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The dynamics of the standard integrate-fire model and a simpler model (that reproduces the important
features of the integrate-fire model under certain conditions) of neural dynamics are studied in the presence of
a deterministic external driving force, taken to be time-periodic, and white background noise. Both models
possess resonant phenomena in the first passage probability distribution and mean first passage time, arising
from the interplay of characteristic time scales in the system.
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I. INTRODUCTION

The response of nonlinear systems to weak periodic
stimuli and noise has recently been of interest to the statisti-
cal physics community. One of the most intriguing coopera-
tive effects that arises out of the coupling between determin-
istic and random dynamics in a nonlinear system is
stochastic resonance (SR). This effect consists of a noise-
induced enhancement in the signal-to-noise ratio measured at
the frequency of the external driving force. The mechanism
of SR is qualitatively easy to understand. Consider an over-
damped particle moving in a potential with two local
minima, or attractors. In the absence of external driving and
noise, the particle will come to rest near one of the local
minima. The effect of an applied periodic signal is then to
rock the potential, alternately raising and lowering the local
minima. If the amplitude of the signal is small compared to
the height of the potential barrier separating the minima, the
signal alone will not be able to induce switching events. In
the presence of small amounts of noise, however, there will
be a finite probability for the particle to escape over the
potential barrier. Since the probability of escape is greater
when the particle is in the "elevated" well, the noise-induced
switching events may acquire some degree of coherence with
the deterministic signal. With increasing noise, the ratio of
the power spectral density to the background noise level at
the frequency of the driving force increases, until for a criti-
cal noise strength the intrawell motion gives way to interwell
(or hopping) motion as the major contributor to the dynam-
ics. After this point the signal-to-noise ratio decreases with
increasing noise strength, since the switching becomes noise-
dominated and uncorrelated with the periodic signal. The
optimal value of the noise strength occurs when the mean
first passage time for interwell switching is close to half the
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modulation period. This matching of time scales is the reason
for the characterization of this effect as a "resonance. " Re-
views of stochastic resonance and its potential applications
to physics and biology can be found in recent review articles
and conference proceedings [1]Related phenomena, first de-
scribed by Doering and Gadoua [2] and known as "resonant
activation, '

appear in randomly fIuctuating barrier problems
when the fIuctuation time scale coincides with an escape
time.

Recent work [3] has considered the possible role played
by SR in the response of sensory neurons (modeled, for the
most part, as noisy threshold devices) in the nervous system,
and recent experiments [4] have indeed demonstrated SR-
like behavior in sensory neurons. This has fueled speculation
that SR may indeed play a role in signal processing by cer-
tain classes of neurons, and pointed to the need to quantify
the phenomenon in simple mathematical models of neural
firing that are not dynamical bistable systems.

Motivated by the above work, we consider one of the
better-known models of neuron dynamics, the so-called
"integrate-fire model. " This model actually belongs to the
class of continuous state space random walk models that em-
body some of the most fundamental concepts of statistical
physics and can be applied to modeling phenomena in areas
as diverse as genetics and astronomy. Good reviews of ran-
dom walk dynamics [5] and classical theories of the first
passage time in stationary one-dimensional random walks
[6,7] can also be found in the literature.

The fundamental equation governing the integrate-fire
model for neural dynamics is similar to an Ornstein-
Uhlenbeck process with external driving:

x=)i.(u„—x)+ p, +F(t)+A coscot.

Equation (1), in the absence of the periodic stimulus, has
been extensively studied [8,9]. In these studies, x(t) repre-
sents the cell membrane voltage, with p, being a positive drift
to a firing threshold located at x=a, and k being a decay
constant governing the decay of the voltage back to a resting
level u, , taken to be zero for convenience throughout this
work. The noise term F(t) represents the net contribution
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from all the synaptic inputs to the cell; it is usually taken to
be Gaussian and 8 correlated with zero mean and strength (or
variance) 2D In. this model the state variable x(t) is as-
sumed to make excursions to the firing threshold under the
influence of the drift, noise, and signal. As soon as the
threshold is reached, a firing event occurs and the neuron is
reset deterministically to its starting point. The reset action
renders the global dynamics nonlinear, with a represented
mathematically as an absorbing barrier. Integrate-fire models
provide convenient approximations to the full set of
Hodgkins-Huxley equations used to describe neuronal be-
havior, under certain time-scale assumptions [10].While the
integrate-fire models do not provide complete descriptions of
real neurons, they do capture many of their relevant proper-
ties. Integrate-fire models operate in two distinct re-
gimes: (1) the deterministic firing regime and (2) the noise-
activated regime. In the deterministic firing regime, the drift
term p, in (1) is large enough so that firing events occur even
in the absence of noise. The noise-activated regime corre-
sponds to the case where the drift term alone is not sufficient
to cause firing, and it is the noise that "kicks" the neuron
across the firing threshold. A simplification of the above
model, the so-called perfect integrator (corresponding to
k=O), constitutes the Gerstein-Mandelbrot [11]model. The
interplay between noise and modulation in this simplified
model was recently studied [12] at the level of the escape
density function and the power spectral density of the spike
train generated by barrier crossings. In the Gerstein-
Mandelbrot description, the positive drift term p, represents
the suitably weighted difference between excitatory and in-
hibitory synaptic inputs to the cell.

In Sec. II we construct an approximation to the first pas-
sage time probability density for the integrate-fire model.
This is done through use of the Fokker-Planck equation for
the probability density function P(x, t) associated with (1),
subject to the appropriate boundary conditions. The tech-
nique used to solve the Fokker-Planck equation is the
method of images [7].This method in general does not pro-
vide an exact solution for the (time-inhomogeneous) system
(1), but subject to the appropriate caveats and constraints it
provides approximate solutions that agree very well with re-
sults from numerical simulations of (1). More importantly,
the noise-induced critical behavior that is the subject of this
article is very accurately obtained via the method of images.
We note that the system (1) may be recast in the form of the
Ornstein-Uhlenbeck dynamics of a particle in the presence of
a deterministically modulated absorbing boundary. In this
form, this problem appears to have been first addressed, nu-

merically, by Lansky [13];we also point the reader to theo-
retical work [14] on random walks to moving barriers.

In Sec. III, we consider a simpler model for neural dy-
namics that is qualitatively similar to the integrate-fire
model. This model consists of an overdamped particle sub-
jected to a constant force, periodic driving, and noise. One
advantage of this model is that in the absence of periodic
driving, solutions of the Fokker-Planck equation governing
this process have a relatively simple analytic form. An exact
solution to the level crossing problem for the Ornstein-
Uhlenbeck process with A =0 exists [6,15], but the incorpo-
ration of the periodic driving (A)0) dictates that we adopt
the more tractable approach. The solution to the simpler

II. PERIODICALLY DRIVEN INTEGRATE-FIRE MODEL

The integrate-fire system models the firing process via the
dynamics (1) and may be visualized as an overdamped par-
ticle subjected to the potential

U(x) = —x —p,x
2 (2)

that has a minimum at c =p/X)0. A firing event occurs when
the particle reaches the absorbing barrier: following each fir-

ing, the potential is reset, deterministically, to the same start-
ing point. This situation is depicted in Fig. 1. For a starting
point xo(c, the model admits deterministic firing, i.e., firing
induced solely by the positive drift, when the barrier is lo-
cated to the left of the minimum, or equivalently, when aX/
p,(1. For A=O=F(t), one readily verifies that the time
taken to reach the barrier at x=a starting from x=0 is

t„()=—) ' lni 1— (3)

model is expressed in terms of eigenfunctions of the Fokker-
Planck operator, and using perturbation techniques we are
then able to construct an asymptotic solution for the case of
weak-amplitude, low-frequency periodic forcing. Note that
this "linear ramp" approximation could be applied in both
deterministic firing and noise-activated regimes; however,
we apply it only to the noise-activated regime in this work.
This is because the images technique, applied to the exact
integrate-fire model, yields good agreement with simulations
in the subthreshold (or deterministic firing) regime, for the
signal parameters considered in this work; in this regime the
dynamics (1) are drift-dominated. We reiterate, however, that
the method of images yields the correct qualitative behavior,
including the cooperative interaction between the signal and
noise, even in the noise-activated regime.

Sections IV and V are devoted to discussions of the re-
sults and limitations of our theories. In Sec. IV the important
properties of the first passage time probability density for
both models are elucidated, and in Sec. V the resonant be-
havior exhibited by these systems is explained. This behavior
is in line with recent treatments of SR [12,16] that define the
resonance as a matching between the modulation period and
the location of the maxima in the first passage time probabil-
ity density, and effectively links SR to a synchronization
phenomenon.

It is important to note that periodic modulations of the
type considered here are seldom encountered in real neurons,
possible exceptions being in auditory, olfactory, and some
other classes of sensory neurons. In this vein, we mention
that SR (characterized via the occurrence of a maximum in
an output signal-to-noise ratio) has been demonstrated re-
cently [17]in integrate-fire models of the form (1), subject to
time-periodic spike trains embedded in Poisson noise. Our
treatment does, however, provide a stepping stone to the
modeling of' the response to more complex signals and also
provides an explanation, based on well-accepted models of
neural dynamics, of cooperative behavior that has been ob-
served in recent experiments.
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U(x) jL
P(t) =xpe "'+ —(1—e ')+ 2 2 (k costpt+ co sincot

—)e "). (8)

To construct an approximate solution P, (x, t) that incor-
porates an absorbing boundary at x=a, an "image particle"
is placed at x=2a —x0. The solution P is the superposition
of the free solutions for the particle and its image, i.e.,

P,(x, t) = P(x,xp, t)+ QP(x, 2a —xp, t),

where Q is found by requiring that (9) solves the Fokker-
Planck equation (5) with the specified boundary conditions.
Setting P,(x= a,xp, t) =0 yields

X 0

Q P(t) (10)

FIG. 1. Parabolic potential "felt" by the "particle. "x=a is the
location of the absorbing barrier. The dashed line is the approxima-
tion to the potential used in the linear ramp model, and the area
enclosed between it and the parabola determines the validity of this
approximation.

where

2
p(t) = (xp —a) [a —p(t) —ae ']e

a(t)

For 0(A(&p„co&&p/A, and ~&&3 an approximation to the
deterministic passage time is

I;=—X 'lna

aP AX /p,
+ 2

p, X +co
AX /p,1+ + GO

(4)

Note that the conditions on the frequency ~ constitute an
adiabatic approximation that assumes a separation of time
scales between the external forcing period and other times
intrinsic to the system. In what follows, we will frequently
refer to the aX/p, &1 regime as the deterministic firing re-
gime and aX/p, ~1 as the noise-activated regime.

Throughout this work, we assume the noise to be white,
with zero mean:

P,(x, t) =
2 7TCY

[x—xpe ' —p(t)] ~

exp
2N

[x—(2a —xp)e ' —P(t)]—e&'& exp—
2 A'

provided /=0. This restriction requires that

(12)

k[a —P(t) —ae ']+ P(t) —aXe '= 0. (13)

For the case of no modulation (A=O), the condition (13)
reduces to

The solution of (5) that incorporates the boundary at x = a is

(F(t)) =0, (F(t)F(s))=2D8(t s). —
=0 or 1. (14)

The Fokker-Planck equation for the time-dependent prob-
ability density for the process (1) is [18]

8 P= ——(p, +A costpt Xx)P+D —
2 .

Bx 8x (5)

P(x, t) = exp-
27ra (t)

p(t)]
2n(t)

D
~(t) ( 1 2k() (7)

The "free" solution to (5) [i.e., boundaries at ~~ and
P(x, t=O) = 8(x —xp)] was originally found by Uhlenbeck
and Ornstein [8], and is

Thus, the method of images produces an exact result (for
A =0) when (1) )i =0 (corresponding to the Gerstein-
Mandelbrot model, or (2) the firing threshold is located at the
minimum of the potential. The case of nonzero modulation is
somewhat trickier. Using the definition (13) we find that the
method of images will yield good results when A(&p„and co

is the slowest frequency in the system. In the remainder of
this work, when we use the method of images and consider
the firing dynamics above the deterministic threshold, we
will assume that the firing threshold is located close to the
deterministic firing threshold 5=1.We will show that even a
deliberate violation of the above conditions for the validity
of the method of images (done in order to better elucidate the
cooperative behavior that is the subject of this article) still
leads to extremely good agreement with numerical simula-
tions.

Once P, (x, t;xp, O) is known, the first passage time prob-
ability density can be calculated via the well-known pre-
scription
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f a

g(t) = —— P, (x, t;xo, 0)dx
t —00

For the probability distribution (12),

potential can be replaced by a straight line, or ramp connect-
ing the points y =0 and y =L:

XL p,
U(y) =

2 y
—

2Z

g(t) = 2(a —xo)e

$2 ~n'
kn+ —e + —e~[I+4(z)],2 2

(16)

with the equation of motion (h =kL/2),

y' = —h+ F(t) .

where

a —(2a —xo) e ' —P(t)z=
v'2n

a —xoe "—p(t)

It is readily apparent that we have effectively replaced the
exact dynamics, in the noise-dominated regime, by an
equivalent dynamics that have the form of the perfect inte-
grator model [11,9,12].

To compute the probability density for t, , the Fokker-
Planck equation

and

f z

4(z)= e ~ dy

BP BP
=h +D

By By

is solved subject to the absorbing boundary at y = L,

P(y=L, t) =0

(22)

is the error function. Setting X=O yields the "perfect integra-
tor" results [12],and setting A =0 and 5 =1 yields an exactly
solvable case [9,19]:

and the rejecting boundary condition at y =0,

h+ D —P(y, t)
~ o

——0. (24)

2D(a —xo) e
go(t) =

$2~n'
exp—

(ae ' —xo)
(17)

III. LINEAR RAMP MODEL

As motivation for this model, we consider the noise-
activated regime and, via the translation y =x —c, write the
equation of motion for the process in the form

We will mainly be concerned with the noise-activated re-

gime, S)1. For this regime, the method of images is not
exact even for A =0. q„= Cie ~ + Cpe ~k y k y (25)

and the k,, are related to the eigenvalues X.„by

h

2D 2

(h) 4P „

For convenience the eigenfunctions are written in the form

The solution is derived using the standard separation of vari-
ables technique; we assume solutions of the form P(y, t)
= e "'q„(y). The eigenfunctions q„have the general form

y = —ky+ F(t),

where the potential function is

p,
U(y) =

2 y'-2X

(18)

(19)

q.(y)=e "" 'b. (y)

For n &1, b„has the form

b„=sink„(y —L)

(27)

(28)

with the firing threshold (absorbing barrier) located at L= a
—c. First consider the A =0 case. The firing time for the
neuron may be viewed as arising from two distinct events,
The first event is the drift-dominated passage to the mini-
mum of the potential located at y =0, and the second corre-
sponds to the passage from the potential minimum to the
absorbing barrier at y =L. We assume that once the particle
crosses the minimum from its starting position at y =yo, it
will never recross the minimum in the opposite direction,
i.e., we assume a "one-way" barrier at y =0. Past this barrier,
i.e., for 0(y~L, the dynamics are noise dominated, and we
take t, to be the passage time corresponding to a particle
trapped between a rejecting barrier at y =0 and an absorbing
barrier at y=L. We further assume that in this region the

and k„must be determined from the characteristic equation

tank„L = jk„L, (29)

where (=2D/hL The eigenvalues .are determined by the
relation

h
+Dk„. (30)

The functional form of b, is determined by the value of g. If
j)1 then b, is given by (28) and kl and k& satisfy Eqs. (29)
and (30), respectively. If j= I then b, = 1 —y/L, k, =0, and

P, =h /4D If j(1 then b, =sinhk, (y —
L. ), tanhktL= jk&L,

and X&=h /4D Dk
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The general solution to (22) is then written as the expan-
sion

When periodic forcing is included in the dynamics, the
Fokker-Planck equation for the simplified model is

P(y. tlyoo)=e ""' X C.e '"'b (y) (31)
BP BP BP

=(h —A sinctyt) +D 2Bt By By
(38)

with the constants C„determined from the initial condition
P„(y,oly, ,o) = 8(y —yo):

hyol2Db

fob'. (y)dy

For n&1, C„has the form

with the boundary conditions P(L, t) =0, and
lh —A sinoyt+D(BIBy)]P(y, t)ly o=0. Note that we will
use for convenience, throughout our treatment of the linear
ramp approximation, an A singlet driving term, in contrast to
the treatment of the preceding section. Equation (38) does
not admit an exact analytic solution. However, it is easy to
verify, by direct substitution into (38), that a solution correct
up to first order in A and co is

C„=
e" o' sinl k„(L—y(1)]

L sin 2k„L
2 4k„

(33)
p( tl 0)

—(h —A sint»t)y/2D C J'tI )s'(s)dsy. ly „e o

If j(1 then C, is given by (33); if g~l then

e "yo sinhl k((L —yo)]
L sinh 2k&L

2 4ki

(34)
where

x sinl k„'(L—y)],

h —A sin&et
k„' = tank„'L

(39)

There is nothing special about the j= 1 case, so for conve-
nience it will not be considered.

Using (15), the first passage time probability density for
this process is found to be

and

(h —A sincot)
k„'= +Dk„' (41)

B
g (t)= —D —p(y, tlo, o)l, =L (35)

k„b„(0)e
(36)

where we set y0=0, since the starting point is always the
minimum of the potential (19). Finally, we obtain the ap-
proximate first passage time probability density for the entire
firing process as the convolution:

In general if j(1,then for the first term in (39) the tangent in
(40) would become a hyperbolic tangent. For the cases we
study in Secs. IV and V, when j~l the small values of the
noise strength D invalidate the approximate solution (39).
Therefore, for the rest of this section we restrict ourselves to
case s~ i. Letting k„'= k, +A B„sin tttt and
+Ay„sincot and using (40) and (41), we can write the ap-
proximate conditional probability density given by (39) in
the form

p( tl 0s —(h —A sint»t)y/2DQ C
—h„t Ay„ lt»[1 —cos(t»t)]-y. ~~yo

g (t) = go(r) g 1(t r)«
3o

(37)
&&sinl (k„—Ab'„sin ttyt)(L —y)], (42)

where go(r) is the probability density for the reset time. If
the average reset time is short compared with the escape
time, then g(t) will have the same form as g, (t) and be only
shifted slightly toward later times. In this description, we are
tacitly identifying the drift-dominated passage to the mini-
mum of the potential with a "reset."For simplicity, we shall
take go=8(0), corresponding to an instantaneous reset. A fi-
nite reset time can be incorporated into this model in a vari-
ety of ways, e.g. , by using the (exact) density function (17)
for go(t), or by assuming an exponentially distributed reset,
go(t) = 7 e ' ', where r is a fitting parameter. For the case
of the noninstantaneous reset, the mean reset time may be
obtained through a computation of the first moment of the
density function go(t). The case of a noninstantaneous reset
will be treated briefly, for the A=0 case, in the following
section and in greater detail in a future publication.

where

tan k„L

2D 1 — sec k„L

—hLI2DQ C
—h„t Ay„(1 —cost»t)—lt»

X k„—A 8'„—k„~singlet ." 2Di (43)

and y„=2D 8„—h/2D. Using (36) and keeping terms only to
first order in co and A, we obtain an approximation to the first
passage time probability density,
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FIG. 2. First passage time probability density for A=0 com-
puted via numerical simulation of (1), method of images result (16)
(solid curve), and eigenfunction expansion (40) (dashed curve).
a=20, p, =0.11, X=0.006, D=0.5, R=0.001, j=119.5. The hori-

zontal scale is normalized to the period T=2mlcu, where co=0.05.

IV. PROPERTIES OF THE FIRST PASSAGE TIME
DENSITY FOR A =0

In this section we study the properties of the first passage
time probability density in the absence of external driving.
The method of images yields an accurate approximation to
the probability density below the deterministic switching
threshold (i.e., for S(1), the motion in this regime being
drift-dominated. Of course, for k=0 or 5=1 the method of
images yields the exact behavior. For the noise-activated
case the method of images yields good qualitative agreement
when the absorbing barrier is not too far from the minimum
of the potential; the agreement improves with increasing
noise strength and/or drift. In theory, (36) is the exact first
passage time probability density for the linear ramp model
(past the potential minimum). In practice, however, the dis-
tribution must be approximated by keeping a finite number
of terms in the infinite series. A comparison (not shown) with
numerical simulations reveals that keeping as few as two
terms in the summation produces an excellent approximation
to the distribution.

In Fig. 2 we plot the first passage density obtained via
direct simulation of (1), together with the method-of-images
result (16). In this figure 5= 1.1, and we expect the images
result to agree well with the numerically obtained probability
density. Indeed it does agree, and this agreement is further
improved by increasing the noise strength. In this figure we
also show the density function (37) obtained using the linear
ramp model with the reset interval density function given by
the (exact) expression (17). Note that the position of the
mode of the distribution is correctly captured by the method
of images and the ramp model.

It is possible to quantify the conditions under which the
linear ramp model provides a good approximation to the dy-
namics past the potential minimum. Two parameters deter-
mine the agreement of the linear ramp model with the

hl(20 Ciki C2k2
to=De 2 + 2 (44)

and

t = ln—
2 I

C2k2X2

Cikiki
(45)

These expressions come from keeping the first two terms of
the summation in (36), and produce visually indistinguish-
able results when compared against the mean and the mode
calculated using the first 21 terms in (36) (data not shown).

For the leaky integrate-fire model in the deterministic fir-

ing regime (S(1) the mean value to approaches the constant
value a/p, in the X~O limit. This is the well-known mean
value for the Wiener process. In the D~O limit, the mean
first passage time approaches (for k)0) the deterministic
value t,o. Above threshold, to is strongly noise-dependent.
The mode is (for any S) always a function of the noise and

may be the more important of the two measurements, par-
ticularly for the highly skewed first passage densities of cer-
tain neural dynamics [9]. In experiments in which finite
amounts of data are available, firing events clustered about
the mode are more probable. For very low noise, the distri-
bution is sharply peaked with a very short tail, and in this
limit, the mean and the mode approach one another. Virtually
identical results are obtained for increasing drift with the
important difference that, as p, increases, the mode and the
mean shift to lower values. This is not surprising; the pas-
sage times to the barrier become shorter (corresponding to
increasing firing rates) with increasing drift. The large p,
limit yields results that increasingly approach the Wiener
process results, since the k dependence becomes weaker and
weaker. In the limit D —+0, or p,—+~, the distribution col-

method of images results: the parameter (=2D/hL which
was defined in the context of the eigenvalue equation (29),
and the ratio R= (k—L /12)/L, which is seen as the ratio of
the area of the sector enclosed by the potential (19) and the
straight line (20) (refer to Fig. 1), to the distance of the
absorbing barrier from the minimum of the potential (19).
The best agreement between the linear ramp model and nu-

merical results is obtained for R(&1 and g&)1. We observe
that, for fixed a,p, ,k, increasing the noise variance 2D leads
to an increase in j so that in general the best agreement is
obtained in the noise-dominated regime; this is also the re-
gime where we look for the interesting noise-induced coop-
erative behavior, e.g. , stochastic resonance. The series in (36)
converges more rapidly with increasing g; even for regimes
far above the threshold, i.e., S&)1, good agreement can still
obtained by increasing the noise variance.

When considering the firing behavior in the absence of
modulation, the two time scales of interest are the mean first
passage time to and the mode (maximum value) t of the
probability density. Both these quantities are functions of the
noise, drift, and barrier height. Depending on the values of
these parameters the mean can be close to the mode, corre-
sponding to a Gaussian-like density, or the mean can be far
out in the tail of the distribution. For the linear ramp model
(assuming an instantaneous reset) the mean and mode are
well approximated by the following expressions:
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FIG. 3. Mode-to-mean ratio (computed via method of images)
vs drift coefficient p, for A =0 and a =20, D =0.075, and X=0.002,
0.004, 0.006 (reading from left to right). Minima of the curves
correspond to the deterministic switching threshold, S=1. Data
points correspond to simulation results (deterministic firing regime)
for X=0.006 case.

lapses into a single 6-like peak. In this limit to approaches
the deterministic value given by (3).

Figure 3 shows the ratio t /to (computed using the
method of images) versus p, for different values of the decay
constant X. The minima of the curves correspond to the de-
terministic crossing threshold for each case. Past this thresh-
old, i.e. , for decreasing p„ the ratio S decreases until for large
drifts, the process becomes drift-dominated and the probabil-
ity density is once again sharply peaked; in this regime
t /to~1. The opposite limit (/L.—+0) is not shown in this
figure. This limit, corresponding to extremely large values of
5, covers the regime of near-exponential behavior in the first
passage density function; the crossings are uncorrelated and
the process is renewal, with very long mean first passage
times (to)k ). We do not consider this limit in this paper.
For the X=0.006 case, we show data points corresponding to
a computation of the ratio t Ito from numerical simulations,
in the deterministic firing regime where the method of im-
ages is expected to yield the correct qualitative behavior. In
the noise-activated regime, numerical simulations tend to run
too slowly (due to the smaller values of p) to yield this ratio
with the desired accuracy.

FIG. 4. First passage time density obtained via method of im-
ages, Eq. (16) (smooth curve) and numerical simulation of (I)
(jagged curve). a=30, p, =0.11, k=0.004 14, A=0.035, co=0.05,
D =0.5; noise-activated case, S=1.13.

passage time probability density for the integrate-fire model
with A~O, and Fig. 7 is for the linear ramp approximation.
In all these figures, the smooth curve is the analytic approxi-
mation to the distribution and the jagged curve is derived
from numerical simulations of (I) and (21). Note that, in
Figs. 4 —6, we have deliberately used a higher value A of the
signal amplitude than is allowed by the constraints associ-
ated with the method of images; this has been done to eluci-
date the peak structure in the presence of finite A. One ob-
serves that the analytic approximation yields taller peaks
than the numerics; however, the locations of these peaks (at
t = n T= 2n m/ to) —and their relative heights agree well with
numerical results even in regimes where one expects the ap-

0.005

0.004

0.003

V. PERIODIC DRIVING AND RESONANCE BEHAVIOR

Consider the first passage time probability density for the
A )0 case. For both models, at very low stimulus frequencies
(to(&27r/t ) the distribution consists of a single peak located
at t=t, and the dynamics are dominated by the drift and
the noise. Increasing the frequency ~ leads to the develop-
ment of additional peaks in the distribution, their precise
position depending on the initial phase of the driving force.
For small amplitude driving, the overall shape of distribution
is still largely determined by the A =0 case. In particular the
location of the mode is preserved. Figures 4 —6 show the first
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0.000
0

FIG. 5. Same as Fig. 4 except p, =0.2, k=0.007 53; S=1.13.



~ ~ ~ 3965

0.005

0.004

0.003

0.002

0.001

o.ooo i

0 12

FIG. 6. Sam
5=1.13.

. 6. Same as Fig. 4 except p, =0.2, X=0.00753, D=1.5;
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proximations of Sec. II to break down. We h 11

that th
n. e s a see, in fact,

t at the interesting resonance behavior of the k h
'

o e pea eights
an t e mean first passage time is closely predicted by the
method of images even for these large A 1 . We va ues. e readily
o serve that increasing p, leads to a shrinking of the tail of
the distribution and a greater concentration of probability in

drift-dominated (as p, is increased) with the mean first pas-
sage time decreasing. As p, is increased still further, one
o tains a distribution in which most of th b b'1

e n = peak with very small outlying peaks. An analo ous
effect is seen in Fi . 6'g. 6 when we hold p, constant and increase
the noise stren th Dgth D. Increasing the noise strength further

shrinks the tail of the density fun t' 1 dunc ion ea ing to a corre-
sponding decrease in the mean first passage time) with the

The maximum of the n =1 peak as a function of noise has
in is a e systems [16].een related to stochastic resonance
'

b t bl
o e at increasing theWe expand upon these ideas below N t th

ri t and/or noise, or decreasing th b h

images-based approximation. As already noted, the approxi-
mation produces the correct qualitative behavior beyond its
region of validity.

Note that Figs. 4 —7 were produced with S~1 that is, the

regime S~1, the dynamics tends to be drift-domi t d hmina e wit
e pro ability concentrated in the first few peaks of the dis-

tri ution. This regime is a superset of the rfo e pe ect integrator
or w ic the method of images produces the correct quali-

tative behavior [12]. The critical (5=1) case also admits

good agreement between the method- f-o -o -images approxima-
tion and the numerically obtained result. In all cases, but

S~1 the m
particularly below the deterministic firin th h ld

—) t e mean and mode are very accurately predicted by
the images-based approximation.

The 1~near ramp model displays the same qualitative fea-
tures as the integrate-fire model. The first passage time den-

sity for this model is shown in Fig 7 Thig. . e parameter values
used to generate this figure were A =0.03, co=0.05, h= .1

. , and as can be seen for these values there is good

the ensit
agreement between the approximate anal ty ic expression for
t e ensity and the numerical simulations. Similar to the
integrate-fire model, the relative peak heights are functions
o oth the drive frequency and noise amplitude.

t is important to point out that, for the ran e f

three approaches (numerical integration of the stochastic dif-
ferential equation, method of images and linear ram m d 1

is determined by the agreement for A =0. For A ~0,
the density function is the A =0 den t h k
posed at the appropriate locations. While the perturbation
t eory may lead to small vertical differences in the eaks in e pea'g, s escribed earlier, the degree of agr t b-agreement e-
ween t e results derived from the three approaches for A )0

will depend primarily on what is seen in Fig. 2 for A =0.
ow consider the heights of individual peaks as functions

o t e noise strength and the modulation frequency. In Fig. 8
we show the heights of individual peaks of the density func-
tion (16) as a function of the noise strength D; the discrete
points are obtained from numerical simulations of (1). The
peaks are seen to go through maxima at critical D values.

e e erministic ring re-imi ar behavior is observed in the dete
gime. Equation (16) can be used to compute the critical val-
ues o via simple differentiation and by notin that th h

p ocated at t = n T. After some calculation, we findeak is 1

0.000
0 /k

nc
1

—2nxT 2 2P ~+~/
(46)

FIG. 7. First passage time density for the linear ramp model
(instantaneous reset). Ja d). gged curve: numerical simulations of (21)
with A singlet drivindriving; smooth curve: perturbation result (five terms)
(51). a=9.0, h=0. 1, D=0.6, co=0.1, and A =0.03.

for the critical value of D at which th th ke n pea passes
t rough its maximum. For the determi

'
t fiinis ic ring regime

s~1), one can write this expression in the elegant form
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FIG. 8. Peak heights [computed from images result (16)] vs
noise strength D for n=1,2,3 (reading right to left). Data points
correspond to results obtained via direct simulation of (1): n= 1

(asterisks), 2 (triangles), and 3 (circles). a=20, p, =0.1, k=0.006,
A =0.01, co=0.05.

FIG. 9. Peak heights [computed from images result (16)] vs
ratio t /T for n =1,2,3 (reading left to right). Data points corre-
spond to results obtained via direct simulation of (1): n= 1 (tri-
angles), 2 (asterisks), and 3 (circles). a=20, p, =0.1, k=0.006,
A =0.01.

p /X
[

—nXT —kt~o]2—2nXT (47)
t =nT. (48)

where Eq. (3) has been used. Clearly, the height of the nth
peak, in the deterministic firing regime, increases as nT ap-
proaches the deterministic crossing time (in the absence of
the modulation) t,o, at the same time, the critical value of the
noise strength approaches zero. In the (singular) D +0 limit, —
the nth peak becomes a 6' function, attaining its maximum
height. This behavior is completely analogous to behavior
observed in the X=O case [12].The arguments of the expo-
nentials in (46) and (47) represent two characteristic time
scales and the sharpness of the resonance in the height of a
particular peak increases as these time scales approach each
other. As we go to higher peaks, the quantitative agreement
with the simulated data points worsens. However, the simu-
lations predict a "resonance" in the peak heights, at the same
critical noise strength as the method of images. In ail cases,
the curves produced from the method of images follow the
data points more closely at increasing noise strength, reject-
ing our earlier observations that the method of images yields
better agreement with the exact dynamics as the noise
strength is increased.

Of greater interest, perhaps, is the effect of varying the
modulation frequency co. Figure 9 shows the heights of the
first three peaks as a function of ~, for the leaky integrator
model. The horizontal scale is the ratio of the mode, t, in
the absence of the modulation, to the modulation period T.
Here we also observe a "resonance" behavior. A given peak
can be adjusted to be the highest peak in the distribution by
either adjusting the system and noise parameters (for fixed
stimulus frequency) so that the mode of the distribution in
the A=O case, coincides with the location of the peak in
question, or by tuning the frequency of the drive:

This resonance, occurring both above and below the deter-
ministic switching threshold, may be taken as the analog, for
n=1, of stochastic resonance as it has been recently rede-
fined [16] for bistable systems. Clearly, this is a resonance
that corresponds to a synchronization of two characteristic
times, one of which (the mode t„,) characterizes the system
in the absence of the signal and the other (the period T)
characterizes the signal. A similar resonance has been shown
to occur in the X=O case [12]. Results analogous to Fig. 9
are obtained for the linear ramp model. However, for the
small A values used in this work, the numerical simulations
are tedious to carry out; accordingly, we do not show these
results.

Below the deterministic switching threshold, a given peak
can be increased still further (by decreasing the noise or in-
creasing the drift) at the expense of the other peaks until, in
the singular limit t = n T~ to, the n th peak becomes
6-function-like. Similar behavior has been observed and
quantified in the X=0 case [12].Once again we observe very
good qualitative agreement, insofar as the location of the
resonance is concerned, with direct numerical simulations of
(1). The foregoing results may be expressed in a somewhat
"unified" form by plotting individual peak heights as a func-
tion of noise strength, for given frequencies cu. Figure 10
shows such a plot, computed from the images approximation
(16) for the n =2 peak. Three different frequencies are con-
sidered. For each frequency, the second peak passes through
a maximum at a critical value of the noise. The effect of the
noise is to change the A =0 distribution moving its peak
until, at the critical value of D, the second peak in the A )0
distribution coincides with the mode of the A =0 distribution.
Similar behavior is seen for the remaining peaks. The critical
noise parameter (at which a given peak attains its maximum
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shift in the vertical axis, a quantitative change. In Fig. 12, the
resonance in the mean first passage time has been repre-
sented in terms of the scaled variables (t)lto and T/t, to
illustrate a point: for the weak signal alnplitudes considered
in this work, the magnitude of the mean first passage time is
not appreciably changed by the modulating signal. We ob-
serve that the ratio (t)lto does not deviate substantially from
unity for the weak signal amplitudes considered in this work
(this is true even in the subthreshold regime) indicating that
the resonances in (t) are weak but they do occur. In both Fig.
11 and 12, decreasing the noise strength is seen to lead to a
sharper resonance; however, changing the noise strength
does not appreciably shift the location of the resonance.

Before concluding, it is important to point out that the
results in this paper have been derived under the assumption
that the neuronal dynamics are phase-locked to the external
stimulus. Mathematically, this implies that after each firing
event, the refractory interval includes a waiting time until the
phase of the stimulus matches the phase of the solution x(t)
For a phase difference different from zero, one would ob-
serve a corresponding offset in the locations of the peaks in
the first passage density and quantitative changes in some of
the resonance behavior described in this work; these obser-
vations have been verified numerically. In the Poisson limit
of very long mean first passage time (i.e., to&)k ') the phase
decreases in importance. Also, for high driving frequencies
co, one typically passes through many cycles of the stimulus
before a crossing event and a time-averaged description of
the dynamics could be invoked. In the absence of a phase-
locking assumption, the first passage density function dis-
plays the same general features as the densities shown in Fig.
4 —7 with the important difference that the peak heights are
substantially reduced (for a fixed value of the signal ampli-
tude A).

The resonance behavior described in this section can be
shown to be robust even in the absence of the phase-locking
assumption. This is seen in Fig. 13 in which we plot the
mean first passage time (t) computed via the method of im-
ages as well as by direct simulation of (1) with and without
the phase reset. In this plot we deliberately use a high value
(A =0.085) of the signal amplitude, corresponding to a re-
gime in which the method of images would not be expected
to yield accurate results. It is interesting that, except at very
low frequencies, the simulation results are very close. This
should be expected since, if we allowed the phase to remain
coherent across the reset times, there would be, after an ini-
tial transient, a preferred phase at which most of the thresh-
old crossings occurred. Figure 13 also demonstrates that the
images technique yields a very good approximation to the
qualitative behavior, in this case the locations of the reso-
nances) of (t), even when the conditions for its validity have
been substantially violated. It is clear, however, that in order
to generalize the theoretical results of this work to the case of
an arbitrary phase offset, one should compute a phase aver-
aged first passage density, using a sharply peaked phase dis-
tribution function. This will be the subject of a future article.

VI. CONCLUSION

The current work illustrates an important feature of neu-
ronal firing dynamics governed by simple integrate-fire mod-
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FIG. 13. Mean first passage time (t) vs frequency tu for a =20,
@=0.1, k=0.005 75, D =0.01, A =0.0ll5. Solid curve: (t) computed
via images approximation (16). Data points: (t) computed via nu-

merical simulations of (1) with phase reset (asterisks) and no phase
reset (circles).
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els: the noise-assisted (or mediated) synchronization to an
external periodic stimulus. The method of images as well as
the linear ramp model permit one to capture the important
behavior of the dynamics, even in parameter regimes which
deviate slightly from their regimes of validity; in particular,
the locations of the resonances in the peak heights and the
mean first passage time are correctly given by the approxi-
mations. This enables us to make the connection between the
cooperative behavior observed in the first passage density
function and the mean first passage time, and the stochastic
resonance phenomenon that has already been quantified as a
true resonance in nonlinear dynamic systems [16],as well as
in simple threshold models of neurons [12].It is apparent, in
fact, that the state (characterized by the characteristic timest, to which are functions of the drift, noise, barrier location,
and decay rate) in the absence of the signal determines the
nature of the cooperative behavior when the signal is present.
In real neurons, most of the system parameters are internally
adjusted and it is therefore tantalizing to conjecture that the
above-described resonances might actually be a frequency
selection mechanism: by adjusting these internal parameters,
the response at a given multiple of an incident frequency is
optimized.
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