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Classification of time series with hidden Markov models:
Unsupervised learning and self-organization
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Unsupervised learning and feature recognition with hidden Markov models (HMM s) is investi-
gated. The well-known Baum-Welch algorithm is utilized to tune the free parameters of the HMM.
The local state probability distribution of the model controls the recognition. For a simple problem
we show analytically the self-organization of a feature detector. In a numerical simulation we present
a detector for two-dimensional textures that perceives, recognizes, and restores disturbed textures.

PACS number(s): 87.10.+e, 02.50.Ga, 42.30.Sy

I. INTRODUCTION

A general problem in analyzing complex data is the
detection of significant structures (features). The possi-
bility of parsing a given data sample into such features
provides an efFective reduction of the data preserving the
relevant information, and hence is a big step forward for
the understanding of a code or an underlying process.

In many applications, the segmentation of the data into
units with difFerent features is known a priori. In this
case, ciassifiers can be trained by (supervised) learning
from examples. For complex time series, such as, e.g. , in
speech recognition [1—3], for measurements of ion channel
currents [4], for neuronal [5—8], medical [9], and molecular
biological [10,11] applications, or for the analysis of DNA
sequences [12], hidden Markov models were applied as
maximal likelihood classifiers [13].

Supervised learning is no longer applicable if the
"meaning" of each particular time series in the train-
ing set is unknown. In a self-organizing way, one has
to detect significant structures which are appropriate to
subdivide the training set into subsets with equal struc-
ture. Tools appropriate for such problems are vector-
quantization (VQ) methods [14]. VQ methods exhibit a
competition among classi6ers, e.g. , the winner take all"
learning in Kohonen networks [15]: the adaptation of a
classifier (perceptron) to a new piece of data is weighted
with the actual distance. For data with few degrees
of freedom those vector quantization methods were ap-
plied very successfully. With increasing dimensionality
(e.g. , long time series) and for a continuous signal source
(unsegmented data), the application of VQ methods be-
comes more dificult. Recently, hidden Markov models
(HMM's) were used to detect different modes of neuronal
activity [8].

We investigate unsupervised feature detection with
hidden Markov models. This approach remains appli-
cable for high dimensional data, for an unknown number
of features, and for unsegmented data.

In Sec. II we brieBy review the principles of HMM's.
Subsequently, in Sec. III we show analytically the self-

organization of a HMM to a feature detector. Here the
data are divided into segments containing only one fea-
ture and the structure of the HMM is given a priori.
Subsequently, in Sec. IV we show in a numerical simula-
tion the emergence of domains of states in a HMM that
represent di8'erent features in the unsegmented training
data.

II. BASICS OF HIDDEN MARKOV MODELS

A hidden Markov model is an abstract object consist-
ing of a given number of states z;, i = 1, . . . , N, and
transitions between these states. Transitions occur with
probabilities a;~, i.e., a;~ is the conditional probability
p(j ] i) for making a transition to state zs, if the system
is in state z;. The a;~ have the property P. i a;s = 1 for

g
—j

all i, which means that some transition occurs with prob-
ability 1. Therefore they can be considered as elements
of a stochastic matrix A, the transition matrix.

So far this de6nes a simple Markov process because
the probability for the next state zz depends only on the
current state z;. Hidden Markov models are character-
ized by the additional ingredient that on every transition
z, ~ zs one defines a probability distribution a,s(y) for
emitting a symbol y of some alphabet O. Some symbol is
generated with certainty on every state z; which means
that P& & P& &a;s(y) = 1 for every i. The meaning of
the symbols depends on the actual application. This ex-
plains why HMM's are often called probabilistic functions
of Markov processes.

In order to generate symbol sequences with such mod-
els one also has to specify an initial probability distri-
bution vr = (7rio, . . . , vr~o) over the states z;. A sym-
bol sequence of length T, o 0. . . .0 with o g O, t =
1, . . . , T, is generated as follows. One randomly selects an
initial state according to the distribution ~, e.g. , state
z; with probability vr,- . Then. , one emits a symbol o and
jumps to another state, say zs with probability , a( rs)c.i
Subsequently one emits another symbol 0 and jumps
to another state zi, with probability as', (cr2), and so on.
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The probability p(cri . .o+) for generating a sequence
~ o. is obtained by summing the probabilities &om

all paths through the automaton which are compatible
with this sequence. It can be calculated as

p(cr'. . tr~) =7r A(o') A(cr2) . A(i7 ') A(~r )t) (1)

A = (vr, (A(y) j) . (2)

In view of (1) and (2) one can identify a given HMM
also with a parametrized probability distribution over all
symbol sequences 0 0 . . o of arbitrary length T. In
Sec. IV we also consider HMM's with input [16—18]. In
these models the transition matrices A(y) are replaced
by input-dependent matrices A(y~z), with z being some
symbol of an input alphabet.

In general it is a hard problem to Gnd those model
parameters that reflect most accurately the probabil-
ity distribution of a given set of symbol sequences. A
powerful optimization method is the recursive reestima-
tion of the model parameters by their expectation values
(with respect to the given data), starting with some first-
guess initialization. This procedure is called the Baum-
Welch algorithm in the literature. This algorithm guar-
antees a stepwise decrease of the Kullback-I. eibler dis-
tance between the probability distributions over symbol
sequences of the data and the model.

III. UNSUPERVISED LEARNINC

where we introduced the matrices A(o), tT g 0, with
elements a;~ (cr). The multiplication with the vector
1) = (1, 1, . . . , 1) provides a summation over all states,
which means that the system is allowed to be in any of
the N states z~ while it emits the last symbol o . In the
speech recognition literature the evaluation of expression
(1) is called the forward-backward algorithm, which re-
flects that the product can be calculated iteratively from
left to right (forward) or from right to left (backward).

To summarize, a hidden Markov model is defined by
a set of parameters which includes the initial probability
distribution vr and the set of transition matrices A(y)
with y from the alphabet O. These parameters are con-
veniently collected in one vector denoted A, that is,

o ~ - P(&) o„o,-
P(o.iM)

Here vr, and a;~(y) [respectively the vector pro and the
matrices A(y)] are the parameters of the HMM. They
are the probability to start in state z, and the compound
probability for the generation of symbol y during a tran-
sition &om state z; to z~, respectively. The new estimates
of the parameters are indicated by an overbar. The vector
quantities m ' and g ' are the forward-backward prob-
abilities:

A(o ), (4)

~ 4 h

7 =t+1
A(~ ) q, q= (1, ..., 1).

p(o ~M) is the probability for the HMM M to generate
the sequence of symbols 0 [i.e., p(o~M) = vr t) Vt].

Consider now a probability distribution of binary se-
quences that can (in principle) be obtained from the fol-
lowing coin-tossing procedure. From an urn containing
K diferent sorts K, of coins choose one and perform N
subsequent tosses. If the number of coins of sort v in the
urn is n„and the probability to obtain "0" by tossing the
coin is q(") (1 —q(") to obtain "1")then P(o)is given b'y

P(~) = ).&(K)P'"'(~) (6)

with

[q(")b o + (1 —q("))h 1]
~ 4 1

t=l

With g(o) being the fraction of symbols y = 0 in cr, one
can write

K

P( ) ) q( ) (
(rc)

)
Ng(cr) (1 (~) )N[1—g(o)j

The Baum-Welch algorithm for the reestimation of the
parameters of a HMM implies a competition among pos-
sible paths through the state graph of the HMM to be-
come most probable with respect to the training data.
This can be motivated by plausibility arguments [17].

The Baum-Welch reestimation formulas for probability
distributions P(tr) of symbol strings 0 can be derived in
a straightforward manner from those for single symbol
strings [2,1,18]. For any such distribution the Baum-
Welch reestimation formulas are given by

P(g) = ).&(&)P'"'(g)

()(g)~~(q())&@(1q(K))lv(1 —g)

&~g) (8)

These local maxima correspond to the diferent features
in the sequences generated by this process.

Data distributed according to P(o) serve to train a
HMM. We consider HMM's consisting of isolated states,
i.e. , transitions between difFerent states z; ~ zz are for-
bidden. The transition matrices are diagonal in this case.

Note that the probability P(g) to observe a sequence with
g(0) = g becomes locally maximal for values of g = q("):
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~v(~) =
( aii

1 —a'

forint j
for y=0
for+=1 for i= j.~ ~

With the substitution

p'[Q(~)]"='o,' '(1 —a")' "'.
The probability p(0 lM) for such a HMM M to generate
0 is given by

p(0 lM) = p[Q(o)lM] = ) m-, [a,, (1 —a,;)(I ~( ))]N.

one gets

p(~IM) =) ~;p'[«~)]"

(io)
Using (12) and the relation vr,

' u;; (0 ~)I), '

m, p, [Q(o')] we get for the Baum-Welch formulas

o"(&) =

P(0)) . . . ) vr,.
' a,;(y)g,. ' h ay

) P (+) ) 4 I cr t—I cr-
- p(olM)

)-P(.),'P. [Q( )]" )-,
)-p( ),'P'[Q( )1" )- . ) '-p [Q( )]"

) . ,'P. [Q(~)1"

(14)

y=0
a;,. = ) -P( )

~,'P'[Q(~)]"
( )

)-p( ),'P*[Q( )] . ):;p,[Q( )]

) .~,'pj[Q(~)]

aii =
K N 0 N) ).q(-)P(-)(.) """

~=1 Ng=O ) +j Pj (Q)

K N

pro=) ) Q(~)P" ( )
' ' . (18)

~=1 Ng=0 ) 0
( )N

2

In the limit of sequences of infinite length the distribution
P(Q) is given by

aIld

Vr,Op; [Q(O)]N

E~;pj [Q(~)]"

The terms in the sums over sequences o only depend on
Q(0). One can write

K N 0 N) ) &( )P'"'( )
v=1 Ng=O ) +jpj(Q)

0
( (~))N

N +oo -) ~0p. (~(~))N

0
( )N

N-+oo ) ~Op. (Q)N

O (Q
—Q(;;,)) —e (Q

—Q(;;+,))
1+)

jest

(22)

with j(; z) being the solution of the equation

p'«(". ))
pj(Q(', j))

After rearranging the states of the model such that a11 &

a2q &, the quotients in (20) and (21) can be expressed
in terms of the Heaviside step function O(x):

K
liII1 P(Q) = ) q(K)h(Q —q(" ),

m=1

and hence the reestimation formulas become

lim a,; =
0

( (~))N).q( ) 0
( (~))N

(2o)

The quantities Q(0,1) and g(!zeal IMM I+1) are de6ned as O

and 1, respectively. The sum g &, h .. ., in (22) is the

degree of degeneracy deg(i) of state z; in the HMM.
For every i there exists a subinterval I(i)

]Q(, , 1), Q(, ,+1)[ g [0, 1], iII which the»ght-hand»de
of (22) is nonzero. In other words, the probability p;(Q)
dominates all other probabilities pj's;(Q) If Q Is chosen
from I(i). Inserting (22) into (20) and (21), one gets



53 CLASSIFICATION OF TIME SERIES WITH HIDDEN MARKOV. . . 3985

aii =
).q'")Q( ) () (q'"' —()(;,;-w) —0 (q'"' —g(', '+i)

) Q(") o (q'"' —0('", - )) —0 (~'"' —g(*,'+n
(24)

—07r-
1 + deg(i) ).Q(") 0(q'"' —g(, -~)) —0(q'"' —('(", +~)) . (25)

From Eqs. (24) one obtains the transition probabilities a;; by calculating the average over all q
" E I(i) weighted

with the a priori probability Q(e) for coin e. According to (25), the initial probabilities vr, for nondegenerate states
are given by the sum of all a priori probabilities Q(e) of coins e, for which q( l is an element of I(i).

If there is none of the q("l within the interval I(i), (24) is no longer valid and one must utilize Eq. (20). It is
convenient to write (20) in the form

aii
1

) ' - 1+) (~,'p. (q'"')"/~,'p'(q'"') "1
1+) .[~,'&2(q'"') /~'&'(q'"') ]

(26)

1
- max[~'& («"l)"/~'& («"l)"]g

max[sr p, (q("l) /n. ,p;(q~"~)~]

(27)

(28)

The index j*(r) g i determines the interval I(j*) in which q("l resides. ~ith K = arg max [~~op (q(~))~/
m~. pz. (q("l) ), one can write

a;i
N woo

~Op (q~„)N ~Op (q~„)N
~0 p. ~ (q~„)N ~0 p, , (qrc~)N0

Hence, in the limit of sequences of in6nite length, the Baum-Welch reestimation formulas for the "new" parameters
can be written in compact form as

ai;=4
if 2e such that q("l C I(i)

else,

' ) ~(")Q(~) (0 q'"' —((;;—.) —o- q'"' —0(;,;+i)

Q(+) ( q ()( 1) q ()( ,
''+. ' 1—)'

arg max p& %~

( (~))

(30)

—07r.z 1 + deg(i)
. ) Q(~) 0 q'"' —((;,;—1)) 0(Q (,*'+(1)) (31)

using step functions and the maximal-argument func-
tion, whose arguments g&;;~~l and p;(q("l), depend on
the "old" parameters according to (23) and (11), respec-
tively.

From (30) it is evident that the values of the reesti-
mated parameters aii are identical to a particular q&"& or
to the average over some of the q&"~. Furthermore, after
the convergence of the iteration (which is always guar-
anteed [1]), each interval I(i) contains at least one q("&.
Each of the states z; thus has learned (without any su-
pervision) one feature of the distribution P(o), i.e. , the
"tossing statistic" of a particular coin, or at least a mix-

I

ture of such features.
Additionally, if the number of states is known to be

equal to the number K of different features, and if the
resulting HMM is nondegenerate (the degree of degen-
eracy depends on the initialization of the HMM), every
feature is represented by one state of the HMM and its
a priori probability is equal to the initial probability of
this state. Such a HMM is an optimal model of the pro-
cess.

A given sequence can easily be classi6ed by calculating
the actual state distribution II(t) of the HMM, i.e., the
vector of probabilities to be in one of the states zi at time
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t given the sequence a. II(t) can be expressed in terms
of the forward-backward probabilities:

(32)

For isolated states, the actual state distribution does not
explicitly depend on t. In this case, the maximal com-
ponent of II is equal to the probability of the most likely
path. The index of this component also determines the
most likely state to generate o and thus can be utilized
to classify the feature.

IV. TEXTURE RECGCNITIDN %KITH HMMS

In the last section we showed the ability of HMM's to
learn the features of a mixture of Bernoulli processes. To
show that unsupervised learning with HMM's is possible
even for more complex data, we applied HMM's to a
texture recognition task.

In our numerical simulation, we used a square-shaped
region of 100x100 pixels. The pixels are colored black
and white. There are two domains of different textures.
Within a circle around the center, the texture consists
of alternating black and white vertical stripes. In the
outer region, there is a checkerboard texture. These tex-
tures are additionally perturbed by independently chang-
ing the color of each pixel with a probability of p =0.3
(Fig. 1).

We generated training data for the HMM by the fol-
lowing procedure. Starting at an arbitrary pixel, we per-
formed random walks (each 10000 steps, imposing pe-
riodic boundaries) through the textured region. With
equal probability a step to the right or downwards is
chosen and the color of the actual square is stored with
binary coding for direction and color (0=down, 1=right
and 0=black, 1=white, respectively), we get pairs of se-
quences determining the path and the color of the pix-
els along the path. Using the Baum-Welch algorithm,
we trained an input-dependent HMM [16—18] with these
pairs of sequences, where the movement direction is the
input and the actual color is the output of the HMM.

The resulting HMM exhibits a structure that mirrors
the nature of the data. Figure 2 shows the transition
probabilities of the HMM for all combinations of input
and output. There are two pairs of states (zi, z4) and (z2,

FIG. l. Unperturbed texture in a square of 100x 100 pixels
(left) and perturbed texture (right), where each pixel was
Hipped with a probability p = 0.3.

zs), between which state transitions have very low prob-
ability, whereas the probabilities of transitions between
the states of one pair are orders of magnitude higher.
The pair (zi, z4) describes the situation within the (dis-
turbed) checkerboard texture: for every movement direc-
tion (input), the state of the HMM alters between zi and
z4. The color (output) also alternates, but with a prob-
ability of 0.3 (small arrow) a wrong" color is detected.
The other pair (z2, zs) corresponds to the striped texture:
for a horizontal movement, the relations are similar, but
for a step down, the HMM remains in its actual state (z2
ol z3) . While moving vertically, one of the colors is de-
tected with higher probability than the other ("wrong")
color.

The trained HMM can now be used to detect the do-
mains of the diA'erent textures. This can be done by per-
forming a new walk (random or not) through the region.
For a given trajectory and sequence of detected colors,
one has to calculate the actual state distribution II(t) for
every step, given by (32). The components of this distri-
bution can be utilized to recognize the textures (or the
relative position within a texture) along the trajectory.
To visualize the result of the recognition, we used a color
code of the state distribution (Fig. 3). A pure color (red,
blue, green, or yellow) corresponds to the probability 1
to be in one particular state. A high color saturation
thus indicates a distribution with little entropy, i.e., a
relative position within a texture is recognized with high
accuracy. On the other hand, a gray color corresponds to
high entropy and hence indicates ambiguity of the recog-
nition. In Fig. 3 the difFerent texture domains can now
easily be distinguished by their colors. Note that, in con-
trast to our analytical example, no information about the
number of features in the data was assumed.

V. CONCI. USI(3N

For a long time hidden Markov models have been used
very successfully as classifiers for complex signals. The
adjustment of the model parameters typically has to be
performed by supervised learning from examples.

Motivated by the competitive nature of the Baum-
Welch algorithm, we investigated the applicability of
HMM's to unsupervised learning. For a HMM initialized
with isolated states, we have shown analytically that the
states adapt to di8'erent features in the training data.

In a numerical experiment, we successfully applied a
HMM to texture detection and recognition in a noisy
image: the diferent texture domains were identified cor-
rectly and the original image could be restored. All nu-
merical algorithms we used were derived from standard
tools. We used arbitrarily initialized HMM's and ob-
served the emergence of a topology of weakly connected
subsets of states (submodels) with strong interconnec-
tions. Those submodels represent the diferent features
in the data. Features can be recognized by calculating the
local state probability distribution for the trained HMM.

We propose unsupervised hidden Markov learning as
an alternative to neural networks approaches and other
vector-quantization methods.
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FIG. 2. The hidden Markov model after
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dicates the transition probabilities between
states for the different combinations of input
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z3 ) have only small probabilities.
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