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Normal approach to the linearized Fokker-Planck equation for the inverse-square force
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It is found that the customary approach to Fokker-Planck coefficients for the inverse-square force has
three defects. First, a small scattering angle cannot guarantee a small Taylor expansion argument.
Second, a cutoff' on the scattering angle did not fulfill Debye cutoff theory because it cannot exclude dis-
tant (weak) collisions with small relative velocity nor include close (effective) collisions with large rela-
tive velocity. Third, a singularity attributed to zero relative velocity had been overlooked. These defects
had been vaguely covered up by the artificial treatment of replacing a variable relative velocity in a
Coulomb logarithm by the constant thermal velocity. Therefore, the customary approach is question-
able because one cannot regard the replacement as some kind of "average" or "approximation. " In this

paper, the difference between small-angle scattering and small-momentum-transfer collisions of the
inverse-square force has been clarified. The probability function P(v, hv) for Maxwellian scatters is de-
rived by choosing velocity transfer Av, which is the true measure of collision strength, as an independent
variable. With the help of the probability function, Fokker-Planck coefficients can be obtained by the
normal original Fokker-Planck approach. The previous unproved treatment of the replacement of the
relative velocity is naturally avoided, and the completed linearized Fokker-Planck coefficients are gen-
erated as a uniform expression.

PACS number(s): 52.25.Dg, 05.40.+j, 51.10.+y, 02.50.Ga

I. INTRODUCTION expressed as the following infinite series [12,13,15]:

The original Fokker-Planck equation was derived from
the random motion model, in which a stochastic process
is described by a transition probability P(v, b,v), where
the velocity v and its transfer Av are independent vari-
ables [1—4]. The Fokker-Planck equation has also been
widely used to evaluate the collision term of the inverse-
square type of force. In stellar dynamics, Chandrasekhar
first discussed this theory for stochastic efI'ect of gravity
[5,6]. The applications of this equation to plasma physics
were first developed by Landau [7], by Spitzer [8], and
later by Rosenbluth, MacDonald, and Judd [9]. Al-
though the approach to Fokker-Planck coefFicients has
undergone some improvement from Landau to Rosen-
bluth, MacDonald, and Judd, their approaches, as well as
those of other authors [10—13], still deviated from the
original Fokker-Planck theory because the velocity incre-
ment Av was replaced by scattering angle 0 as a measure-
ment of collision strength. This aberration finally result-
ed in an unclear small-angle cutoff 0;„and a tough in-
tegration difficulty. The cutoff on scattering angle at 0;„
could not cut off' the distant (weak) collisions with very
small relative velocity; meanwhile, it unfairly excluded
the close (eff'ective) collisions with very large relative ve-
locity. The integration difficulty had to be artificially
treated by replacing varied relative velocity in the
Coulomb logarithm by the thermal velocity of field parti-
cles. Some authors have noted the defect [14]. However,
no sound justification has ever been given for this treat-
ment.

In principle, the completed Fokker-Planck equation is

( ")f
Bt )) ~ ) X' Bv

where (c}f/di)„i& is the time rate of the change of the dis-
tribution function f due to collisions, hv is the Xth or-
der dyadic of velocity increment for the test particle, and
the Fokker-Planck coefficients (Av ) should be calculat-
ed directly from the probability function P(v, hv) as fol-
lows [3,4]:

(b,v )= Jb,v P(v, b,v)db, v. (2)

However, the exact form of P(v, bv) has never been de-
rived even for the Maxwellian distribution f~(vF). All
of the previous authors alternately had to use the follow-
ing five-fold integral for the Fokker-Planck coefFicients
[3,4, 10]:

(bv ) = J Av fM(vF)gott sin0dOdydv~, (3)

where oz =(ZZFe /4msolt) /(4g sin 8/2) is the Ruth-
erford cross section, in which @=mme/(m + mF ) is the
reduced mass, 0 is the scattering angle in the center-of-
mass system, and y is the azimuthal angle around the rel-
ative velocity g =v —v~, in which v and vF, respectively,
are the velocity of test particle and field particle; Z and
ZF, respectively, are the charge number of the test and
field particle. The velocity increment had to be expressed
by field particle velocity and scattering angles, that is,
b,v=hv(vF, 9,y). By the customary approach of directly
calculating Eq. (3), the divergent difficulty for X (2 ap-
peared before Eq. (3) has been integrated over the field
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velocity vz. Therefore, the cutoff on the scattering angle
had to be introduced for the first twofold integral. In or-
der to facilitate the remained integral over the velocity
v~, all previous authors [5—13] had to replace the varied

g by a thermal velocity v,h in the Coulomb logarithm.
Rosenbluth, MacDonald, and Judd pointed out that such
treatment is made mainly because no better way could be
found [9]. Furthermore, the previous approach is
inefficient for calculating the higher order Fokker-Planck
coefficients (N )2) because the integrals over the scatter-
ing angles for every order of the coefficients have to be
done differently and repeatedly. The complex calculation
for the coefficients from %=3 [10] to %=4 [11]increases
quickly. To our knowledge no one has tried to calculate
the coefficients over X =5.

Based on the original physics consideration, this paper
presents another approach to the linearized Fokker-
Planck equation. It is found that the customary replace-
ment about the relative velocity g can be naturally avoid-
ed by keeping the momentum transfer mdiv as an in-
dependent variable. Consequently, the explicit form of
the probability function P(v, bv) can be obtained provid-
ed the distribution function of field particles is Maxwelli-
an. After variables transform from ( vz, 0, y ) to
(b,v, 0, @'), the integral over the scattering angle 0 and y',
the azimuthal angle around hv, can be exactly carried
out so that the cutoff on the scattering angle at 0;„is no
longer necessary. Then all the Fokker-Planck coefficients
can be derived from normal probability function P(v, b,v)
by the direct integral over b,v from Eq. (2). In other
words, this approach is actually the normal Fokker-
Planck approach. The Fokker-Planck collision operator
is generated to an exact expression of infinite series. The
Chandrasekher function [16] can be recovered from the
first and second terms of the general series.

The rest of the paper will be organized as follows. In
Sec. II, the different points between the scattering angle
and velocity increment are briefly clarified. Then, the
probability function is derived in Sec. III for Maxwellian
scatters. In Sec. IV, the completed Fokker-Planck
coefficients are calculated and expressed as a uniform ex-
pression by the normal approach. Finally, the conclusion
is addressed in Sec. V.

ever, the field particle's velocity vF can vary from zero to
infinity. Hence the relative velocity g also varies from
zero to infinity even if the test particle velocity v is a con-
stant. The magnitude of the velocity transfer bv, which
is proportional to g sin(0/2), cannot be determined by 0
alone because of the variation of g. Suppose a test parti-
cle with velocity v is impacted by many field particles
with different velocities vF. Based only on the magnitude
of the scattering angle 0, it is impossible to decide which
of these collisions belongs to ineffective (very distant) col-
lisions that should be cutoff and which are effective col-
lisions that should be included. In other words, the De-
bye cutoff could not be fulfilled by a cutoff at the scatter-
ing angle alone. The variation of the relative velocity or
the velocity of field particles should be taken into ac-
count.

The impact parameter b ~ 1/g tan(0/2), from which
the relation b ~ sin0/Av can be derived, is well known.
From these two relations, it is found that the cutoff on
scattering angle at 0;„cannot exclude the distant col-
lision events when g approaches 0, but a cutoff on veloci-
ty increment at Av;„can, regardless of the variation of
the relative velocity. Obviously, it is AU rather than 0
that determines the collision strength when relative ve-
locities are not constant. Therefore, a cutoff on the veloc-
ity increment at Av;„should be introduced instead of
the cutoff on scattering angle at 0;„.

It will be proved in this paper that the singularity point
of the Fokker-Planck integral exists at Au =0 rather than
0=0, and that a cutoff on g at g;„ is essential to make
the integral infinite. The usual 0;„cutoff is ineffective
because it fails to remove the singularity point. In fact,
the Fokker-Planck integral is still divergent after the 0;„
cutoff when g approaches O. The customary finite result
was obtained by replacing the varied g by the thermal ve-
locity U, h in the Coulomb logarithm. Therefore, the
divergent property at g =0 after the 0;„cutoff was
vaguely covered up.

III. DERIVATION OF PROBABILITY
FUNCTION FOR MAXWELLIAN SCATTERS

II. DIFFERENCE BETWEEN SCATTERING
ANGLE AND VELOCITY INCREMENT

In their treatment, the previous authors [5—13] were
limited by the misguided convention that collision event
of small- (large-) angle scattering is equivalent to a col-
lision event of small- (large-) momentum transfer, and
therefore to a weak (strong) or distant (close) collision
event. In the previous treatment, the velocity increment
Av was confused with and incorrectly replaced by the
scattering angle 0 when the collision strength was
defined. Such a replacement is valid only if g =

~

v vF ~

is-
constant. This is the case of Rutherford scattering for an
a particle, in which all a particles (test particles) have
same velocity, and the velocities of the target nucleus
(field particles) are almost zero. In plasma physics, how-

The difference between hv and 0 also manifests itself in
other aspects. In Fokker-Planck theory, Av was em-
ployed as an argument for Taylor expansion, which
correctly rejects hv as the real measurement of the col-
lision strength. It is clear from the relation
KU=(2JM/m)g sin(0/2) that 0 cannot replace b, v as the
argument for Taylor expansion, because small 0 cannot
ensure the argument Av small when g is quite large. The
original Fokker-Planck equation was derived on the ran-
dom motion model, in which a stochastic process is de-
scribed by a transition probability P(v, b,v). Naturally, it
is necessary to keep Av as an independent variable when
the normal approach is used to derive the linearized
Fokker-Planck equation for the case of inverse-square
force. In order to keep Av as an independent variable,
one can make the variables transform from (v+, 0,y) to
(b,v, 0,y') in Eq. (3) as follows:
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1 b,v Av . , 0vF =v+ —tv+tv X XE cosy'+ E sing' cot—F a 6v gE AuiE 2
(4)

and

y=arccos

0
Qv~jE+5u&E tan —cosy'

5v sin y'+ 5v~E tan —+b, u~~E cosy'
2

L

2 1/2

where a =2 p/m is the mass ratio constant; E is an arbi-
trary constant unit vector; lF. and llE, respectively,
denote the directions perpendicular and parallel to E; and
X represents the cross product.

Taking b,v, 8, and y' as independent variables, Eq. (3)
can be expressed as

g = (b, u /a )csc(8/2), (7)

proaches. Therefore, all Fokker-Planck coefficients can
be derived and expressed as a unified form, as will be
shown in Sec. IV.

With the help of Eqs. (4) and (5), the following rela-
tions for the variable transform can be obtained as

&(vF, y)(hv ) = f bv fM(vF)go+ sin(g)
a(~v, ~ ) uF=v + —(v.b,v)+2 2 2 EV

a a
csc20

2
Xd0dy'dAv (6)

Now the integral over the solid scattering angle becomes
independent of Av, so that it needs to be integrated just
once for all Fokker-Planck coefficients. It is notable that
this approach greatly simplifies the calculation pro-
cedure. As mentioned above, the previous approach re-
quired integrals over the scattering angle for euery order
of the coefficients. Obviously, the normal approach
developed in this paper is more concise than previous ap-

and

2 0——
l
v X bv

l
cot —sing',

a 2

d(vF y)
B(b v, y')

csc( 8/2)
(9)

Substitute Eqs. (7)—(9) into Eq. (6), and compare the re-
sult with Eq. (2); the probability function can be ex-
pressed as

P(v, hv) = co exp( —u —2u. us) g g g q„g
2m hu 0 2 2 2 0

exp u2&csc—2 cot——csc —dg "exp 2luXuslcot —sing' dy',
2

(10)

where u=v/u, h and us=tv/au, h, respectively, are di-
mensionless variables for v and hv, in which
u,h ="(/'2kT/mF is the thermal velocity of the field parti-
cle; m= VFu, hmb0 has the order of the close collision fre-
quency of a test particle; nF is the density of the field par-
ticle; and bo=(mF/2p, )ZZFe /4neokT is the classical
distance of closest approach (Landau length) [17]. Take
the integral over y' and the scattering angle 0; the proba-
bility function is obtained as

co exp( —u —2u-u&)
P(v, hv)=

m. ~ (av,„)'
I (n + l, u&)

X g 2 +5 J„(2luXusl)luxuzl",
n!u', +'

tegrals, it is clear that the integral over 0, which is the
same for all coefficients, is not divergent even for N &2
coefficients. Actually, Av is an independent parameter,
and Av&0 in the integral over 0, so that small-angle
scattering does not mean distant collision events, but
close collision events with very large g since b ~ sing/b, v

and g ~hu/sin(g/2). After integrating over the azimu-
thal angle y' and the scattering angle 0, the divergent
property of Eq. (3) for %(2 is still retained in the
simplified integral, which is similar to Eq. (2). The proba-
bility function Eq. (11) is one of the main results of this
paper. Many results, such as the collision frequency, can
be derived from the probability function [19,20].

IV. NORMAL APPROACH TO LINEARIZED
FOKKER-PLANCK EQUATION

where I (n + l,z) is the (n + 1)th order incomplete gam-
ma function, and J„ is the first kind of Bessel function
defined in Ref. [18]. It is not surprising that the integral
over scattering angle 0 is not divergent. Because
Fokker-Planck coefficients for N) 2 are convergent in-

Introducing (ei, equi, e&2) as an orthogonal triplet of unit
vectors with e~~

=v/v, then u& can be expressed as

Uz =0
P(l cl) + zE z& & cz& +0 z&2cJ 2

=u s(e~~ cosy+ ei, sing cosP+ eiz sing sing),
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in which y is the angle between us and u, and g is the az-
imuthal angle of u& around u. Here, ll and l2 and ~~, re-
spectively, denote the directions perpendicular and paral-
lel to v. Choosing a spherical coordinate system with u
as the Polar axis, we then have du&=us sinydltidydus.
Naturally, the Nth order term of coefficient (bv ) is
simplified by calculating the following threefold dimen-
sionless integral:

in which

p(u, us) = co exp( —2uu s cosy)

exp(u )

I (n + 1,us)
&& g 2 +5 J„(2uus siny)(uu& siny)" .

n=p nIQ

(15)

(g N) ( )N(uN)

where

( us ) = fp(ll, us)us li p silly d)tidy dug

(13)

(14)

After substituting Eq. (12) into Eq. (14) and using the in-
tegral formula Eq. (Al) which is derived in the Appendix,
the nonzero terms of the Nth order dyadic of ( us ) are as
follows:

( N —2(J+K) 2J 2K % J N N —2(J+K) ~ 2(J+K) s2Jq 2K')Qgg)ugg2 y
=

y up cos

2B(J+ 1/2 E+1/2) fp. (u u )u N+2 cosN
—2(J+K)y sl112(J+K)+

where B (x,y) is the beta function defined in Ref. [18]. Using the binomial theorem, one can obtain the expansion
J+K

N —2(J+K) . 2(J+K) o N —2(J+K) ~ ~i i 1)J+K—i 2(J+K —i)yJ+~ k

i=O
J+E'

=( —1) +K y C' ( —1)'cosN
i =0

(16)

Substituting Eqs. (15) and (17) into Eq. (16), and utilizing Eq. (A2), the integral over y can be carried out, and Eq. (16)
becomes

2(J+K) 2J 2K ~ 2coB(J+1/2, 1(. +1/2)
( —1) m exp(u )

I(n+l, us) J+K
x f dus X 2 N+3 X cJ+K( 1)

„=o 6|u~ i —o

N 2i —) +&(, . 'I—(3/2+L —i)(uu )
"

2 —N+2i Af —i 5

I (3/2 —M+i+l )I (5/2+n+l )

(18)

where L =[(N —1)/2] and M =[N/2], respectively, are the integer parts of (N —1)/2 and N/2. Let 1 =j—i, and
change the order of the summations and the argument of the integral; then Eq. (18) can be arranged as

i N —2(J+K) 2J 2K x ~B( + /2&+ +
y u

&II
u &~&u

( —1) m
J+E'

I"(3/2 —M+ ')

u "fI (n+ 1, u )u 'J "du
X( —1) +'exp( —u )u +

n!I (n +j i +5/2)— (19)

For N ~ 3, it is easy to find I. ~ 1 and then j ~ 1, so that
the integral in Eq. (19) is not divergent and can be calcu-
lated as

f I (n+1, us )us(J "dus =(n +j)!/j .

However, when N~2, one has I. =0 and then j =0 so
that the integral in Eq. (19) becomes divergent. It is clear

from the onefold integral of Eq. (19) that the singular
point exists at u&=0 rather than 8=0. Therefore, the
cutoff should be made at u&=u&;„. Because the cutoff is

not necessary to be introduced until the lastfold integral,
the usual unproved treatment of replacing g by U,h has
been naturally avoided. This cutoff at u &

=u &;„actually
implies a cutoff on relative velocity g. It is easy to result
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gmin thQ5min from Qg )Q6min with the help of the
relation us =(g /v, h)sin(8/2). This shows that the impli-
cit cutoff on the relative velocity at g =g;„ is necessary
and essential to make the divergent integral finite. Hence
a pure scattering angle cutoff at 8=0;„without g &g;„
cannot remove the singular point. When the small angle
8;„was misguidedly used as the cutoff parameter, the re-
placement of g by U,h was inevitable, and actually played
a role on cutoff at g;„. After the scattering angle cutoff
at 8=8,„, the singular point at g =0 [corresponding to
hv=ag sin(8/2)=0] is actually removed by a replace-
ment about the relative velocity. The cutoff on the small
screening angle happened to be "valid" for the special
case 8)8;„and g =v,„because it actually ensures the
cutofF at hv;„=av, ), sin(8;„/2). In order to include the
special case, the cutoff u&;„may be taken at

us;„=b,v;„/av, h
= 1/A,

where the Coulomb constant A =A,z /bo, and Debye
length AD='((/spkT/ne Z,s [9]. It is necessary to em-
phasize that there is no artificial limitation on relative ve-
locity g here. The integral in Eq. (19) for j=0 is there-
fore

,I ( n + 1, u s )u s du s =n!2 lnA .
A

(22)

Equations (20) and (22) can be merged as

J I (n +1,u s )u s'J "du s =(n +j)'+,
where ij(=1/j for j&0, and 4=2lnA for j=0. Substi-
tuting Eq. (23) into Eq. (19), one obtains

p(J+x)QJpirgcoB(J+ 1 /2, K+1 /2)
~ qadi+ ger ~

( —1)J+K

J+~ . N ' ' I (3/2+L i) C-J++ ~ I (3/2 —M+ ')

X( 1)N +i 2j N+2
( i) g n!r(n+J —i+5/2)

The summation of Eq. (24) with respect to n can be expressed as a finite form with the helP of the relation

d j " x"+J " x "(n +j)!
(25)

where (j) indicates the jth derivative with respect to x, and y*(i,x) is the analytic incomPlete gamma function de ned
as 6.5.29 in Ref. [18].

Then, from Eq. (13), the j(()'th order Fokker-Planck coefficient & hv & is finally obtained as

2(J+i(')

/JAN+&

8 (1 + 1 /2, % + 1 /2) ~; ~ ' I (3/2+L i) L
—
+jF u2J+K CJ+~ ~ r(3/2 ~+ )

M —i Ni jJ
(26)

where the function FN; (x) is defined as

1)N+iy (a )Nx j N/2+1—
F, () ()(u )= —4coav, „lnAG(u ),
Fi i p(u ) = —2coa v,h inAN(u ) /u,

(29b)

(29c)

Xe '[x Je "y "(3/2 —i+j,x )]'j' . (27)

Equations (26) and (27) can recover all the previous re-
sults [3,4, 11,12] for the Fokker-Planek eoeffieients with
Maxwellian scatters. For example, when %=1 and 2,
the usual form of the first two-order Fokker-Planck
coefficient ean be obtained from Eqs. (26) and (27) as

&Evii & Fi pp(u )

&6vii &=Fzpp(u )/2+F2 p i(u )

&Evii &=&kvi2 &
= [F2 pp(u )/2+F2 p i(u )

+F2, (,p(u )]/2,

(28b)

(28c)

F„,(u') = —av,„F,„(u')/u, (29a)

&~ '&=(& '„&+&&,' &+&i( '„&= F, ( ) . —

(28d)
It is not difficult to verify that

where C)(u) is the error function, and G(u) is the Chan-
drasekhar function [16]. After substituting Eqs.
(29a) —(29c) into Eqs. (28a) —(28d), the friction and
diffusion coefficients are found to be in agreement with
the usual results in Refs. [3,4]. The nondominant part
(j&0) of the second order Fokker-Planck coefficient,
F2 p i ( u ), is also in agreement with the result in Refs.
[10,11].

V. CONCI, USIQN

In summary, the correct physical concept of collision
strength has been clari6ed, and the normal approach to
the linearized Fokker-Planck equation has been
developed based on this correct concept. The difference
between the small-angle scattering and small-momentum
transfer collisions for the inverse-square force has been
elaborated. From the viewpoint of physics, the collision
strength is determined by momentum transfer m Au rath-
er than scattering angle 8 when g is not a constant. The
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customary cutoff at 0;„can neither exclude the distant
(weak) collision events with large 8 and small g, nor in-
clude the close (strong) collision events with small 8 and
large g. However, the cutoff at Au;„cannot only ex-
clude such distant (weak) collisions, but also include such
close (strong) collisions. Furthermore, the cutoff at b, u

is even better than the cutoff on the impact parameter at
b „in a sense, because the cutoff at Au;„actually im-
plies a cutoff on g at g;„. For example, even if the im-
pact parameter b =0, two ions cannot get closer than the
Debye length if their g is smaller than g;„. Such distant
collisions with small b, which cannot be excluded by the
cutoff at b „,should be excluded according to the Debye
shielding theory, and really can be excluded by the cutoff
at Au;„. From the viewpoint of mathematics, the singu-
larity point of the Fokker-Planck integral exists at hu =0
rather than at 0=0. Therefore, the cutoff at 0;„cannot
remove the singularity point of the Fokker-Planck in-
tegral at all, because the cutoff should be made on the ve-
locity increment at Au;„. It is demonstrated that the im-
plicit cutoff on g at g;„ is necessary and essential to
Au;„. After the cutoff on the scattering angle at 0;„
was misguidedly used, the integral was still divergent at
g =0. Therefore, the replacement of g by u, h was inevit-
able, and actually played a role of cutoff on g. It actually
transferred the divergent integral into the finite one by
change. Obviously, the previous approach is question-
able, since one cannot regard such a replacement as some
kind of "average" [4] or "approximation" [14].

The probability function P(v, b, v) for Maxwellian
scatters has been obtained based on the original physical
concept of collision strength. The customary replace-
ment of g by thermal velocity u, h is naturally avoided.
The derivation of Fokker-Planck coefficients is greatly
simplified with the help of the probability function, since
it is no longer necessary to integrate repeatedly over the
solid angle for euery order of the coefficients. Finally, the
completed Fokker-Planck coefficients have been ex-
pressed in a uniform expression as Eqs. (26) and (27).
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fessor Bingren Shi, and Professor Maoquan Wang for
their interest and discussion. We would particularly like
to thank Academician Yuping Huo for his constant en-
couragement.

APPENDIX

f 7T

exp( —a cosy)J„(a siny)sin"+'ycos ydy
0

& —
~ &m.CM I (3/2+L)(a/2)"+ '

~2 i ~ I (3/2 —M+l)I (5/2+n+l)
(A2)

where J„ is the first kind of Bessel function, and I is the
Gamma function; and M and L are the integer parts of
X/2 and (X —1)/2, respectively.

Consider (4.3.127) and (6.2.1) in Ref. [18]; there is no
difficult to verify Eq. (Al).

We define the integral on the left hand side of Eq. (A2)
as a function S(X,n, a). When %=2M, the magnitude of
the integral does not change if the exponential function
exp( —a cosy) is changed into a hyperbolic function
2cosh(a cosy); meanwhile the upper limit ~ is changed
into vr/2. Thus one has

~/2
S(2M, n, a)=2 f cosh(a cosy)J„(a siny)

0

Xsin"+'icos ydy . (A3)

By expanding the hyperbolic cosine function
cosh(a cosy) (Ref. [18], 4.5.63), and using the integral
formula (Ref. [18], 11.4.11), the integral over y is found
to be

I (m +M +1/2)2
S(2M, n, a)= g M +,~2 J„+M+~+,~2(a) .

(2m )!(a/2)
(A4)

After expanding Bessel function J„+M+ +,&z(a) (Ref.
[18],9.1.10), we obtain

(
—1)il (m +M+1/2)2S 2M, n, a =

0 I (n +m +M +j +3/2)(2m )!j!
n +2(m +j)

X
2

(A5)

( —1)JI (k —j+M+ 1/2)
j!(k—j)!I(k —j+1/2)

When N =2M + 1, Eq. (1) can similarly be changed into
m/2S (2M + 1,n, a) =2f sinh(a cosy)J„(a siny)

0

Reorder the summation of Eq. (A5) by the transform
k =m+j as

+~(a /2)n +2k

I"(n +k +M+3/2)

Xsin"+ y cos g dg . (A7)

In deriving Fokker-Planck coefficients, we encounter
two integrals

f sin g cos"g d g
0

82(J I+/ K21+/ )2when m =2J, n =2'
0 otherwise

Expanding the hyperbolic sine function sinh(a cosy) and
repeating the procedure from Eq. (A3) to Eq. (A6), one
finds

S(2M + l, n, a)

a " &vr(a /2)"
2 „o I (n +k+M+5/2)

where B (J+ I/2, K+ 1/2) is the beta function, and

(Al) ( —1)JI (k —j+M+3/2)
j!(k—j)!I(k —j+3/2) (A8)



S3 NORMAL APPROACH TO THE LINEARIZED FOKKER-PLANCK. . .

Equations (A6) and (AS) can be combined as

S(N, n, a)=
o'

&m(a/2)"+ " "
(
—1)jr(k —j+M+o+1/2)

0 I (n +k+M+cr+3/2) . o j!(k—j)!I(k —j+cr+1/2) (A9)

where M is the integer part of N/2; cr = 1 when N is odd; and cr =0 when N is even.
We define the function h (N, i ) by the generating fraction

I (k —j+M+cr+1/2) . (k —j)!
h N, i

I (k —j+a+1/2), . o
' (k —j i)!—

On one hand, the left hand side of Eq. (A10) is the coefBcient of the Mth derivative of the function x"
namely

k j+.v+——i /z (~) I ( k —J™~o.~ 1 /2 )
X Xr(k —j+o.+1/2)

On the other hand, the Mth derivative of the function x + + ' can be calculated as

M
k —j+M+o —1 2/)(M) (

M+o' —i/2 k —j)(M( ~ Ci (
M+o —I/2)(M —i)( k —j)(i)X

i =0

(Al 1)

M

Comparing Eq. (A12) with Eq. (Al 1), one can obtain

I (M+cr+1/2) (k —j)! k j+ 1/2

I (o +i+1/2) (k —j i)!— (A12)

1 ( k —j +M +o. + 1/2 )

I (k —j+cr+ 1/2)

M

i=0
I (M+o + 1/2) (k —j)!
I (o.+i+1/2) (k —j i)!— (A13)

One result of the expression of h (N, i) defined by Eq. (A10) from Eq. (A13) is

C~r(M+o. +1/2)
I (o+i+1/2)

With the help of Eqs. (A10) and (A14), the summation about j in Eq. (A9) can be derived as

(A14)

( —1)jl (k —j+M+cr+1/2)
j j!(k—j)!r(k —j+ cr + 1/2)

=g h
i=0

M

k —i

(N, i) g
o J! k l

k —i

(N, i)
' j=O

(
—1)'(k —i )!

j!(k i —j)!—

= g h (N, i)5k;
i=0
~ C' r(M+o+I/2)

r(o+ i+ I /2)i=0

where 6k,. = 1 if k =i, and 5k, =0 if kWi Substituti. ng Eq. (A15) into Eq. (A9), one obtains

M &rrc~r(M+o. +1/2)(a/2)"+ '

2,. I (o+i+1/2)I (n +i +M+o +3/2)

(A15)

(A16)

(A17)

Let i = I L; with the help of the re—lation L +M =N —1, Eq. (A17) becomes

~- i &~C'-'r(3/2+I. )(a /2)"+"Z,~, r(3/2 —M+i)r(5/2+ +ni)

It is easily verified that M+o. =L + 1 if we recall that M and L are the integer parts of N/2 and (N —1)l2, respective-
ly. Then Eq. (A16) becomes

&vrcj(r 1 (L +3/2)(a /2)"

o I (L —M+i +3/2)1"(n +i +L +5/2)

Finally, from Eq. (A18) we get Eq. (A2).



YONGBIN CHANG AND DING LI 53

[1]A. D. Fokker, Ann. Phys. (Leipzig) 43, 812 (1914).
[2] M. Planck, Preuss. Akad. Wiss. Phys. Math. K1, 324

(1916).
[3] L. C. Woods, Principles of Magnetoplasma Dynamics

(Clarendon, Oxford, 1987), Chap. 3.
[4] D. C. Montgomery and D. A. Tidman, Plasma Kinetic

Theory (McGraw-Hill, New York, 1964), Chap. 2.
[5] S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
[6] S. Chandrasekhar, Astrophys. J. 97, 255 (1943).
[7] L. D. Landau, J. Phys. J. Exp. Phys. 7, 203 (1937).
[8] L. Spitzer, Physics of Fully Ionized Gases (Interscience,

New York, 1962), Chap. 5.
[9] M. N. Rosenbluth, W. MacDonald, and D. Judd, Phys.

Rev. 107, 1 (1957).
[10] Chi-Kang Li and Richard D. Petrasso, Phys. Rev. Lett 70,

3063 (1993).
[11]E. C. Shoub, Phys. Fluids 30, 1340 (1987).
[12]J. Hubbard, 1961 Proc. R. Soc. London Ser. A 260, 114

(1961).

[13]J. Hubbard, 1962 Proc. R. Soc. London Ser. A 261, 371
(1962).

[14] G. E. Cooper and P. T. Herman, Phys. Fluids 16, 118
(1973).

[15]H. Risken, The Fokker Plan-ck Equation (Springer-Verlag,
Berlin, 1984).

[16]F. L. Hinton, in Handbook ofPlasma Physics, edited by A.
A. Galeev and R. N. Sudan (McGraw-Hill, New York,
1983), Vol. 1, Chap. 1.5, p. 147.

[17]D. R. Nicholson, Introduction to Plasma Theory (Wiley,
New York, 1983), p. 11.

[18]M. Abramowitz and I. A. Stegun, Handbook ofMathemat
ical Function with Formulas, Graphs, and Mathematical
Tables (U.S. Government Printing Office, Washington,
DC, 1966).

[19]Y. B. Chang, Phys. Fluids B 4, 313 (1992).
[20] Y. B. Chang, Y. P. Huo, and G. Y. Yu, Phys. Fluids B 4,

3621 (1992).


