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A second order approximation for studying the thermodynamics of the learning process in neural networks

is proposed. Particular attention is paid to noise effects. We show that the inclusion of pair interactions between

replicas considerably improves upon the well-known first-order approach.
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I. INTRODUCTION II. THE REPLICA METHOD

The replica trick (RT) of statistical mechanics has become
a very useful tool for the investigation of complex systems in

general and, in particular, for studying learning and generali-
zation processes in neural networks (NN) [1,2]. The trick
overcomes the difficulty of performing an ensemble average
of the logarithm of the partition function Z by that of aver-

aging Z over n replicas of the original network, with n a very
large integer. For feedforward, single layered NN [3,4] the
RT ansatz has been proved to be a valuable tool for the
learning of a rule on the basis of a suitable set of examples.
In particular, the full quenched theory has been carefully
studied within the framework of a replica symmetry approxi-
mation [5]. However, as the temperature drops, symmetry
breakings may invalidate this approximation, so that an ap-
proach to the full quenched theory that incorporates disorder
effects due to "improper" examples may be of some interest.
In the present effort we wish to study, in the spirit of a
second-order approximation, noise effects in the training set,
unavoidable in any realistic setting. The noise will here be
the result of letting just part of the examples to be produced
by the perceptron teacher (PT). The rest are to be randomly
selected ("bad" examples).

Two types of situations are to be confronted: learnable
and unlearnable rules [6]. For the former, there is at least a
vector in the concomitant weight space that can learn the rule
in an exact fashion. The latter arises mostly in cases of ar-

chitectural mismatch. In such a situation the training error .

can never vanish. The question to be answered is, can a
perceptron trained under these circumstances correctly re-

spond to queries posed by a PT? In other words, is the rule
underlying the "good" examples a learnable one? We will
show here that these questions can be adequately dealt with.

The paper is organized as follows. Section II is devoted to
a brief recapitulation of basic concepts concerning the RT,
while Sec. III deals with the thermodynamics of the situation
that interests us here. A second order, high temperature ap-
proximation is derived. Boolean perceptrons with Ising
weights on the learning curves are the subject of Sec. IV.
Finally, some conclusions are drawn in Sec. V.
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Consider learning by a single-layered perceptron [3,4]
within a statistical mechanics environment [7—9]. Our NN
has N input units S; connected to a single output unit o,
whose state is given by

/

o =g W.S
)

where g(x) is the transfer function. For each set W
of weights, the NN maps S onto o.. Learning is said
to take place whenever the W; are so chosen that o.

closely approaches the desired, correct map o.o(S)
= g[(1/+N)Wo S]. Within the supervised learning scheme
[10]one reaches this goal by recourse to a cost function that
is constructed on the basis of P examples

(S', t'/, l = 1, . . . , P (2)

Here we assume that a subset of P] examples are of a
PT-generated character, so that t'= o.o(S'), with
l=1, . . . , P], while the remaining P2=P —P] outputs t' are
of a random nature. Both the random inputs S' and the ran-
dom outputs t are themselves randomly selected according
to probabilities D(S) and D(t), respectively, from the input
and output spaces.

The training process can be associated to the minimiza-
tion of the cost function (or training energy) cost E, , defined
by

E,(W) = g e(W, S', t'), (3)

P(W) =Z 'exp[ —PE,(W)],

where e(W, S, t) is the so-called error function, a measure of
the deviation between actual and correct outputs. Here we
focus our attention upon Boolean perceptrons (BP), for
which e(W, S, t) = 6( N' (W. S)t), 0 sta—nding for the
Heaviside function.

The learning process can be regarded as a stochastic dy-
namic one, with the NN weights evolving according to a
Langevin-like relaxation prescription that leads to a Gibbs
probability distribution for the weights [11—13]
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with P= 1/T and T a "temperature" characterizing the noise
level in the learning process. The normalization factor Z is,
of course, the partition function

/F= —P 'limn 'ln dW exp —Na~ g[W ]„.o ] y=~ ' il+p

Z= dW exp[ —PF(W)]. (5)
p+ h[W~] (12)

Two different types of noise are to be dealt with here: that
coming from the stochastic learning process itself and that
arising from the randomness of the examples. The energy
above depends upon the specific examples that have been
selected. Thus, a double averaging is called for: a thermal
one over the weight space with probability distribution
P(W), to be denoted by ( )r and a so-called "quenched
average, " over all possible /input, output) "pairs, " to be
represented by ((. . ))—= fIItdp, (S')dp, (t'), d/L(S'), where
(dp, (t')) is the special measure: dp, (S') =D(S')d(S') .

The NN free energy F and entropy 5 are given, respec-
tively, by

where p= P2/P, . In (12), g stands for the contribution of
the good (PT-related) examples

g [W~]= —ln D(S)dS exp —P g e(W~, S) . (13)
y=1

Since the associated output is the PT one, we have (see
above) e(W~, S) = //( N"—(W~ S)(Wo S)). There is no
need to average over t. Likewise, the "bad" contribution is

h[W~] = —ln
J

D(t) dtD(S) dS

F( T, P) = —T((lnZ)) (6)
n

X exp —P g e(W~, S, t)
y=1

(14)

S(T,P) =— dWP(W)lnP(W)

The network's performance over the space of the ex-
amples is characterized by the average generalization error
e . The performance with relation to the training set (2), on
the other hand, is given by the average training error e, , i.e.,

ei(T, P) = P (((E(W))r))

e (T,P) =(((e(W))r)), (9)

F= I'e, —TS.

where in (9) it is to be understood that the "examples aver-
aging" is performed only over the inputs and not over the
outputs, as our interest lies in quantifying the NN's perfor-
rnance with respect to the underlying rule. Graphs of either
e,(T,P) and e (T,P) versus P are called learning curves
The following important relation holds:

Now, H=(1/1+ p)g[W~]+(p/I+ p)h[W~] is an inten-
sive quantity that does not depend upon the number of ex-
amples N of Eq. (12). We are in this way guaranteed that
both the energy and the entropy are proportional to N, being
thus in a position to describe all observables in terms of an
effective replicated system. A full quenched treatment of this
system, following the developments of Ref. [5], would in-
volve considerable effort, so that it should be of utility to
study a simpler approach. Borrowing ideas from other fields
of physics (quantum mechanics, for example [19]), instead
of dealing with H in its entirety we consider just its most
significant part (at high temperatures), by recourse to a series
expansion. Of course, we pay the customary price: the ap-
proximation is valid just for some appropriate range of the
perturbative parameter (P in our case).

III. PERTURBATIVE TREATMENT

We shall expand H in powers P and then study the be-
havior of the different terms of the series. We have

The RT is the usual tool employed to evaluate the average
over the examples [11—13]. It originated with reference to
spin glasses [14,15], and is by now a common NN artifact
[16—18]. The RT is to be recommended whenever it is fea-
sible to evaluate averages for Z, but not for lnZ. The RT
exploits the identity

with

1
2H[W~] = pH, + pH2+ O(p ),— (15)

((lnz)) = limn 'ln((Z")),

where Z" can be regarded as the partition function of n iden-
tical noninteracting systems (copies of the original one). We
distinguish among them by recourse to a label @=1,. . . , n.
In performing the averaging process over the examples, cou-
pling arises among the distinct copies. This is easily seen by
recourse to an effective replica Hamiltonian. Interchanging
the order of the multiple concomitant integrals one is in a
position to write

+ g D(t)dt D(S)dS e(W~,S, t), (16)1+py= i

where e(W) = fD(S)dS e(W,S) is the generalization func-
tion that depends only upon the overlap R =N 'W Wo. For
a Boolean perceptron, (i) the generalization function is given
by [5,6] m e(W) = arccos(R), and (ii) the second term in (16)
equals unity. H, represents the "nonrandom" part of the
training energy, while H2 is responsible for the two-replica
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coupling arising out of the randomness of the training ex-
amples. When T diminishes this coupling becomes more and
more important so that one needs to consider H2 contribu-
tions. One has

1
H2= g e(W~)e(we)+ Py, a= &

D(S)dS e(W~,S)e(we, S)

+ g 1 — D(t)dt D(S)dS1+py, p=]

x E(W~,S, t)e(W&,S, t)
/

npp pH= g arccos(R~)+ — g C, ~
vr 1+p 1+p 2 1+p

pp'
2(1 + )X 2+6

where second-order terms in the total number of replicas n
have been eliminated. The dependence upon the weights is to
be found just in the order parameters R~ and Q z. Second
order calculations now involve companion variables Ry and

Q~z. We have then

f
((Z"))= dg~e jg dR~exp( NnH[—R,Q e])y(e J y

f
&& ][ [ dW j 8(NQ WW—)

Of course, higher order terms in p are associated to three-

replica coupling, four-replica ones, and so on. Replicas can
be regarded as particles with N degrees of freedom. The first
term in (15) describes the coupling of the particles with an
external held, while the second one represents two-particle
interactions via an effective potential depending upon the
Hamming distance between the replicas. The temperature T
is the associated coupling constant. It is reasonable to expect
our expansion to yield an adequate treatment for T) 1.

In the limit p~0 with up constant, only H, survives and

energy fmuctuations arising out of the randomness in the ex-

amples, of the order +P, can be neglected [5].Further, ther-

modynamic functions depend only upon the effective tem-

perature Tlo. . This high temperature limit is interesting
because it enables one to predict the existence of possible
phase transitions to states of perfect generalization R = 1 [5].
However, at lower temperatures, this high-T approach does
not allow for predictions concerning transitions to other
states (i.e., spin glass) that should exist according to studies
made with the quenched complete theory [5]: one cannot
neglect any longer the above mentioned energy fluctuations.

It is our goal here to introduce, within the present context,
a perturbative treatment that enables one to incorporate the
disorder effects produced by the randomness in the ex-
amples. To this effect, we shall consider the next order in

p, which entails taking into account two-replica correlations.
This leads to consideration of the integrals (details in the
Appendix)

a(NR —w w )

"
p(

dg~~g~e"
)(

dR~R~
J y~g 27Tl g y 2&l

X exp( —N( nH Sd) ), — (20)

where Sd is the logarithm on the density of nets whose over-
laps are R~ and g~e

t
Sd=N 'ln ] dw~exp g R W W0

y
'

I y

(21)

1 —1—Pf = lim N'ln((Z"))—
n~0

= min(uH[R~, g~q] —Sd[R~,R~, g~e, Q~q]).

(22)

In the thermodynamic limit N~~ the integral (20) re-
ceives an overwhelming contribution from the minima of the

variables R ~,R ~, Q ~e, and Q ~q. Thus, we must evaluate

Ct = D(S)dS e(W~, S)e(we, S),

C2,= D(t)dt D(S)dS e(W~, S,t)e(wg, S, t) (18).
Here some physical reasoning is needed in order to sim-

plify things. It is reasonable to assume that all replicas have
the same overlap with the teacher network and that, further,
the overlap between two of them is the same for every pair.
Thus, we should have

Q,a= ~,a+(1 —~,a)e

The relevant order parameter is here Q~q=N 'W~ Wq
(two-replica overlap), which does not appear, of course, at
high temperatures, where replica-replica correlations can be
neglected. At second order, the Hamiltonian [cf. (15) and

(16)] reads

(23)

With this approximation (replica symmetry) for R ~,
Q~z, R~, and Q~q, passing to the limit n~O and using (10)
we are in a position to write
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where

f=ne/ Ts,

1 p
e, = arccos(R) +

m 1+p 1+p

p(p, +p, ) ~ ~ q

1s= —(q —1)q —RR
2

(24)

(25)
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+ Dz ln dW exp[W. (Pqz+ WoR)]. (26)

Of course, R, R, q, and q must be self-consistently deter-
mined from the free energy saddle points.

FIG. 1. Phase diagram obtained with a second order (in P)
approximation for different values of the noise parameter p. The
full line corresponds to the spinodal transition and the dashed line
to the thermodynamic one.

IV. BOOLEAN PERCEPTRON WITH ISING WEIGHTS

A. Results

We consider here an "Ising-weights perceptron" (IWP).
In this case we have dW=II;dW;[8(W; —1)+8(W;+ I)]
and we evaluate (26)

1s= ——(1—q)q —RR+ Dz ln2 cosh[(Qqz+R)].2 J
(27)

Extremalization of the free energy (24) with respect to the
parameters R, R, q and q and eliminating R and q, we ob-
tain the pertinent saddle point equations

(
R=

~
Dz tanh

P n 1 nP 1
Z+

27r gl q~ m(1+p) /I

f
q= Dz tanh ~

Pn 1 nP 1

2m $1 q 7r(1+P) $1 —R )
(28)

These equations describe a first-order, spinodal phase
transition from a state with poor generalization to a state
with R = 1 when u = u, , the critical n value. This state
corresponds to a perfect generalization phase and is reached
even if p constitutes an appreciable proportion of the training
examples. Figure 1 depicts the phase diagram for different
noise levels p=0, 0.1, 0.3, and 0.5. It is seen that as p aug-
ments so does u,~. The thermodynamic transition curve ap-
preciably changes and u, I, is considerably smaller, so that the
metastable state of poor generalization is quite poor indeed.
Anomalies in the phase diagram arise at low temperatures
(T= 0.5) when p = 0. This is an approximation effect that
increases as the noise augments.

The training error is given by (25). It does not vanish even
if the system has undergone a phase transition. This happens
because no W exists that solves (2). If we regard the gener-
alization error as a restricted average over PT question-
answer pairs, then the pertinent error is given by [5]
as=(1/7r)arccos(R). Figure 2 displays learning curves for
different p values (T= 1).

Some features of our approach deserve particular men-
tion. If we set p=0 in (25) and (28) we obtain a second-
order approximation to an IWP trained without noise . In Fig.
2, the spinodal transition takes place at n, =2.95, which
agrees with the more elaborate complete quenched theory
[5]. Our results, in addition, considerably improve upon the
first-order ones, for which u,„=2.08. Our training errors e,
and e differ by an amount proportional to p [see Eq. (25)].
In the limit p —+0, we recover the high temperature results,
with the new and interesting relationship q =R (which reads
like a mean field recipe) as a bonus. This relationship cannot
appear in the first-order treatment, which says nothing con-
cerning q. The physical interpretation of the order parameter

q is similar to that given to the Edwards-Anderson parameter
in spin glasses [11,12]. It characterizes a typical overlap be-
tween two solutions to the constraints posed by (2). As n
augments, more and more correlations are to be found
among the different solutions, and q approaches unity. For
n= n, , we have q = 1 and the concomitant degeneration is
broken. Figure 3 displays the behavior of both R and q as
a varies.

0.5-

0. 4-

0.2-

0. 1

0.5 2. 5 2. 5 3.5

FIG. 2. For different noise levels the (T= 1) learning curves of
our second order approach are drawn. Generalization errors (arbi-
trary units) are those of the full line, training ones (arbitrary units)
correspond to the dashed line.
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convinced the reader that perturbative techniques, originally
invented for dealing with problems of celestial mechanics
and extensively used in many areas [19], are satisfactory
approximate tools for investigating, at not too low tempera-
tures, the thermodynamics of the learning process.
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FIG. 3. Behavior of the order parameters as the n value changes
(for T= 1).

B. Spin-glass phase and symmetry breaking
The Hamiltonian (19) is invariant under permutations of

the replica indexes. The replica symmetry approach (23)
could then be expected to provide for a reasonable descrip-
tion. A spontaneous symmetry breaking could take place at
low temperatures, however (the signature of a spin-glass
phase), so that a complicated dependence of the replica in-

dexes upon the parameter Q~z would ensue. The spin-glass
phase is characterized by a highly degenerate ground state
which results as the consequence of a strong degree of frus-
tration. The concomitant states are located in disconnected
regions of configurations space, separated by barriers whose
height diverges with ¹ As a consequence, the dynamical
evolution of the W acquires a quite complex character and

ergodicity is broken. An abnormally slow learning results.
The symmetry breaking can be dealt with Parisi's one-

step approximation. The matrix Q~& adopts an m X m block
structure, obtained by a partition of the n replicas into n/m

groups of m replicas each. The matrix elements Q~z adopt
the value q &

if y and 8' belong to the same pure state, and the
value qo otherwise. In the limit n~0, m is restricted to the
O~ m ~ 1 range. Since the spin-glass phase is to be found in
the rather low temperature region (T~0.3), going to second
order is not enough for properly describing it. In the limit

q, ~l, q, ~~ (p finite), however, the free energy can be
cast into the form

1 f
C~~q= — dS D(S)[g(W S) —g(W, S)]

X[g(W . S) —g(W, S)], (A 1)

i.e.,

1 " f
C)~g= —

J
dS dr 8'(x —N "W S)

X $(y —N ~ W S) I$(z —N W, S) (A2)

x I:g(x) —g(z)]' I:g(y) —g(z)]' (A3)

By recourse to the representation

8(x) = (1/27r) fdx'exp(ixx')

of the 8' function and remembering that D S
=II, (dS;/2m)exp( —S, /2), the integration process over dS
leads to the (intermediate) result

exp ——r' r'+x'z'R +y'z'R~+x'y'Q ~ l, (A4)

APPENDIX
We undertake here the calculation of the correlations of

Eq. (18) (see [2]).We recast the first of them in the form

1
fRsB(qo qo R,R, N. , P) = f~s(qo rn qo, R, rnR, rnP), (29)

and the mathematical structure is seen to resemble that de-
scribed in [5,16].

where R =(I/N)W~ W,yQ~ =(1/N)W~ W . For a
Boolean perceptron we have g(x) = sgn(x), so that integra-
tion over the variables r and r' leads to

1(~ / Q„
C& ~~= —+ arctan

27r 2
( l —Q )

V. CONCLUSIONS

We conclude that even with a "bad" PT, perfect generali-
zation can be attained. The neural network is still able to
learn the rule underlying the "good" examples. In cases of
architectural mismatch, on the other hand, rules cannot be
correctly learned.

The bad news is that the metastable state of poor gener-
alization is much poorer for our second-order approach than
in the learning without noise. In any case, we hope to have

——arcsin[1 —(Ri') —(R ) ] . (A5)
77

2 8 2

r
2

Taking for granted the replica synumetries R~=R and

0=p
g 04p

we find for the n diagonal terms, on the one hand,
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n n ——arcsin(1 —2R )2 2m'I2 j

and, for the n —n terms, on the other one (terms of second
order in n neglected),

n m i qg C»s= ——arctan
y$ 27T 2 1 q—'I (A6)

n'~ i'

q—+ arctan ——arcsin(1 —2R )2m 2 ($1—
q ) (2

so that

C2~& is evaluated in an entirely similar fashion and with
the same result. Second order contributions in P are of iden-
tical form, both for "good" and for "bad" examples. They
are weighted by the quantity of examples of each kind.
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