gy+ vo
Gs

3 T1 P1, d+v1„1n
2 To po "ds

T3/2
0

Po
+(p&To+poT& ) —+vo ln

Bt Bs

T3/2
0

Po
(A5)

where @, represents the left hand side of Eq. (A4).

APPENDIX 8
—1

1/n

—2
1 —1/n

1
2 1 —1/n

0 0 0

0 1

1
1+2/n

1

0
7l

0
0 1

1 1

ng

(81)

—1 0 0

a2= 0 0
—1

1/n (82)

0 0 0

0 0 0

0 0

01+1/n
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0

CF1

1 —2/n

0

1
1 —1/n

6+5(n —p)
5(n +1)

1/n 2n —1 —1

2 —1/n 1 —1/n

0
0

0
0

0
0

0
0

(B3)

2 1+P
1 —2/n n 2 1 —1/n

1/n 04
2—1/n

0'5

1 —1/n

where the oj coefficients depend on the constants n, p
entering in the model of the energy transport law:

—2(17+15n —10p)
5n (n +1)

26+25n +Sp(1+2n)
5(1+n)n

1 —Sp+(1+n)(8+Sp)
5n (1+n)

04—n (10p+8)—3 (1—5p, )(1+2n)+
5n 5(1+n)

q3nF f 3 ~(2n —1)/n+. . .
2n —1

P ~q f3+pq, f1(2n +1)
+ 1/n+. . .

V3

APPENDIX D

6+5(n —p, } 1/„+
5(n +1)

(f3+pqi ) 2fi(1 —5p, )

n
1/n+ ~2/n. . .

5n

(C3)

4(Sp, +2) 3(1—5p, )

5n S(1+n)

1
1/n

bi = 0,0. . . ,0,—,b2= I0,0,0,0,0I,

2[6+5(n —p ) ] —2(1 —Sp, }
5n (1+n)

In order to impose on Eqs. (76)—(78) as a boundary
condition the fact that the solution has to be bounded at
q~ 00, it is crucial to know analytically the behavior of
its homogeneous solution for q~ ~. It is convenient in
order to get the equations in the standard form to make
the change of variable F=q' "F, and hence the homo-
geneous solution of Eqs. (76)—(78} verifies the following
fifth order di8'erential system:

APPENDIX C

P1 =q1—f, (2n +1)
rg1/++ o ~ ~

In this Appendix we give the solution of Eqs. (76)-(78)
near g =0+ and match the solution that is emerging from
region 2. Let w =tF,P, V, ilej, d(ge )/dilI, where

J 1y2y3y ~ ~ ~

q1n ~(2n —1)/n+
2n —1

where

1 0
0 00

nq

0 1
nYf

0

1

0
0

0

V, =q, g+g1/" +
f 1

(n+1)/n
1/n 9

n 2n
+ ~ ~ ~

7

P2 =q2—

(n +f, )
+(n —1)/n+

n —1

f2(2n +1)
~1/n+

n

V = —1+q g — f 2)(" ' "+(2n +1}
2 +1

f2 , / (1+f, )8,= ~""+ g+ .
n (n —1)(2n —1)

(C2)

1

n 'g
0 0 1— 1 1

n q n'g

We next expand in general A =g~'o" A .21
J and

V=+~:0 V 2) J. Let P be a nonsingular matrix that di-
agonalizes Ao (we are assuming the existence of five in-

dependent eigenvectors) and we make V=P.W and write
the above equation as

d Vif J = QO

=BW, where B=P'AP= g B~g—
j=0

%'e attempt a formal solution of the type
k = oo

W=vfexp(A, g) g Wki1
k=0
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and substituting into the above equation we formally ob-
tain

gnaw„q "+g(a k—)w„q ("-+"=yB,W„q (I-+")

k k j,k

(D 1)

and collecting terms

(8() A,I)—W()=0,

(aI —8, )(pIIo()+pIIIo(~)) =(8() A,I—)W, ,

and left hand multiplying by mz and co& gives

~0 (aI 8( ) (~I~O+~II~O )

o (aI —8() (~Iroo+pIIIoo ) 0

(D8)

Wo= pI~OI+AI~I satisfied (»» with 4 a d AI ~~~~g
arbitrary constants. For i =1 the following equation
must be satisfied:

(a i—+ l)W; (
— g BIWk =(8() AI)W, —, i )1,

k

(D3)

The homogeneous system in pi and pII has a difFerent
trivial solution if

[oIIO (aI 8, ).I—o()].[Ioo ( aI —8, ) Io() ]

(aI —8, )coo= (8()—A,I )W), (D4)

and left hand multiplying (D4) by coo gives the compati-
bility condition that determines a,

where I is the unit matrix.
As may be shown Ao has five linearly independent

eigenvectors and the five eigenvalues are +1 (double) and
0. Let po represent one such eigenvalue and let coo be the
corresponding eigenvector for 80.

For the eigenvalue go=0 (simple root), taking A, =)MO

and Wo=roo, we satisfy Eq. (D2), while for i =1 Eq. (D3)
becomes

—[coo (aI 8, ) co—o ] [Ioo (aI 8, ) co—o]=0 . (D10)

Equation (D10) gives us two solutions for a and, finally,
with (D9) we get a relation between pI and pII and hence
Eq. (D8) will determine W) except one component of it,
which is obtained in the following order i =2. The pro-
cedure is easily followed for i =3,4, . . . , and so on.

In the following we summarize the first terms of the
solution V as g~ ~. The calculations were performed
using a symbolic compiler as MATHEMATICA [32]:Modes
I—II: [go= —1, a=(3+v'5)/4n]:

oio.(aI 8, ).Ioo=O—; (D5)

then (D4) will give us W, except one component of it,
which is determined in the following order i =2:

[(a—1)I 8) ]W( 8—2roo=(—BO 'i(I)W2, — (D6)

and left hand multiplying (D6) by mo gives the compati-
bility condition that determines the unknown component
of W, :

(3++5)/(4n)e
( )exp —q

—2

n (1+&5)
2

n ( 1+&5)

+O(ri ')

coo [(a—1)I 8, ] W, Ioo 82 r—oo=O—, (D7)

and (D7) will determine W2 except one component of it,
which is determined in the following order i =3, and so
on.

This procedure must be modified at the first step if
there are double roots. Let po represent one such eigen-
value +1 or —1 and co~, coo its two independent eigen-
vectors of Bp for the double eigenvalue po. Obviously

Yl
(3—V 5)/(4n)

—2

n (1—3/5)
2

n (1—&5)

Mode III ()uo=O, a= —1/n):

+O(r) ')

—1/n

1

0
0 +q
0
0

0

—1

n

0

4+8/n +3/n
2n

—2(n +1)
n

0
0

1+n
n

+O(i) )
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Modes IV—V [)Mo= 1, a=(3++5)/4nj:
T

(3—V'5)!(4n)exp( g)
2

n (1 —&5)
2

n (1 —&5)

+O(g ')
7l

(3+v 5)/(4n)

—1

—1

2
n ( 1+3/5)

2
n (1+&5)

+O(g ')

The eigenvalues q/, fj were calculated up to O(rl ) terms in the IV —V modes. Such terms are not given here due to
the extension of the expressions. %'e point out that a correct determination of modes IV —V is crucial in order to im-
pose correctly the boundary conditions at g = ~.
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