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In the bistable regime of the FitzHugh-Nagumo model of reaction-diffusion systems, spatially
homogeneous patterns may be nonlinearly unstable to the formation of compact "localized states. "
The formation of space-filling patterns from instabilities of such structures is studied in the context
of a nonlocal contour dynamics model for the evolution of boundaries between high and low concen-
trations of the activator. An earlier heuristic derivation [D. M. Petrich and R. E. Goldstein, Phys.
Rev. Lett. 72, 1120 (1994)] is made more systematic by an asymptotic analysis appropriate to the
limits of fast inhibition, sharp activator interfaces, and small asymmetry in the bistable minima.
The resulting contour dynamics is temporally local, with the normal component of the velocity
involving a local contribution linear in the interface curvature and a nonlocal component having the
form of a screened Biot-Savart interaction. The amplitude of the nonlocal interaction is set by the
activator-inhibitor coupling and controls the "lateral inhibition" responsible for the destabilization
of localized structures such as spots and stripes, and the repulsion of nearby interfaces in the later
stages of those instabilities. The phenomenology of pattern formation exhibited by the contour
dynamics is consistent with that seen by Lee, McCormick, Ouyang, and Swinney [Science 261, 192
(1993)) in experiments on the iodide-ferrocyanide-sulfite reaction in a gel reactor. Extensive numeri-

cal studies of the underlying partial differential equations are presented and compared in detail with
the contour dynamics. The similarity of these phenomena (and their mathematical description)
with those observed in amphiphilic monolayers, type I superconductors in the intermediate state,
and magnetic Buids in Hele-Shaw geometry is emphasized.

PACS number(s): 82.20.wt, 03.50.—z, 82.20.Mj, 87.10.+e

I. INTRODUCTION

Recent experimental studies [1,2] of pattern forma-
tion in reaction-diffusion systems have revealed a mech-
anism for the generation of space-6lling patterns that
is markedly difFerent from the classical Turing bifurca-
tion [3]. In the Tiiring scenario, realized recently in sev-
eral experiments [4—6], a periodic pattern arises through-
out space &om a linear instability of a homogeneous
state. In contrast, experiments of Lee and co-workers
[1,2] have shown that space-filling "labyrinthine" pat-
terns can develop from finite-amplitude perturbations
to linearly stable homogeneous states (Fig. 1). These
labyrinths are characterized by patches having diferent
chemical compositions that are separated by relatively
sharp interfaces, or &onts. The pattern formation process
involves the motion of these &onts, which are generally
observed to be mutually repelling, thus preventing self-
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FIG. 1. Chemical pattern formation in the io-
dide-ferrocyanide-sulfite reaction of Lee et al. [1]. Low and
high pH regions appear, respectively, as white and black by
means of a pH indicator. Times proceed from upper left to
lower right in hours following a perturbation.

crossings and associated changes in topology. The ob-
servations that this system possesses bistability, requires
6nite-amplitude disturbances for nucleation of patterns,
and displays 6ngering instabilities of compact domains
suggests a connection to the one-dimensional, reaction-
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diffusion "localized states" considered by Koga and Ku-
ramoto [7]. Subsequent generalizations to higher dimen-
sions by Ohta, Mimura, and Kobayashi [8] revealed that
these localized states could exhibit fingering instabilities
[9]

In earlier work [10] it was suggested on the basis of
heuristic arguments that this kind of pattern forma-
tion by interacting chemical fronts could be understood
by means of a "nonlocal contour dynamics model, " de-
rived from the well-known FitzHugh-Nagumo model of
activator-inhibitor competition [11,12] in the hmit of fast
inhibition. This law of motion derives from the combina-
tion of a Young-Laplace force associated with interface
curvature [13] and a screened Biot-Savart coupling be-
tween distant segments of the interface. This nonlocal
contribution embodies the phenomenon of "lateral inhibi-
tion" an inhibitory action on a scale much larger than
the activator front thickness [14,15]. Numerical studies
of the contour dynamics model revealed the essential fea-
tures seen in experiments: the instabilities of compact
structures, repulsion of chemical fronts, and the relax-
ation of branched structures to compact ones as control
parameters are varied.

The competition between Young-Laplace and Biot-
Savart forces has been shown to appear in a variety of
other pattern-forming systems, each of which exhibits
labyrinthine interface evolution. These include monolay-
ers of dipolar molecules at the air-water interface [16],
magnetic fiuids [17] in Hele-Shaw fiow [18—20], type-I su-

perconductors in the intermediate state [21], and thin
garnet films [22]. In each of these cases, the patterns
are defined by the boundaries between two thermody-
namic phases in coexistence, with bulk electric or mag-
netic dipolar order. The Hiot-Savart interactions then
arise from the usual correspondence between magnetiza-
tion and current loops. The common phenomenology of
these systems has been reviewed recently [23].

Here we elaborate on the contour dynamics in two
ways: a systematic derivation is presented using matched
asymptotics, and extensive numerical evidence is pro-
duced to confirm consistency with the phenomenology
of the original reaction-diffusion partial differential equa-
tions (PDEs). Throughout the analysis we emphasize the
variational structure of the dynamics, both in the fast-
inhibitor limit and more generally, for it appears not to
be widely appreciated that complex patterns can arise
from purely gradient Hows.

In order to motivate the major emphases in this work,
we show in Figs. 2 and 3 two numerical simulations of the
pattern formation exhibited by the FitzHugh-Nagumo
PDE model. The regions in which the activator takes
on each of its bistable values are indicated by black and
white. In Fig. 2 we see a compact initial domain of
one phase expand and finger to produce a space-filling
labyrinthine pattern. Yet, a small change in parameter
values leads to the relaxation of this pattern back to a
stable localized state, as shown in Fig. 3. In this paper
we show that the complex pattern formation observed
in Figs. 2 and 3 can, in fact, be explained in terms of
three elementary processes: (1) stripe stabilization and

30.0-
1

I R
1 y

150- i

I

0.0—
0.0 15,0

i

30,0

a
E

r
L

30.0

15.0-

0.0-
0.0 15.0 30.0

FIG. 2. Simulation of the reaction-diffusion PDEs showing
a compact initial condition undergoing a 6ngering instability,
eventually producing a space-filling labyrinth. Panels are con-
tour plots with u & 0.5 shown white and u & 0.5 shown black,
at rescaled times of ~ =. 0, 5, 10, 15, 20, 25. The parameters in
Eq. (2.4) are D = 0.01, p = 0.15, and r = 0.52; thus, the
state u = 1 (black) is less stable than u = 0 (white).

X

FIG. 3. Reaction-difFusion simulations as in Fig. 2, but
starting with a branched domain, and with D = 0.01,
p = 0.10, and r = 0.60. With these parameter values, a
circular localized state is the stable configuration to which
the system relaxes.
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repulsion; (2) domain localization; (3) interface prolifer-
ation and transverse front instabilities. The remainder of
the paper is organized around the elucidation of each of
these features on both energetic grounds and by means
of asymptotic methods for the derivation of front mo-
tion from PDEs. The particular reaction-diffusion model
of interest here is introduced in Sec. II along with a
discussion of its stability and variational structure. We
illustrate the region in parameter space where the Turing
instability is precluded and localized states appear and
discuss the gradient-How nature of the dynamics in the
fast-inhibitor limit. Interface dynamics in this limit is
considered in detail in Secs. III and IV, where we reit-
erate the heuristic arguments leading to front dynamics
and present the asymptotic analysis. Section III focuses
on one-dimensional systems where the features of stripe
stabilization (a form of domain localization) and stripe
repulsion are most easily understood. Two-dimensional
systems are considered in Sec. IV, in which a variant
on domain localization is found. A detailed discussion of
transverse front instabilities is given in Sec. V, revealing
a common mechanism not unlike that of the Mullins-
Sekerka instability in solidification. The numerical stud-
ies of both the full PDEs and the contour dynamics are
presented in Sec. VI. Some considerations regarding the
form of the dynamics away from the fast-inhibitor limit
are outlined in Sec. VII. Nonlocal interface dynamics in
the various contexts described above are tied together
in Sec. VIII, and Sec. IX outlines our conclusions and
open problems. For completeness, an Appendix details
the numerical methods used for the study of both the
PDEs and the contour dynamics.

There have been several other recent theoretical stud-
ies relevant to the experiments of Lee et al. [1,2]. In ex-
tensive simulations of the Gray-Scott model [24], Pear-
son [25] has found a wide variety of patterns, includ-
ing ordered arrays of spots, lamellar stripe domains, and
labyrinthine structures. Some of these were found to
arise from finite-amplitude perturbations, as in the ex-
perimental work. More recently, Hagberg and Meron
[26,27], based on reaction-difFusion equations similar to
the FitzHugh-Nagumo model, have provided elegant geo-
metrical arguments for a connection between labyrinthine
instabilities in the fast-inhibitor limit and spiral wave be-
havior for slow inhibition. The present work is comple-
mentary to these in providing a more detailed picture of
the fast-inhibitor limit, where the dynamics reduces to
a pure gradient fIow. Clearly, however, certain phenom-
ena are precluded by the fast-inhibitor limit, such as spot
"self-replication" studied in recent experimental [28] and
theoretical works [25,29,30].

II. THE MODEL

A. De6nition

Our starting point is the FitzHugh-Nagumo model [11]
for the coupled dynamics of an activator u and inhibitor
v. We choose appropriate definitions of u, v, space, and
time to arrive at the nondimensionalized form

ug ——D V u —F'(u; r) —p (v —u), (2.1a)

Evg = V v —v+u (2.1b)

Here, D is the activator diffusion constant normalized to
that of the inhibitor and F(u; r) is a double-well potential
representing the autocatalytic behavior of the activator.
In a convenient parametrization whereby the two local
minima in E are at u = 0 and u = 1, the potential
F(u; r) is written in terms of a single symmetry-breaking
control parameter r as

F(u; r) = 4u (u —1) ' ~ (r —2)(2u —su —i'2) (2.2)

provided 0 ( r & 1. When r differs from 2, a difference
in potential is created between the two states,

AF—:F(u = 1;r) —F(u = 0; r)
1(r-
6g 2p

(2 3)

so that for b,F & 0 (r & 2) the state u = 0 is the more
stable, and the reverse for LE & 0. In Figs. 2 and 3, the
u = 0 state is associated with the white area and u = 1
with black.

With the potential E as defined above, the model PDE
is a coupled diffusion system which is nonlinear only in
the activator equation

u,, = D V'2u —u (u —r) (u —1) —p (v —u), (2.4a)

evg = V v —(v —'u)2 (2.4b)

This particular nondinensional formulation has the ad-
vantage of possessing an exact invariance under the si-
multaneous transformations

uM 1 —u; vM1 —v r + 1 r 0 (2.5)

This property implies that we need not consider as dis-
tinct cases the evolution of black spots in white domains
versus white spots in black domains. Within the context
of the PDE model (2.4) we therefore focus on the follow-
ing question: "By what mechanism do black labyrinthine
patterns develop in a white domains" The form of the
inhibitor dynamics embodies both its self-limiting behav-
ior and its stimulation by the activator, while the linear
coupling to v in the activator dynamics is the simplest
such term. Although it is traditional to view v itself as
the inhibitory agent, we have chosen instead to introduce
an inhibitor coupling in the form p(v —u) which insures
that the state u = v = 1 remains a stationary uniform
state for all p.

The parameter e in Eq. (2.1b) distinguishes between
the slow-inhibitor limit (e » 1) and the fast-inhibitor
regime (e (( 1). We assume the latter, a limit that is
opposite to the limit assumed in phase-field models [31]
and spiral wave dynamics [32]. Through the nondimen-
sionalizations used in (2.4), the natural difFusive length
scale of the inhibitor is set to unity. The corresponding
length scale for the activator is ~D, so the limit of sharp
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activator fronts of interest here requires ~D && 1. The
parameter D' serves to mainly to set the width of those
fronts, while the two remaining parameters in the model,
r and p, will be seen to control more global aspects of
the front dynamics.

1.0

linearly unstable

B. Stability against the Turing bifurcation
0.6 —0.0

A simple stability analysis shows that both states u =
0 and u = 1 can be linearly stable simultaneously to
all periodic disturbances. Consider first the state u =
v = 0. In the limit of fast inhibition, e ~ 0 and for
0 & r & 1 (so that both minima of I" exist), one finds
that perturbations having the form

—0.5

—1.0
0.2—

U- ikx+o. t
)

ika+n. g (2.6)

0.0
0.0 0.5 1.0

k2
o.+ —— Dk —r—+ p + O(e),1+ k2

1+ k2
+ O(1) . (2.7)

are characterized by two branches of solutions for the
growth rates u,

FIG. 4. Regions of the r —p parameter space in which Tur-
ing bifurcations are possible (above solid lines) and forbidden
(below) within linear stability. Inset shows growth rate of the
most dangerous mode as a function of wave number in both
the linearly stable and unstable regions, for values indicated
by the symbols.

While the branch 0 is clearly damped for all wave vec-
tors, 0+ may become positive for p exceeding a critical
value p, (r). The neutral curve for this linear (Turing)
instability, as defined by the conditions cr+(k) = 0 and
do.+(k)/dk = 0, is

C. Variational aspects

Equations (2.4) are neither purely dissipative nor
Hamiltonian, but can be expressed in a variational form

(2.8)

bf„bT
ut = — —pbu bu

(2.10a)

so that when p & pT (r) the state u = v = 0 is linearly
stable. At the critical p = pT (r) the marginally stable
wave vector kT is where the energy functionals are

(2.10b)

( pT i r ir41/2
=

(
—

)D ) D (2.9) dx —DiV'ui + E(u; r) ——pu
1 2 . 1 2

Appealing to the symmetry relations in Eq. (2.5), we
deduce that the stability criterion for the state u = v = 1
is p & pz (1 —r), where the function pT is the same as in
(2.8). Thus, simultaneous stability of both homogeneous
states to the Turing bifurcation requires p & pT(r) and
p & pT(1 —r). The region in p —r space so defined
is shown in Fig. 4 for the case D = 0.01. The inset
of Fig. 4 shows two curves of o+(k) for the parameters
(r = 0.65, p = 0.25) (stable) and (r = 0.65, p = 0.60)
(unstable).

As the markers on Fig. 4 suggest, the labyrinthine dy-
namics of Figs. 2 and 3 are observed near p 0 and
r 2 values that are well within the stable regime. Al-
though for these parameters the system is stable against
the Turing mechanism, it is the underlying bistability
that permits the existence of nontrivial localized states
through intrinsically nonlinear processes.

d» —iv»~i' + —»'),
2 2

de uv (2.11)

bS„
bv

(2.12)

from which it follows that the combination F„+pW de-
creases monotonically in time

It is precisely because the cross terms in the dynamics
(2.4) are of opposite sign that the system is not a pure
gradient How for finite c. One may verify that neither
t„, nor F„, nor T decreases monotonically in time. This
completely changes in the fast-inhibitor limit [33] (e —+
0), for then Eq. (2.10b) becomes a functional relation
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(~~+p~) = d ~

I ~ +p~Bt (6u 8u )
(2.13)

Collecting together terms, we obtain an approximate lo-
cal theory,

The dynamics is then a gradient Bow, a feature central
to the heuristic arguments given in earlier work [10] and
elaborated on below.

D. The nonlocal energy functional

(V' —1) v(x, t) = —u(x. , t) (2.14)

which can be solved using a Green's function

v(x, t) = dx'g(x —x')u(x') . (2.15)

In one and two dimensions, respectively, the Green's
functions are

(2.16a)

With the exception of Sec. VII, for the remainder
of this paper we shall assume the fast-inhibitor limit

0. The inhibitor dynamics degenerates into an
instantaneous-in-time relation between v and u given by
Eq. (2.12). Using the specific forms of t„and W, it
reduces to

dx —Di V'ui' + —p (V'u) + E(u; r), (2.20)
2 2

where D = D —p. At this level, the energy func-
tional is very similar to that which appears in the Swift-
Hohenberg model [35], as well as the theory of Lifshitz
points in condensed matter systems [36], and leads quite
naturally to modulated patterns by virtue of the possibly
negative coeKcient of

~

V'u~ . We note however, that such
a gradient expansion is only of limited utility in the limit
of sharp interfaces of interest in the present work. Nev-
ertheless, an approximate local theory can be developed
within the limit of sharp interfaces when the curvature
of the interface is small, as shown in Sec. V B.

I et us note, finally, one important feature of Eq.
(2.20). We see that the lowest-order term in the gradi-
ent expansion (2.19) leads to a contribution (1/2)pu in
the energy functional. This precisely cancels the term
—(1/2)pu seen in Eq. (2.18), which arises from the
—p(v —u) inhibition coupling. Thus, the efFective po-
tential in a local theory (2.20) is precisely the function
P(u; r), a convenient simplification in subsequent sec-
tions.

g(x —x') = —Ko(~x —x'~),
27r

(2.i6b)
III. INTEB.FACE MOTION

IN ONE DIMENSION

where Ko is the modified Bessel function of order zero.
Substituting for v in Eq. (2.4a), we obtain the spatially

nonlocal activator PDE

u, = DV'u —E'(u; r) + pu —p dx'g(x —x')u(x') .

From the arguments leading up to Eq. (2.13), and as had
been observed earlier by Ohta, Ito, and Tetsuka [34], Eq.
(2.17) has the variational form ut —— 6f/8u with—the
energy functional

Z[u] = dx —D~V'u~ +E(u;r) ——pu
1 2 . 1 2

2 2

+—p dx dx'u(x)g(x —x')u(x') .
2

(2.is)

~pa = &x (u' —lv~l'+ (&*~) + ) (2 &&)

While, as remarked earlier, F decreases monotonically
in time, F is not necessarily bounded from below in an
infinite domain, and this variational principle does not
guarantee a stationary long-time limit.

As an aside, if the variations in u are on length scales
long compared to the 0(1) inhibitor screening length,
then we can expand the integrand in (2.18) for x.' near x
and obtain up to fourth order the gradient expansion

A. Energetic derivation of a stripe evolution

In the PDE dynamics shown in Figs. 2 and 3, the po-
tential difFerence AI" is positive so that u = 0 (white)
is the energetically preferred state. Nonetheless, in both
cases the black domain survives despite its energetic dis-
advantage. Insight into this bistable configuration can
be obtained through an analysis of a single black stripe.

Consider the dynamics of an interval with u 1 in a
background of u = 0 (i.e. , the cross section of a black
stripe). A PDE computation of (2.4) for one such evolu-
tion is shown in Fig. 5, where we see an approach of the
two sharp activator (u) fronts that mark the transition
from black to white. In contrast, the inhibitor field v is
considerably more diffuse. But perhaps the most notable
aspect about this particular evolution is that the black
stripe asymptotically stabilizes at a finite size. By apply-
ing a simple heuristic argument that was outlined in an
earlier work [10], an approximate dynamics for this pro-
cess can be derived that predicts the equilibrium width
of this black localized state.

The argument begins from the essential assumption
that the activator fronts are narrow relative to the scale
of the pattern, so that u may be taken to be piecewise
constant away from fronts. We focus on the case of a
single black stripe of u = 1 located symmetrically be-
tween x = —Q(t) and x = +Q(t) in an otherwise quies-
cent white background (u = 0). The evolution of Q(t) is
deduced from the gradient dynamics based. on the one-
dimensional version of the energy functional (2.18)
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I I I I I I I I I I I I I I I I of proportionality associated with the integral of the po-
tential function E is interpreted as a pressure II and is
given by

+Q
II—: dx(P(1;r) —E(0;r)) = AI" .

2Q
(3.3)

The remaining two terms in the energy integral (3.1)
are proportional to the inhibition coupling p and are also
integrations only over domains where u = 1. For the
single black stripe, these two integrals, when combined,
require the evaluation of

Q
——p dx 1—

2
dx'g(x —x') ( 4)

I I I I I I I I I I I I I I I I

10 15 80 Using the PDE for the Green's function g = g + 8(x-
x') and the reciprocity relation g = —g«, the integral
(3.4) simplifies to

FIG. 5. Space-time portrait of the formation of a localized
state in one dimension by the shrinkage of a region of u = 1.
Activator is shown as a solid line, inhibitor as a dashed line,
with time increasing downwards. Solid symbols locate the
value u = —. Parameter values are D = 0.01, r = 0.55,
p = 0.15.

Q
——p dx

2 Q
d*'g-* = p[g(2Q) —g(o)1 .

Q
(3.5)

Combining all three contributions (3.2, 3.3, 3.5) the
energy of a localized state of size 2Q is thus estimated to
be

1 2 1
E [el = dT DU~ + P(u; r) ——pu—*)2 * '

2

1 OO

+—p dx dx'u(x) g(x —x') u(x') . (3.1)
—OO —OO

To insure a finite energy, we consider the energy di8'er-
ence At = t[u] —t[u ], where u is the value u takes as
x —+ +oo. Then, in following the prescription of the ear-
lier results [10], the energy functional for a stripe is par-
titioned into three contributions: an effective line tension
p, a pressure II, and a nonlocal coupling between &onts.
These contributions are explicitly calculated below.

In calculating AE' for the stripe, the line tension con-
sists of the contributions that are localized at the &onts
(like u ). In one dixnension, this requires a contribution
to AE' that is some constant p proportional to the num-
ber of &onts. On dimensional grounds, the line tension
associated with a single &ont p can be estimated by the
gradient integral

t [Q] = 2p + 2Q II + p [g (2Q) —g(0)] . (3.6)

As remarked in the paragraph following Eq. (2.20), we
see that the pressure contribution II comes from the bare
function P(u; r), rather than from the shifted function
I" —(1/2) pu in Eq. (2.18). Furthermore, the line ten-
sion constant p as estimated from Eq. (3.2) is in fact
asymptotically correct, despite an apparent discrepancy
of a factor of two between (3.1) and (3.2). This detail is
resolved by the asymptotic analysis in the following sec-
tion, and involves the recognition of an additional O(~D)
contribution from a boundary correction to the estimate
in (3.3).

The final step in this heuristic derivation is the trans-
lation of the variational principle ui ———8t/hu into an
equation of motion for the front position Q(t). In terms
of the general theory of Lagrangian dynamics, viscous
forces can be introduced as the variational of a Rayleigh
dissipation functional 7Z, [37],

dxau = 0
front

(3.2) 1
7Z[u, ]:——

2
(3.7)

where E is a characteristic length scale of the front. Since
this length scale must be the diffusive length ~D, we
expect p ~D.

Under the assumption that u is piecewise constant and
either zero or unity, the evaluation of the pressure and
nonlocal contributions to the energy functional are con-
siderably simplified. By virtue of having subtracted the
white background energy t [u ], the contribution arising
&om the potential E is restricted to the stripe, and is
thus proportional to the pulse length 2Q. The constant

so that the dynamics can be written in the variational
form

OZ O'R
Ou Oug

(3 8)

For a single moving front having an invariant spatial pro-
file, the dissipation functional is intimately related to the
line tension constant p since
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X[u, ] =—Q,
' dx lL

ont

I I I I I I I I I I I I I I I I

= —Q, ,
y 2 (3.9)

where the result is doubled to account for both fronts.
Now, adopting Q as the dynamical coordinate and taking
for the Lagrangian the energy difference Z[Q] = —AE[Q],
the variational principle (3.8) gives a dynamical equation
for the front location Q(t)

D ALE' D PLF ——e
2p cIQ p 2

(3.10)

r'3p
2Q* ln ~— (3.11)

Note that the absence of any uz dependence in the La-
grangian C[u] leads to an inertialess front dynamics. The
possibility of inertial contributions to the front evolution
is discussed in Sec. VII.

We deduce from (3.10) that black localized states are
only possible if LF ) 0, so that the state u = 1 has
the higher energy of the two minima of F(u). Moreover,
beyond. the threshold p = 2LF the inhibitor coupling
supports a stable black stripe of width

I I I I l 1 t I l I l I I I I I

5 10 15 20

FIG. 6. Space-time portrait of the growth of a localized
state in one dimension from a small nucleated domain. Ac-
tivator is shown as a solid line, inhibitor as a dashed line,
with time increasing downwards. Parameters are D = 0.01,
r = 0.52, p = 0.15.

and whose associated. energy is

~2 r (rb—p 1 —= 1 —1n~.
~ )3

We have introduced the scaled parameters

(3.12)

it is interesting to note from (3.12) that the total "struc-
tural energy" LE' of the stripe can be of either sign. It
will ultimately be shown (Sec. V) that the existence of
stripes with LF = 0 is intimately connected with the
onset of the labyrinthine instability.

6AI' r —1j2
~D ~D

(3.13)
B. Asymptotic derivation of a front dynamics

which in the following section are shown to follow nat-
urally from an asymptotic analysis. Below threshold,
the inhibition coupling is insuKcient to prevent annihi-
lation through the collision of two fronts. On the other
hand, for LF ( 0, no equilibrium width exists and the
stripe expands indefinitely to fill space. The existence
of an equilibrium stripe width for the less preferred stat-e
demonstrates, within the context of this PDE model, the
process of stripe stabilization.

Using the symmetry relations (2.5), we deduce the
converse result that white localized states (u = 0) in a
black background (u = 1) may exist only when AI" & 0.
Likewise, a white stripe will expand unboundedly when
LF &0.

Localized states may also be formed by the nucleation
of a small domain of u = 1, fallowed by its growth to
the stable size. From the form of the energy (3.6) we see
that there is a barrier to the creatian of a localized state,
so this process requires a nucleus larger than some criti-
cal size. This is illustrated by the PDE computation in
Fig. 6, where we see the growth of a slightly supercritical
nucleus.

While we have emphasized the somewhat counterintu-
itive result that a localized one-dimensional state consists
of the phase that has a higher value of the potential F, u(u —r)(u —1) = Du —p(v —u) —u, , (3.14a)

The preceding section describes the dynamics and in-
teraction of interfacial fronts as a Lagrangian relaxation
process which is independent of the detailed Gne struc-
ture of the activator (u) field. Using formal matched-
asymptotic arguments [13,31,32,38], these results are
substantiated as the leading order behavior of the PDE
model (2.1) in a particular limit of weak activator difFu-

slon.
The asymptotic analysis relies on a strong separation of

scales between the spatial structures of the activator and
inhibitor 6elds. Through the nondimensionalization of
the reaction-difFusion PDE (2.1), the O(1) spatial scale
is defined to be the natural difFusion length of the in-
hibitor (v) field. In the limit of weak activator diffu-
sion (D « 1), the transitions of the activator field be-
tween bistable states are resolved within thin interfaces,
or interior layers, whose O(y D) width is characteris-
tic of difFusion-limited fronts. From the perspective of
matched-asymptotics, the sharp activator fronts on the
inner scale are contrasted by the more gradual relaxation
of the inhibitor concentration that occurs on the outer
scale.

Outer O(1) scale In one dimen. sion (2:), the model
equations (2.1) are rewritten explicitly as
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V~~ — V —tC = Cvg ) (3.14b)

where the activator diffusion (D « 1) and inhibition
coupling (p « 1) are assumed small. In anticipation of
a dynamics consisting of slow front motion (implied by
D « 1), both time derivatives may also be consistently
assumed small. The right-hand sides of (3.14) are then
seen to be perturbations with respect to this outer scale.

In terms of the outer variables, the underlying pattern
is defined by regions where the activator is in either of its
locally stable values. For the cubic nonlinearity (3.14a),
these are

p
( )

1 (black areas)
0 (white areas), (3.15)

which defines a binary pattern on the line. The present
approach is more general than the heuristic analysis of
the previous section, capable of treating a pattern con-
sisting of any number of fronts. The leading-order outer
inhibition field v (x) then satisfies the inhomogeneous
elliptic equation

p p 1 (black areas)
0 (white areas), (3.16)

8[U] = Up„—U (U —1/2) (U —1),

the inner equations become

(3.17)

8[U] = — ' U„—6AFU (U —1) + p (V —U) + Ug,~n "

(3.18a)

V„„=D (V —U) + eD Vt, . (3.18b)

where continuity of v and v is imposed at jump discon-
tinuities in the binary pattern uP(x). As well, suitable
boundary conditions at the domain edges (for example,
periodic, or v = 0 at infinity) must be included to insure
a unique solution.

The time dependence of this leading-order outer so-
lution is implicit in the functions Q1(t) that locate the
boundary points between the black and white areas, the
jump transitions of u . The velocity Qi1 of these inter-
face points is obtained. as a consequence of the asymptotic
matching at inner scales to remove the discontinuities of
the chemical fields.

Inner O(~D) scale. At each interface point x = Q1(t)
the discontinuity of the outer activator solution uP(x) is
resolved by an inner representation defined locally on a
finer difFusion scale q = (x —Q1)/~D. Since the activa-
tor solution is not discontinuous on this inner scale, the
precise location of the interface (il = 0) is defined by the
condition u(x = Q1) = 1/2. In terms of this rescaled
and moving coordinate, the equations for the inner so-
lutions U(1l, t) and V(il, t) reflect a markedly difFerent
asymptotic ordering. Introducing the nonlinear operator
8[U],

UP(q) = — 1~tanh
~

p 1 rl

2)
V =v (x=Q1), (3.19)

which, as g —+ +oo, match the behaviors of the outer so-
lutions uP(x) and vP(x) at the interface x -+ (Q1)+. The
sign p is chosen by the orientation of the front, where
a negative sign corresponds to a left-to-right transition
from u = 1 to u = 0. Note also that, to leading-order,
the inhibitor Geld is constant within this interior layer—
this is consistent with the continuity of the outer solu-
tion vP(x) of (3.16) which only requires an O(D) tran-
sition solution to resolve the discontinuity in its second
derivative.

The stationarity of this leading-order front (3.19) is
broken by the effects of the right-side terms of (3.18) and
suggests a perturbative derivation for the front speed Qi1
based on the asymptotic balance

Q1 - AI' - p « 1 .
D

(3.20)

The determination of Q~, which is essentially just a non-
linear eigenvalue for (3.18), then follows from the solv-
ability condition for a (bounded) first correction to the
inner activator solution

U() U()+ U(). (3.21)

8'[U ] = U„—P"(U; 1/2) U, (3.22)

where the primes on F denote differentiation on the first
variable. The first-order perturbations are restricted to
the terms involving the balance (3.20) and give

1

/2D
p8'[U ] = 6 ' +6AE U (U —1)

+p v (x=Q1) —U (3.23)

Application of the identity ~2 U„= pUP (UP —1) has re-
sulted in some simplification of terms in the above equa-
tion.

By the translation symmetry associated with the
U solution, the appropriate solvability condition for
bounded solutions to (3.23) is the inner product integral

+oo

(U„,~)—: dry U ~ (3.24)

Since the linearized operator 8' is orthogonal to U,
the inner product of the equation (3.23) determines
the unique front speed that ensures the existence of a
bounded first correction U (rl),

Substitution into (3.18a) gives an inhomogeneous or-
dinary difFerential equation (ODE) for the time-
independent first correction U (1l) involving the opera-
tor 8'[U ] that is just the linearization of the nonlocal
operator 8[U] (3.17)

The homogeneous solution of the left-hand sides of (3.18)
correspond to a stationary front solution Q,1 g6/2D(b. Il + p[v (x = Q1) —2]j, (3.25)
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where, again, the choice of sign p is consistent with the
choice made for the leading-order solution'(3. 19). Self-

consistently, the front velocity satisfies q~~ && Ov D.
The important feature of the front speed result (3.25)

is its dependence on the strength of the outer inhibition
vo(x = Q~). By the elliptic nature of the outer inhibitor
equation (3.16), v(x = Q~) will, in general, be influenced
by the location of other fronts, and hence embody the
nonlocality. Thus, for a sequence of &onts, the speed
relations (3.25) for j = 1 to N will be a set of N coupled
ODEs that describe the boundaries of the binary pattern
for u(x).

Motion of a single front. For this case, on the infinite
line, we consider a pattern that is white (u = 0) to the
right of an interface at x = Q(t) and black (u = 1) to the
left:

I

CQ~ 1.00

I~ 0.95
A
CQ

~ 0.90

CY 0.00

10 I

I I I I I

0.01 0.02

I I I I I I I I I I I I I I

I I I I I I I I I I I I

1, x&Q(t)u (*)- 0' q(, ) & (3.26)

Solving (3.16), the outer inhibitor field has the simple
piecewise continuous solution

'
1 ——,'e+i*-~i, x & Q(t)

v (x) —g

-e i ~i, q(t) &z,
(3.27)

where v = 0 boundary conditions are imposed at infin-
ity. Since v (x = Q) =

2 at the interface, by (3.25) there
is seen to be no O(p) correction to the front speed

qg 6V2D AI"—, (3.28)

so that, when LE ) 0, the front travels with constant
negative (leftward) velocity. Motion towards the black
region is the expected result when the white (u = 0)
state is energetically preferred (2.2).

Higher order corr-ections to the speed of a single front
The calculation of the &ont pro6le and speed may be
continued to another order in p in the case of a solitary
front. The solution of (3.23) for the first correction U is

d (
U'(II) = ——rI tanh ~—

dn'
(3.29)

This describes the overshoot of the profile seen in Figs.
5 and 6. The gradient of the front is increased in the
neighborhood of g = 0, and this would be expected to
increase the rate of dissipation and hence retard the in-
terface motion. This intuition is confirmed asymptoti-
cally when b, I" p )) ~D, as the next order of the
solvability condition can be explicitly evaluated, giving
the extended velocity condition

QI —6V2D AI" [I —6p] (3.3o)

This linear correction to the &ont speed is clearly appar-
ent in the plot of velocity versus p in Fig. 7(a), obtained
by direct numerical solution of the PDEs. Note also that
beyond p 0.02, even this next-order asymptotic correc-
tion is insufBcient for quantitative accuracy.

Interaction of huo fronts. Reconsider the situation in
an infinite domain —oo ( x & +oo in which two inter-
faces are symmetrically located at z = +Q(t) between

which u = 0. These &onts are the edges of the local-
ized state considered in the heuristic derivation which
obtained the dynamics (3.10)—this result is confirmed
below using the matched-asymptotic &ont speed formula
(3.25).

The calculation proceeds as in the case of one front,
but begins &om the outer activator pattern

'o, —~&x& —Q(t)
u'(x) = I 1, —Q(t) & x & +Q(t)

0, +Q(t) & z & +oo
(-3.31)

that is symmetric about the origin. Solving (3.16), the
outer inhibitor field can again be expressed in terms of
exponential functions

' sinh Q e+, —oo & x & —Q(t)
vo(x) = ( 1 —e & cosh x, —Q(t) & x & +Q(t)

sinhQ e, +Q(t) & x & +oo.
(3.32)

— (b)
0

0 2 4 6 8
t,/[VBD(l. /2 —r)]

FIG. 7. Front dynamics. (a) Velocity of a single front as
a function of the activator-inhibitor coupling, for diffusion
constant D = 0.0001, normalized by the velocity for p = 0.
Symbols indicate results of numerical simulations of the reac-
tion-diffusion equations, while solid lines are predictions from
the asymptotic analysis with the corrected friction coefFicient
given by Eq. (3.30). (b) Asymptotics for separation ver-
sus time for two approaching fronts in one dimension, com-
pared with simulation results for D = 0.0001, r = 0.515, and

p = 0.02. The dashed line is prediction of asymptotics with
bare friction coeKcient, while the dotted line includes order p
correction to the front profile and compares well with the full
numerical solution to the reaction-difFusion equations (solid
line). Inset (c) shows the equilibrium separation of the fronts
versus p for both simulation (solid symbols) and asymptotics
(solid line) from Eq. (3.11).
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Qg 6v 2—D b,Ii ——eP
2

(3.34)

where the minus sign must be taken since u(x = Q ) = 1.
The result (3.34) not only recovers the heuristically de-

rived stripe dynamics (3.10), but also determines the con-
stant of proportionality associated with the line tension
p (3.2) and the Rayleigh dissipation rate (3.9). Direct
comparison of the two formulas (3.10) and (3.34) gives

(3.35)

This determines the inhibitor contribution to the front
speed

-'{-=Q)=-.'(1- -") {3.33)

where now, unlike in the case of a single front, uo(x =
Q~) g 2 at the interface. Substitution into the asymp-
totic formula for the front velocity (3.25) gives

IV. INTER, FACE MOTION IN TYVO
DIMENSIONS

A. Heuristic derivation

The heuristic derivation of the energetics and dynamics
for contours in two dimensions proceeds along the lines
used for one-dimensional patterns. This requires the ad-
ditional assumption, beyond that of localized gradients,
that the curvature of the boundary does not significantly
affect the interface profile. We consider a single black do-
main 8 of u = 1 surrounded by a sea of white, bounded
by the contour r(s), where s is the arclength. As in the
calculation for one dimension, the energy functional AE
consists of three contributions.

The line tension contribution to the energy (2.18) must
now involve an integral around the boundary of the black
domain

dsp = pI (4.1)

dry (- (U„) + I"{U;-)) (3.36)

which is, as expected, O(v D). Moreover, since the line
tension coeflicient (3.2) represents the energetic contri-
bution proportional to perimeter, the leading-order form
of the front profile U can also be used in the integration

where I is the perimeter, and where the line tension
must be exactly that found earlier from the one-

dimensional asymptotics [Eq. (3.35)].
By analogy with the result in Eq. (3.3), the potential

integral contributes an energy proportional to the domain
area A)

Note that the additional contribution of I" (U; 2) is a
boundary error associated with the pressure integral (3.3)
and resolves the discrepancy involving the line tension
energy that was alluded to below Eq. (3.6).

In addition to recovering the dynamics of stripe stabi-
lization, the single &ont speed formula can be used to un-
derstand the behavior of two black stripes when LF ) 0.
If we were to start from a coafiguration in which the
stripes were not at their equilibrium width, there would
first be the ballistic collapse to form the black stripes of
width near 2Q'. On a slower time scale, the two stripes
repel each other by their exponential tails of inhibition
[on the O(l) scale]—this is an illustration of the process
of stripe repulsion [15).

dx [P(1;r) —P(0, r)] = AI" d4. . (4.2)

d~V„. d~'V „

dx.V'„- ds'n s'

The main difference from the one-dimensional prob-
lem is the treatment of the nonlocal term, which is pro-
portional to the double integral jjg over the domain.
Substituting Q = V' Q + b(x —x') we may recast the
bulk contributions as boundary terms by twice using the
Green's identity j& V'@ = j&& n@ in a manner analogous
to that in Eqs. (3~4) and (3.5) as follows:

C. Numerical comparison

Tests of the results for the dynamics and equilibrium
separation of approaching fronts are shown in Fig. 7
for a situation like that in Fig. 5, but with the val-
ues D = 0.0001 and p & 0.02, in the truly asymptotic
regime. The front separation 2Q is shown as a func-
tion of time and is compared. with the predictions of Eq.
(3.34), using both the bare prefactor 6+2D associated
with the leading-order profiLe and the corrected prefac-
tor 6+2D(1 —6p) of Eq. (3.30). We see that the latter
leads to highly accurate results. The equilibrium separa-
tion between the &onts is independent of this prefactor
and, as shown in Fig. 7(c), is in accurate agreement with
the results of the numerical solution of the full partial
differential equations.

ds d8'n 8 . n 8' . 4.3

Note that n(s) is the unit normal vector pointing out of
the black domain. Finally, collecting all of the terms and
noting that n(s) . n(s') = t(s) t(s'), where t is the unit
tangent vector, we obtain

ttd[r[ = pL+ d PA ——p dr$ds't[s) t[s')ts [r —r') .
2

(4.4)

Unlike in one dimension, the nonlocality cannot be re-
duced to a pointwise evaluation of the Green's function.
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The form of the nonlocal coupling between tangent
vectors is reminiscent of the self-induction of current-
carrying wires, the direction of the current being spec-
ified by t. Indeed, the sign of the interaction is such
that antiparallel tangent vectors repel (like antiparallel
current-carrying wires), while parallel ones attract. An
alternative view of this connection with electromagnetic
systems is to consider the inhibitor relation (2.14) as a
Poisson equation relating a potential (v) to a charge den-
sity (u), in which case the energy function W = Juv'in
Eq. (2.11) is the associated electrostatic energy. Through
the correspondence between magnetization and current
loops, and the similarity of electric and magnetic dipo-
lar phenomena, such a nonlocal interaction appears in
the description of pattern formation in a variety of other
systems, as detailed in Sec. XIII. In such dipolar systems
an important role is played by molecular or other cutouts
in the self-induction integrals. The present formulation
neither has such cutouts nor needs one for a well-de6ned
energy, as the singularity in the Green's function g in
(4.4) as s —s -+ 0 is integrable, being only logarithmic
in s —s' .

With the energy now formulated as a functional of
the boundary contour r, it only remains to calculate the
Rayleigh dissipation functional. This is just the integral
around the boundary of the one-dimensional result

FIG. 8. Illustration of the Biot-Savart interactions of
nearby chemical fronts, as described by the nonlocal contri-
bution to the force law in Eq. (4.8.).

finite limiting value

lim (K(s, s') x t(s')Itq[~r(s) —r(s')~]) = ——~(s) .
S ~S 2

'R = ds (n. rg)
BB

(4.5) (4.9)

To obtain the functional derivative of the energy (4.4),
we combine the local contributions

1 hR

~g hr,
1 bL

~g hr

1 bA

~g hr

n ~ r~ n
D )

= en,

=n, (4.6)

b 1
ds ds't t'g (B)br 2

ds'Rs s' xt' 'B ns (4.7)

where g is the metric, with the result for a self-induction
integral [38,39]

It is readily verified from Eq. (4.8) and Fig. 8 that the
vector product in the normal velocity embodies the repul-
sion between nearby antiparallel sections of the contour.
As noted in earlier work [10], this repulsion between ad-
jacent fronts requires only that g ) 0 and g' ( 0 (for
p ) 0), and not on the details of g.

B. Asymptotic derivation of a curvature dynamics

Now we rederive the contour dynamics (4.8) by adapt-
ing the asymptotic argument presented earlier for one
spatial dimension. The only major modification involves
the reorientation of the the inner coordinate (g) of the
activator front to be in the direction normal to the inter-
face.

Outer O(1) scale. In two dimensions, x. = (x, y), the
leading-order outer representation satisfies the left-hand
side of the equations

where R(s, s') = [r(s) —r(s')]/~r(s) —r(s') ~, the cross
product is a scalar in two dimensions (a x b = e,~a, b~),
and the prime on g indicates difFerentiation: g'
dg/dB = —Itq(R). The variational principle (3.8) de-
termines the contour evolution, expressed as the normal
velocity

u(u —r)(u —1) = DV'u —p(v —u) —ug, (4.10a)

(4.10b)V v —(v —u) = evg

The parameter scalings are chosen to obtain the analo-
gous &ont dynamics, but with the added dimensionality,
the activator difFusion scale (~D) is incorporated into
the significant limit

Q~

~D
~ QP' ~ p ~ ~D (( 1 (4.11)

Note that the nonlocal contribution in (4.8) is not a sin-
gular integral, since the integrand for s' + s has the As before, the underlying pattern is defined by patches

ss r, = —— px(s) + XI" —pads'R(ss') x t g (R)). ,
''

y

(4.8)
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where the activator is in either of its bistable states 122
x(q, n) = r+rlJr + —rl J r

2
(4.18)

1 (black areas)
0 (white areas) . (4.i2) —:exp g J r (4.i9)

Unlike in one dimension, where the transitions between
black and white are points, in two dimensions the inter-
face separating a black patch from a white background is
defined by a (slowly moving) contour in the (x, y) plane,

for which (4.17) is the linearization. Straightforward dif-
ferentiation demonstrates that the complete series (4.19)
has the property that it is orthogonal even for g g 0 off
the generating contour r

r(n; t) = ( I( n;t), Y ( n; t)), (4.13) (4.20)

where n is defined as a counterclockwise (but not nec-
essarily arclength) parameterization around the black
patch. There may, of course, be more than one disjoint
black patch, in which case multiple contours r ~ must be
evolved. For simplicity of presentation, however, these
indices are omitted. The leading-order inhibition field
v (x) then satisfies the inhomogeneous elliptic equation
with a two-dimensional Laplacian

1 (black areas)
0 (white areas) . (4.14)

Along the interface r, continuity is imposed on v and
on (n. V') v, the normal derivative. Again, with suitable
boundary conditions at the domain edges, a unique solu-
tion is guaranteed. For consistency with the separation
of scales assumed in the asymptotics, it is essential that
the interface geometry contain structure only on the in-
hibitor diffusion length this demands that both the
(global) interfacial separation distances and the (local)
radius of curvature be O(1).

Local orthogonal coordinates. The discontinuity of the
activator on the outer scale is naturally resolved on an
inner scale, which is a stretched coordinate normal to the
interface. At a point along the contour r(n; t), the local
(unnormalized) tangent (t) and normal (n) directions are
given by

These are just the Cauchy-Riemann conditions, thereby
showing that the change of variables between (x, y) and
(q, n) is locally conformal Alth. ough for small rI only
a few terms in this series are necessary in the present
analysis, it establishes to all orders that the Laplacian
nature of the diKusions is preserved up to a Jacobian
metric,

Q2 Q2
lx (g, nt) l' (4.2i)

Inner O(~D) scale. The resolution of the activator
front, as well as the front speed determination, now fol-
lows analogously to the case of one dimension. The
stretched inner coordinate g,

(4.22)

(4»)

where we have used the general expression for the curva-
ture v,

resolves the activator front across the discontinuity, while
the o.-coordinate labels position along the contour. Using
the expansion (4.19), we find that the metric factor in
(4.21) is

(4.i5)
K=I-n rn ' Jrncx

(4.24)
0 +1

—1 0 (4.16)

where the matrix J corresponds to a 90 clockwise ro-
tation. With the counterclockwise orientation of the pa-
rameterization o., the normal n points into regions of
white. Using these as basis vectors for a local coordi-
nate system, introduce a new coordinate g that extends
orthogonally from the contour r in the direction of the
normal (n). This suggests the change of variable (sup-
pressing the time dependence)

x(q, n) = r(n) + rlJr (n) (4.17)

so that q = 0 coincides with the contour r. In the thin
interface limit, the inner solution requires the validity of
local coordinates only for small rI = O(~D). It proves
calculationally more convenient to use instead an infinite
(Lie) series as the change of variable

defined such that it is positive for a convex black domain.
Note that although the lr l

normalization weakly breaks
the orthogonality property, up to the first correction in
curvature the Laplacian has the simple form

V'. , --'1-2 Dg- ', +Ol-
t9'g

(4.25)

Q, (n;t) = n. r, . (4.26)

At each point along the interface r(n), the normal com-
ponent of the velocity is sufBcient to describe the inter-
face motion. This freedom essentially follows from an
arbitrariness in the contour parameterization o. , which
permits arbitrary choices of tangential velocity. Here we
may choose the parameterization that yields, at Bxed o.,
an interface moving normal to itself, with Qq(n; t) the
leading-order normal velocity,
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At the level of the first correction, the inner equations
for the kont profile are identical to the one-dimensional
case (3.18), but with the addition of a curvature term
from the I,aplacian expansion (4.25),

8[U] — U„+ 2v DvgU„„—6b, FU(U —1)
D

+p(V —U) + O(D), (4.27a)

V„„=O(D), (4.27b)

where 8 is as de6ned above (3.17). The leading-order
solution UP(g) is identical to the hyperbolic tangent so-
lution (3.19). Application of the same solvability inner
product (3.24) yields the front speed relation

1
Qg 6V'2D— ~+BI"+p v (z=Q) ——0 1

2

(4.28)

which clearly recovers the curvature and potential efFects
of the energetically determined front velocity (4.8). In
order for the two expressions to be in complete agree-
ment, the nonlocal contribution of the contour integral
in (4.8) must then be equivalent to the contribution from
the inhibition term vP (x = Q) in (4.28).

The nonlocal character of the inhibitor field on the pat-
tern is expressed mathematically by the Green's function
solution of the outer inhibitor equation (4.14)

v(x) = —— dx'Kp(ix —x'i),
27t g

(429)

where the integration is done only over black areas. Us-
ing the PDE for Ko and Green's theorem, the above so-
lution can be rewritten in terms of a line integral over
the interfacial boundary r. This results in the arclength
integral

1 1 r —r
v(r) = —+ — ds'n. , Kq(~r —r'~), (4.30)

P I o 2AE
8 = pL+ — dx' v (x.) —1+

2 g P
(4.31)

a result that is not immediately obvious from the asymp-
totic derivation. With the area A expressed as an inte-
gral, we see immediately from v —1 & 0 that the inte-

where Ki is introduced via the Bessel identity Ki
—Ko. It should be noted that a Plemelj-type argument
[40] is required to evaluate this integral, since v must
be evaluated for a point on the boundary r. Here how-
ever, the usual principal value integral is unnecessary be-
cause the singularity in the integrand is removable [see
Eq. (4.9)].

Substitution of the contour integral (4.30) into the
asymptotic front speed (4.28) confirms the energetic re-
sult (4.4). In terms of v (x = Q), the global energy of a
black pattern may be written as

p 1 —RKg(R) Ip(r), r & R
RIg(R) Kp(r), (4.32)

where continuity of v and v„ is satisfied at r = R. Direct
substitution of v (R) into (4.28) gives a nonlinear ODE
for the purely radial evolution of the contour

1tD)" 1
Rg —6v'2D —

~

—
~

—+ AI"
R

1
+p RIg(R)Kp(R) ——

2
(4.33)

The dynamics (4.33) shows that the condition for the
existence and radial stability of equilibrium disk solu-
tions depends only on two O(1) parameters: the poten-
tial diBerence and the inhibitor coupling, both scaled on
the activator difFusion length. Equilibrium radii R* then
satisfy the transcendental condition

D 1

6~2R*
+ AI" + p R*Ig(R*)Kp(R*) —— = 0 (4.34)

2

which, upon numerical root tracking, identifies four dis-
tinct equilibrium scenarios. These are illustrated in
Fig. 9: (a) two equilibria, only larger radius stable; (b)
one equilibrium, unstable; (c) no equilibria, radial con-
traction only; (d) three equilibria, intermediate disk sta-
ble. Apart from the anomalous region (d), note that
black localized disk patterns can only be stabilized when
LE ) 0 and white is energetically preferred. This be-
havior is the analog of the one-dimensional stripe stabi-
lization and illustrates the process of domain localization.
Although stable disks can be sustained in the small region
(d) for AI" ( 0, since this region is so small in parameter
space and the attracting basin for the stable radius rela-
tively narrow, we believe these states to be unimportant,
at least in the context of this particular formulation of
the FitzHugh-Nagumo system.

It is also important to note that in the absence of in-
hibitor coupling, no stable disks are possible. The case
in which AI" = 0 (and p = 0) corresponds to the well-
known shrinkage by curvature that leads to a singular
collapse in finite time

grand loses positive definiteness for p ) 2LE, which is
precisely the criterion for the stability of stripes [cf. Eq.
(3.11)].

As formulated here, the front velocity formulas (4.28)
and (4.4) both involve the evaluation of the outer in-
hibitor field, either by boundary integration (4.3), or
direct solution of the bulk PDE (4.14). The boundary
approach overs a compact, intrinsic description of com-
plex contours; however, the bulk PDE approach can be
calculationally advantageous in simple geometries where
natural eigenfunctions can be constructed. An example
of the latter is the analysis of a disk-shaped domain.

Localized disk solution. For a black circular spot of
radius R in an infinite white domain, the outer inhibitor
v has a radially symmetric solution of (4.14) in. terms of
modified Bessel functions
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FIG. 9. Regions of existence and marginal stability curves
of circular localized states in a rescaled parameter space, as
deduced from the equilibrium condition of Eq. (4.34) and the
linear stability result of Eq. (5.23).

FIG. 10. Energy of circular domains as a function of radius,
from Eq. (4.36), for various values of the activator-inhibitor
coupling p, with D = 0.01 and r = 0.6.

(4.35)

Note that the PDE evolutions shown in Figs. 2 and
3 both have parameter values that lie within region (a).
The dynamical evolution in (4.34) is restricted to radi-
ally symmetric geometries; the possibility of occurrence
of azimuthal instabilities, which ultimately generate the
labyrinthine patterns, is addressed in the following sec-
tion.

Just as we obtained the energy of a domain in one di-
mension and deduced the existence of an energy barrier
to its creation, we may compute the energy of a circu-
lar domain of radius R on the basis of Eq. (4.4). The
computation of the nonlocal contribution may be done
two ways, via the direct calculation of the self-induction
integral and by finding the inhibitor field v(r) associated
with a circular activator pulse. Collecting all of the con-
tributions, we obtain the energy of a circle of radius R,

b.f(R) = 27rRp+ 7rR AF —vrpR Ki(R)Ii(R) . (4.36)

Using the simplest estimate of p &om Eq. (3.35), Fig.
10 shows for several difFerent values of p the function
AE(R) in Eq. (4.36), illustrating the presence of a local
minimum at a finite value of R for suKciently large p.

instability of a liquid-solid interface [41]. In Fig. 11 we
show schematically the level curves of activator and in-
hibitor concentration near a modulated interface of the
inhibitor. The excess of inhibitor in the concave regions
of the &ont has the tendency to push those concavities
further back. Conversely, the portions of the front that
are convex outwards are locally depleted in inhibitor rel-
ative to the flat interface, and will expand further out-
ward. Both of these efFects increase the length of the
interface and its curvature, and will thus be resisted by

V. INSTABILITIES OF CHEMICAL FRONTS

A. Mechanism of the transverse front instability

The last of the three important aspects of the reaction-
difFusion dynamics outlined in the Introduction concerns
the instabilities of chemical fronts. At the level of linear
stability analysis, we will see that the mechanism of this
instability is rather similar to that of the Mullins-Sekerka

FIG. 11. Mechanism of instability of a straight chemical
front. The accumulation of inhibitor in the neighborhood of
segments of the interface that are concave inwards leads to
the deepening of the those deformations, and vice-versa for
regions that are convex outwards.
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line tension. The two effects will balance at a character-
istic length scale to produce an instability.

The instability may be understood in its simplest form
at the level of the energetics of circular domains; con-
sider again the expression in Eq. (4.36) and examine the
local limit 1/B « 1. In this limit, we use the asymp-
totics K~(z)Iq(z) = (1/2z)(1 —3/8z + . .) to simplify
the energy

( 1 l , 3~paZ = 2~a
I ~ ——p I+ ~Z'll+ + . . (5.1)

4 ) 16K

We see two consequences of the inhibitor coupling. First
there is an efFective line tension p —p/4 which may be
driven negative for suKciently large activator-inhibitor
coupling. Clearly, a negative line tension will lead to
proliferation of the interface. A negative line tension is
a common feature of fingering instabilities arising &om
the competition between Young-Laplace and Biot-Savart
interactions [20,39,42,43]. Second, at higher order in 1/R
there appears a stabilizing contribution which below we
show is like that for the bending energy of an elastic rod.
If the effective tension is negative, then this last con-
tribution will stabilize the interface against small-scale
disturbances and produce a finite-wavelength instability.

B. Approximate local contour dynamics

The heuristic notion of an effective line tension may
be made more systematic by recasting the nonlocal con-
tour dynamics in an approximate local (but still intrin-
sic) form through an expansion in powers of the pre-
sumed small curvature K, and its arclength derivatives.
The method of this expansion is similar in spirit to that
used recently [44] to study screened electrostatic poten-
tials near surfaces of arbitrary geometry. Indeed, the
inhibitor 6eld obeys the same modified Helmholtz oper-
ator as appears in the Debye-Huckel theory of colloidal
interactions [45], which leads to the screened Coulomb
interaction between elementary charges.

The curvature expansion may be constructed directly
&om the equation of motion, or first at the level of the en-
ergy functional and then carried through the variational
principle. Adopting the latter method, we first expand
the scalar product of tangent vectors in the self-induction
integral (4.4) as a power series in A = s' —s,

and the approximate local energy functional

bS[r] IIX+ pI + —p ds~
3 2

32
(5.5)

where the efFective line tension is as in Eq. (5.1):
p —(1/4) p. The term proportional to v in Eq. (5.5) is the
bending energy of an elastic line [46] and its coefficient is
positive if the activator-inhibitor coupling constant p is
positive. Under that condition, it prevents the interface
from bending on arbitrarily fine scales.

Using the approximate local energy functional (5.5),
the normal velocity of the interface is

C. Linear stability for fronts and stripes

The most fundamental instability of chemical &onts in
the present model is that of an infinite straight interface
bounding the states u = 0 and n = 1. To compute the
spectrum of growth rates of perturbations to this 6.ont,
we parametrize the interface as

r(s) = xe + ((x, t)ey . (5.7)

If we let ((x, t) = (~(t) cos(kx), the linearization of the
Biot-Savart integral is

ds'R x t(s') K, (R)

= 2(J, cos(kx)

3 ( 1—n rq AI" ——pr + —p I
K„+

D 16 g 2

Apart from the pressure term, this is the planar version
of the "curve-straightening equation" [47] that is equiv-
alent to the Rouse dynamics of the wormlike model of
elastic polymers [48]. It has the form of a Landau expan-
sion in powers of the curvature and its derivatives, and
in that sense is similar to so-called "geometric" models
of crystal growth [49]. Unlike those models, however, the
coefficients of the various terms in Eq. (5.6) are not all
independent. Thus, for instance, the terms ~„and v
must have coefFicients with ratio 2 by virtue of the vari-
ational principle applied to the energy functional (5.5).

t(s) . t(s') = 1 — 5r. —
2

and the distance function

lr(s') —r(s) I
= I&l ——&'l&l~'+ ". .

24

Substituting into the self-induction integrals and extend-
ing the limits of integration over s to +oo (with expo-
nential accuracy), we obtain

ky sin(ky) cos(ky) —1
x dyf Kgy . 58

or(k) = 6v'2D
I

—pk + — 1—p
2

where

1

&(k). &
' (5 9)

Use of the identity (1/y)Kj (y) = —Ko(y) —KI (y) and
an integration by parts transforms (5.8) into a standard
integral, Combining these results with the linearized cur-
vature, the growth rate o (k) = (Bq(@)/(A, for the single
front instability is

(5.4) f (k) = gl + k' . (5.10)
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For wavelengths that are small relative to the O(1) in-

hibitor screening length, we obtain
cation of the instability of a single kont, as well as the
boundary of stable stripes, defined by

( 1, 3
~, (k) =6v'2D

~

— p ——p k' — p—k'+.
4 16 )

(5.11)

showing, as discussed in the preceding section [see in par-
ticular Eq. (5.6)], that the instability arises from a neg-
ative effective line tension, stabilized by an elastic-type
term in k4. This result also shows that at the onset of the
instability the critical wavelength is infinite. As in the
analysis of steady states for disk solutions, Eq. (4.34),
we shall find it convenient to work in a rescaled param-
eter space with coordinates P and r as in (3.13). Setting
o(k) = 0 and do(k)/dk = 0 we obtain the critical cou-
pling constant for the instability,

4q
pf —~— (5.12)

( )2/3

4 px)
(5.i3)

Figure 12 shows in the rescaled parameter space the lo-

1.0 I I I I I I I I I I I I I I I I I J~'

0.8—

0.6

n=2 disk
instability

.. serpentine
instability

disk
stability

0.4—
le front instability

Note that this is ind. ependent of the parameter r, and
hence also of the energy difference LF, and so is equally
valid as a stability criterion for a uniformly moving
straight &ont. The critical value of p could also be ob-
tained directly &om the vanishing of the effective line
tension in (5.11). For p ) pt, the most unstable wave
vector is

(5.14)

Beyond the behavior of a single chemical front, it is
natural to consider the stability of stripes. Perturbations
to the shape of a stripe may be decomposed into those
with odd and even parity under reflection through the
stripe midline, termed sinuous (S) and varicose (V), re-
spectively. In these two situations, the interfaces bound-
ing a stripe of width 2Q* are parametrized as follows:

r~(x) = xe + [kQ* + ((x, t)] e„(S), (5.15a)

r~(x) = xe + [+Q* + ((x, t)] e„(V) . (5.15b)

A straightforward calculation yields the growth rates of
these two modes:

os(k) = or(k) —3V'2Dpe '&
~

j — e
—'& ~t'~"l —'j

~,f(k)
(5.16a)

o'v(k) = or(k) —3V 2Dpe ~
~

1+ e
1

f(k) r

(5.16b)

In each case, the growth rates are less than that of the
single front. The sinuous mode grows faster than the
varicose, whose damping at k = 0 reflects the local sta-
bility of the preferred stripe width. This is consistent
with what is known in other contexts, for instance in the
buckling instability of magnetic stripes [18]. Figure 13
shows these growth rates for typical values of the param-
eters. The greater stability of a stripe relative to a single
&ont may also be revealed by the onset of its sinuous in-
stability at higher values of p. Expanding the growth rate
(5.16a) to order k as in Eq. (5.11), we obtain marginal
stability conditions by setting the coefFicient of k to zero,
yielding the transcendental equation

0.2—
~2 r /3pl= p i ——i+in I—

3p (&) (5.17)

0.0
0.0 0.1

no stripes
I I I I I I I I I I I I I I

0.2 0.3 0,4 0.5

(r —1/2)/v D

FIG. 12. Stability diagram for stripes, in the asymptoti-
cally rescaled parameter space. The coalescence of the sin-

uous instability of a stripe and the instability of a single
front as r ~ — reBects the diverging equilibrium width of
the stripe. Note that the sinuous instability lies in the region
of azimuthally stable localized states.

A numerical solution to this is shown in Fig. 12, where
we see that this stability boundary properly merges with

that of a single front as r —+ 2, and the equilibrium
stripe width Q* diverges. Note that Eq. (5.17) is pre-
cisely the condition that the structural energy per unit
length of the stripe (3.12) vanish. That these two condi-
tions are related. is seen by the fact that the coefIicient
of k in the stability analysis is an effective line tension
or energy per unit length. Beyond this stability bound-
ary, the proliferation of stripes (straight or buckled) is
energetically preferred.
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v (r) = v„(R*) —(R' [K&I& —I„'K„']sinn8, (5.21)

where the correction also vanishes for the n = +1 modes.
Collecting the O(g) corrections from the front speed

dynamics (4.28) yields the linearized growth exponent
for the nth-mode perturbation

u„= 6V'2D p 2 + pR' [K~ Iq —I„*K*] . (5.22)
(1 —n')

The neutral curves for the lower mode instabilities acting
on the disk solutions of region (a) are shown in Fig. 9.
Coincidentally, note that the convergence point for these
curves is identical to the critical p, (5.12) which is where
B* is naturally large. The fact that the instabilities of
disks and straight &onts derives &om a common mecha-
nism is demonstrated in the limit of large disks yet finite
wave number k = n/R*, yielding

FIG. 13. Spectrum of growth rates for instabilities of iso-
lated planar fronts, and the sinuous and varicose instabilities
of stripes of finite width. Parameters are D = 0.01, p = 0.3,
and 2Q' = 1.5. The single front is more unstable than the
6nite-width stripe, while the varicose mode is the most stable,
particularly as k ~ 0.

llm CT(g ~gRi) = 0y(k)
n, R'moo

VI. NUMERICAL STUDIES

A. Simulation of PDEs

(5.23)

D. Arimutbal instability of disks

The evolution equation (4.33) that establishes the size
of equilibrium disk solutions (4.34) also determines their
nonlinear stability to radial perturbations. For azimuthal
disturbances, the growth exponents are obtained by con-
sidering a disk whose radius develops a small sinusoidal
variation

r = R' + g(t) sinn8 . (5.18)

The linearized curvature of the interface as calculated
using (4.24) is

K + (n2 —1) sin n8,&(t) .
(5.19)

where it is noted that the n = +1 perturbations are
equivalent to simple translations of the disk. In this near-
circular geometry, it is advantageous to use the bulk ap-
proach to solve for the inhibitor field, since the leading-
order correction to the unperturbed inhibitor field in-
volves only a single eigenmode. To O(g), the inhibitor
field v (r) is

o( 8) o( )
(R'K„'I~(r) sinn8, r (R
gR'I„'K„(r) sin n8, R ( r,

(5.20)

where vo(r) is given in (4.32), K' = K (R') and I' =
I (R ), and the continuity conditions must now be im-
posed on the perturbed interface. This gives the cor-
rected value of the inhibitor on the interface,

In this section we present numerical studies of the
reaction-difFusion dynamics (2.1) to verify the stability
results discussed in the preceding section, within the con-
text of the parameter space of Fig. 12. In the subsequent
section we investigate the contour dynamics for compar-
ison. These numerical studies were performed using a
pseudospectral algorithm in a two-dimensional periodic
domain. The algorithm is outlined in the Appendix. In
showing the time evolution, it is convenient to adopt a
rescaled time r—:/2D(r —1/2)t.

The first phenomenon illustrated is the two-
dimensional version of the approach in one dimension of
two chemical &onts illustrated in Fig. 5. This is shown
in Fig. 14 starting &om an initial condition in which the
two &onts are far apart and given a modulation by a ran-
dom collection of Fourier modes. To indicate the sym-
metry of the underlying PDEs given in Eq. (2.5), the
parameters chosen (D = 0.01, p = 0.2, r = 0.4) are such
that the state u = 1 is the more stable and invades the
regions with u = 0. The straight &ont is linearly sta-
ble, so in addition to the net motion of the &onts toward
each other, these initial modulations relax. As in the one-
dimensional studies, for these parameter values the &onts
do not cross, coming to rest at a finite distance set by the
detuning r —

2 and the inhibitor coupling p. Similar be-
havior has been seen in the iodide-ferrocyanide-sulfate
reaction [1], as well as in. simulations of the Grey-Scott
model [2].

The growth of a labyrinthine structure &om a compact
initial condition was illustrated in Fig. 2. The parame-
ter values for this computation, r = 0.2, p = 1.5, are in
the region of rescaled parameter space in which the sim-
ple disk solution is unstable to many azimuthal modes.
The black regions in the figure are those within which
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FIG. 14. Contour plots of the activator u from numerical
simulations of the reaction-diffusion model in two dimensions.
Parameters are D = 0.01, r = 0.40, and p = 0.20. In analogy
with the one-dimensional front-repulsion phenomenon shown
in Fig. 5, the approaching chemical fronts do not cross, and
equilibrate to a simple stripe. Rescaled times are in incre-
ments of A7 = 6 from upper left to lower right.

u & 2. We see in the early stages of the evolution the
growth of Bngers of a well-defined width this is the
behavior discussed by Ohta, Mimura, and Kobayashi [8].
Several of the fingers undergo tip splitting. Their mu-
tual repulsion leads eventually to a space-Glling labyrinth
that apparently converges to a steady state. This conver-
gence is clearly a consequence of the front self-avoidance
in the periodic computational domain. The interactions
between the fronts have been such as to create a rather
uniform width to the fingers of u = 1, as well as to the
intervening regions with u = 0. Besides their similar-
ity to the experimental patterns of Lee and co-workers
[1,2], the phenomenology of this pattern formation has a
very strong resemblance to that seen in magnetic Q.uids
[17] and superconductors [21], as vrell as thin garnet films
[22 .

By changing the coeKcients to r = 1, p = 1, we en-
ter the regime in which the localized disk is stable, and
a branched structure may relax to it without Bssioning.
This is shown in Fig. 3, in which the starting Geld con-
figuration is panel (c) in Fig. 2. Again, this shape relax-
ation is like that seen in the iodide-ferrocyanide-sulBte
reaction, as well as that observed in magnetic Buids in
Hele-Shaw Row when the applied magnetic Beld is re-
moved and surface tension returns a Gngered structure
to the circular ground state [20].

The front interactions responsible for labyrinthine Gn-

gering instabilities of a single domain naturally appear
in the interactions of multiple domains, and can lead to

FIG. 15. Pattern formation with multiple domains of acti-
vator. D = 0.01, r = 0.60, p = 0.30, A7 = 2.36. The domains
each undergo fingering instabilities, but do not merge.

patterns composed of disconnected but highly interdigi-
tated regions. Figure 15 shows contour plots of the evo-
lution starting from an initial condition with two small,
nearly circular domains. Despite the complex Bngering
instabilities, the domains retain their integrity and do
not merge. This multiple-domain problem is rather sim-
ilar to that observed in the intermediate state of type-I
superconductors (see also Sec. VIII).

An important aspect of the evolution of compact do-
mains concerns the possibility of domain Bssion and fu-
sion. As is quite common with interfacial treatments of
pattern formation, the contour dynamics is not asymp-
totically valid when regions of the interface approach each
other near the reconnection point. The full PDEs for the
activator-inhibitor pair are, however, well deBned dur-
ing these events, and both Bssion and fusion are possi-
ble if the pressure driving the interfaces together is large
enough or, conversely, the inhibitor-induced repulsion is
small enough. This has also been observed in experi-
ments [2].

B. Simulation of contour dynaxnics

Next we turn to numerical studies of the nonlocal con-
tour dynamics. The numerical method for this, outlined
in the Appendix, has been employed elsevrhere [43] for
analogous problems in nonlocal interface motion. It is
based on a pseudospectral treatment of the tangent-angle
representation of the dynamics.

The most elementary instability of a localized state is
the elliptical one, illustrated in Fig. 16. Here, the initial
condition is a solution of the equilibrium condition (4.34)
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FIG. 18. Instability of a fourfold vertex. Contour dynam-
ics results, the initial condition being a fourfold perturbed
localized state with an additional very small n = 2 distortion.
r = 0.212, p = 1.10, Av = 5.

FIG. 16. Numerical simulation of contour dynamics show-
ing destabilization of a circle. Lower panel shows perimeter
as a function of time, illustrating the asymptotically linear
growth. Parameters are r = 0.212, p = 0.796, with A7 = 25.
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for a localized disk, perturbed with a small amplitude of
the n = 2 mode. After a short transient, the domain
enters an era of linear elongation as illustrated in the
lower panel of the figure. This linear growth is a reflection
of the negative structural energy density (3.12) for the
parameters r = 0.212, p = 0.796.

Increasing the value of the inhibitor coupling to p =
0.90 renders the localized state unstable to the mode
n = 3 (as well as to the elliptical mode). The bulbous tips
that form during the elliptical instability have a nonzero
projection onto the n = 3 mode, leading to tip split-
ting events. This is shown in Fig. 17. In this regime of

parameter space, each time a new tip is formed it is sus-
ceptible to tip splitting, leading to a cascading process
and a proliferation of threefold coordinate vertices.

For p larger still, we may investigate one of the com-
mon features of labyrinthine structures seen in dipolar
systems as well as in chemical reactions: the appearance
of threefold nodes to the exclusion of all others of higher
coordination. For certain kinds of optimization problems
involving the minimization of interface length under the
constraint of fixed endpoints, it is known that threefold
nodes are the only stable vertices [50], but no such result
is known in the present context. The numerical simu-
lations strongly suggest, however, that higher-order ver-
tices are dynamically unstable. Figure 18 shows the evo-
lution of an initial condition consisting of a localized disk
modulated by fourfold perturbations of several percent
and a twofold distortion one fiftieth as large. A crosslike
vertex forms quickly, but is unstable to the elliptical per-
turbation, splitting into two threefold vertices.

Having seen in isolation the elementary processes un-
derlying labyrinth formation, stripe formation and pro-
liferation, tip splitting, and vertex reduction, we show in
Fig. 19 the appearance of a labyrinthine pattern from a
compact initial condition. The characteristic feature of
interface repulsion and the appearance of well-defined fin-
ger widths is readily apparent. Unlike the simulations of
the PDEs, the contour representation does not naturally
build in periodic boundary conditions, so the long-time
evolution of the two will differ significantly. Changing
the coefficients so that the localized disk is both radially
and azimuthally stable, we see in Fig. 20 the relaxation
to a compact state of a branched initial condition taken
from near the the end of the evolution in Fig. 19.

VII. BEYOND THE SLAVING LIMIT
FIG. 17. Tip splitting in the contour dynamics. Initial

condition is a localized state perturbed by a small n = 2
distortion. Parameters are r = 0.212, p = 0.90, Av = 10;
both the n = 2 and n = 3 modes are unstable.

As we have discussed so far, the limit ~ ~ 0 renders the
dynamics an overdamped gradient flow, associated with
a Lagrangian variational principle in which the kinetic
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FIG. 19. Growth of a labyrinth from a compact initial con-
dition. Contour dynamics results proceed in time from up-
per left to lower right, spaced by Aw = 5. Parameters are
r = 0.21, p = 1.10, and initial condition is a distorted circle
of radius A = 6.0.

FIG. 20. Relaxation of a labyrinthine pattern to a localized
state. Initial condition. is close to the final panel in Fig. 19,
with parameters r = 0.21, p = 0.601, and time between figures
of A~ = 25.

v(x, t) = f dt dx't (x '—x', t —t')u(x't), ',(7.S)

where for t ) 0 the Green's function is

energy is neglected and the dissipation function is local.
As the recent work of Hagberg and Meron [26,27] has
emphasized, the nature of the chemical fronts between
the two metastable values of the activator may be quite
difFerent in the two extremes of slow and fast inhibition.
From Eq. (4.28), the time scale of the front dynamics is
uq ——O(D), so that in actuality, the fast-inhibitor hmit
only requires that e D (( 1 —so that the value of e can be
quite large. Extending this contour dynamic approach
beyond this fast-inhibitor limit represents a significant
challenge. Nevertheless, an intuition for how oscillatory
behavior might arise with finite e is suggested by argu-
ments using contour energetics.

For e g 0 we may solve the inhibitor dynamics (2.4b)
for v in terms of u,

where go(x) = (1/2vr) Ko (x) and the remaining functions
G, are

gi(x) = ——xKi (x), g2(x) = x K2 (x) . (7.4)
1 1

4' 16m

E p dx g2(x —x )ups(x, t) +2 I I I bf
bu

—ui —cp dx gi(x x )ui(x t't) (7.5)

This conforms to the variational principle in Eq. (3.7),
having the form

(7.6)

Note the very important feature that the order e kernel
gi is negative, while the second-order kernel is positive.
Up to quadratic order in e the nonlocal activator dynam-
ics may be written in the following form:

1 E3C
G(x, t) = exp

4vrt 4t
(7.2)

but now with a finite kinetic energy functional

7 = —e p dx dx ug(xt t)g2(x —x )ug(x, t), (7.7)

Clearly c is the natural time scale for the decay of G,
and if we take the liberty of expanding the integral for
slowly varying u we obtain u(x', t') u(x', t) + (t'—
t)ui(x', t)+(-,')(t' —t)'upi(x', t)+, substitute into (7.2)
and perform the time integrations. Each power of t' —t in
the expansion will contribute a power of e. Up to order

we obtain

and a nonlocal contribution to the dissipation function

'R = — dxu, (x, t)
2

u(x, t) = dx'(gp(x —x')u(x', t)

+hagi(x —x )ug(x t)

+e g2(x —x.')u~~(x', t)), (7.3)

The positivity of g2 renders the "mass" of the field dy-
namics positive, while there is a competition between the
signs of the local and nonlocal parts of the dissipation
function.

A heuristic derivation of the leading-order changes to
the contour dynamics from the inclusion of nonzero ~ pro-
ceeds as in Sec. IV. Starting from the dynamics for u in
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(7.5) or equivalently the functionals in (7.7) and (7.8),
we recognize that the time derivative ut and acceleration
utt are localized. at the domain boundary. Using a corre-
spondence like that in Eq. (3.9), we obtain the contour
representation of the kinetic energy,

2 2

7 ds ds'n rq g2(r —r') n ri,2D
(7.9)

and dissipation function

'R = ds (n r~)2D
'Y P& f I a fds ds n. r, g, (r —r )n r .
2D2 t (7.10)

VIII. NONLOCAL CONTOUR DYNAMICS
IN OTHER SYSTEMS

We have focused here on the fast-inhibitor limit of a
reaction-diffusion system and demonstrated that its be-
havior is well described by a nonlocal contour dynamics
mod. el. In this limit, where the inhibitor is slaved to the
activator, the dynamics is a gradient How with an energy
functional of the form

d[r] = IId+pL ——p dr]dr't. t d'(R/t), '
2

(8.1)

with B = ~r(s) —r(s') ~, and a normal velocity U propor-
tional to the force obtained variationally as —n bf/br,
with

U = —II —pv. + — ds'R s, s' x t'O' B h . 8.2

This kind of nonlocal dissipation function occurs as well
in the analysis of certain models of solidification [51,52]
and is conceptually similar to the role of the Oseen tensor
in polymer dynamics [53].

The interpretation of this dynamics as a damped me-
chanical system is complicated by the nonlocal nature of
the kinetic energy and dissipation functionals. With the
function gi ( 0, the overall rate of dissipation is positive
for small e but may become negative for e suKciently
large, say of order 1/p. One expects qualitatively new.

behavior in this limit. Moreover, the inclusion of inertial
terms in the dynamics makes the analysis of traveling-
wave states qualitatively different &om that in the over-
damped limit. Specifically, an ansatz of the form u(x —ct)
yields a cubic equation for the speed c, with three pos-
sible roots, in contrast to the unique speed found in the
limit e -+ 0. These two roots most likely represent those
associated with the nonequilibrium Isirig-Bloch front bi-
furcation discussed by Hagberg and Meron [27], and are
related to the oscillatory instabilities discussed by Ohta,
Mimura, and Kobayashi [8] for the case of simple geome-
tries.

Developing a theory for the asymptotic stability of the
labyrinthine patterns is one current effort [54]. It is hoped
that results in this direction will lead to a quantitative
connection between the problem of Bnite inhibitor difFu-
sion (e g 0) and the onset of time-oscillatory behavior.

In this section we make specific the connections between
this form of dynamics and those found in several other
quite distinct physical systems. These are (i) type-I su-
perconductors in the intermediate state [55], (ii) mag-
netic Huids in Hele-Shaw Bow [17,20,39,42,56], and (iii)
Langmuir monolayers of dipolar molecules [43,57]. While
the functions 4 differ from one system to the next, the
common feature we Bnd in each is a positive bare line
tension p, and a repulsive interaction between antiparal-
lel tangent vectors, with p ) 0. Interfacial instabilities
leading to fingered structures are then seen to derive from
a negative effective line tension arising &om the nonlo-
cal contribution. It is this same nonlocal coupling of the
interface that leads to the self-avoiding nature of the pat-
tern formation beyond the linear instability. We discuss
each of the three systems below, pointing out the dif-
ferent physical origins of the nonlocal coupling, and the
different constraints on the interface motion.

Type-I superconductors. The intermediate state of
type-I superconductors occurs when a thin slab of the
material below its zero-Beld. transition temperature is
placed in a magnetic field normal to its surface [21].
Rather than exhibit a complete Meissner effect, the de-
magnetizing effects arising &om the sample geometry
lead instead to the penetration of the Hux through the
sample in an intricate arrangement of Hux domains, each
of which is fingered and often branched. The shapes of
these Hux domains arise from a competition between the
positive superconductor-normal surface energy and the
interactions between the Meissner currents which circu-
late at the Hux domain boundaries. As argued many
years ago [58,59], this self-induction interaction retains
its long-range form as in free space, since the electro-
magnetic fields in the vacuum above and below the slab
are unscreened. In the simplest treatment of these in-
teractions [55], they are considered identical to those of
current loops in completely &ee space. Upon averaging
the standard Coulombic self-interaction between elemen-
tary current segments over the thickness h of the slab,
one finds a tangent-vector coupling for a single interface

2 i/24(z) = —ln z + (1+z ) +z — 1+z
—O(z) = 1+z —1,2- i/2

(8 3)

where the characteristic length scale is h. While retaining
the Coulombic form 4(z) 1/z for z ~ oo, O has only a
logarithmic singularity at the origin, much like the Bessel
function Ko in the reaction-difFusion problem considered.
here.

Interface motion in superconducting systems does not
conform to the simple local-dissipation model discussed
in Sec. IV, but rather reHects the diffusion of the mag-
netic 8ux in the normal phase [60]. Thus, the force (8.2)
becomes a boundary condition for the diffusion equation
obeyed by the Beld, rather than determining the velocity
directly [38]. In simple models of this pattern forma-
tion [55], in which the local dissipation model is invoked,
this conservation law leads to the generalization of the
product IIA in Eq. (8.1) to the derivative of a bulk free
energy density E'~„iI,(A), which arises from the competi-
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tion between the field energy of the external magnetic
field and the condensation free energy of the supercon-
ducting state. The conservation of magnetic flux is an
important global constraint in this problem, and leads to
an equilibrium area &action of the domains that is deter-
mined primarily by the minimization of this energy; the
shapes of the individual interfaces arise from the compet-
ing line tension and Biot-Savart interactions. Unlike the
reaction-diffusion problem, the intermediate state prop-
erties are determined fundamentally by many-domain in-
teractions.

Magnetic fluids. A second physical system conform-
ing to the energetics in Eqs. (8.1) and (8.2) is that of
tlun domains of magnetic fluids [17] in the geometry of
Hele-Shaw flow. There, the domain is trapped between
two glass plates spaced a distance 6 apart, with the re-
mainder of the gap filled by water. A magnetic field
applied normal to the plates aligns the microscopic mag-
netic domain in suspension, creating an approximately
uniformly magnetized droplet. By the correspondence
between magnetization and current loops, the Beld en-
ergy associated with the domain is again represented in
terms of a self-induction interaction, with the functions
4 and 4' as in (8.3) by virtue of the slab geometry. The
amplitude p is now proportional to M h, , where M is
the magnetization of the domain, and the line tension
p = ho, with 0 the ferrofluid-water surface tension.

In this hydrodynamic problem, the dynamics is well-
approximated by Darcy's law v = —(h /12')VP, where
v is the z-averaged in-plane fluid velocity, g the fluid vis-
cosity, and P a generalized pressure including magnetic
contributions [20,42]. With the constraint of fluid incom-
pressibility, the pressure Beld is harmonic, with the force
(8.2) again acting as a boundary condition on P. The
fluid incompressibility leads directly to the conservation
of the area enclosed by the boundary.

Langmuir monolayers. The final class of systems gov-
erned by these energetics includes amphiphilic (Lang-
muir) monolayers at the air-water interface. These
consist of single- or multiple-component monomolecular
films of surfactants in which the mean lateral density is
regulated externally, allowing for a study of phases and
phase transformations. Under suitable conditions, do-
mains of a high-density phase appear in a background of
lower density and may be visualized by the differential
fluorescence of a dye incorporated into the layer. One
observes various shape instabilities of these domains as
conditions such as temperature and pressure are varied
[16]. These are believed to arise from the competing ef-
fects of line tension at the domain boundary and long-
range electric dipole interactions between the molecules
which are oriented by the constraint of packing. The en-
ergetics of' these interactions may be descnbed [43] by
taking the "ultrathin" limit of the magnetic formulation
(8.3) above, with the cutoff h being a molecular length,
and the amplitude p proportional to the square of the
dipole moment density p. In the limit of small h, , the
self-induction and Biot-Savart terms have the form asso-
ciated with infinitesimal current-carrying wires [57],

4(z) = —, —4"(z) =1 / (8.4)

A cutofF procedure must be implemented on these func-
tions to treat the divergences that occur when s —s' —+ 0.
As in the superconductor problem, in the simplest model
[43], II is a Lagrange multiplier conjugate to the area.
Experiments [61] have shown a variety of fingered do-
main shapes consistent with the boundary model. More
recent work has focused on the hydrodynamics of mono-
layer domains coupled to the viscous subfluid [62,63].

The nonlocal energy functional E'[u] in Eq. (2.18) is
known also to be relevant for physical systems quite
distinct from those with dipolar interactions, appear-
ing, for instance, in models of microphase separation in
block copolymers [64]. There the nonlocal coupling is
long-ranged, reflecting the connectivity of the polymers.
Labyrinthine patterns occur there as well (see also the re-
view in Ref. [23]), but are not necessarily confined to two
dimensions. It has also been remarked [65] that this non-
local interface coupling may be related to the diffusion
of impurities and/or latent heat in solidification, which
leads to some degree of interface self-avoidance seen in
the development of dendrites. Such behavior cannot be
captured by purely local geometric [49] or boundary-layer
[66] models. Finally, observe that the Biot-Savart cou-
pling also appears in the contour dynamics formulation
[67—69] of vortex patch motion in two-dimensional ideal
fluids. Rather than exhibiting strongly overdamped dy-
namics, these are of course Hamiltonian systems.

IX. CONCLUSIONS

Finally, we discuss briefly three important open issues
regarding the dynamics of labyrinthine pattern forma-
tion: generalizations to higher spatial dimension, further
elucidation of variational principles, and derivation from
microscopic chemical kinetics.

We have seen that the phenomenon of lateral in-
hibition necessarily involves interactions between seg-
ments of chemical &onts that are potentially far apart in
arclength, yet close in space. It is precisely this nonlocal-
ity that enters the energetics (8.1) and dynamics (8.2).
Whereas in the magnetic systems the angular part of
the current-current interactions is naturally written as
t(s) t(s') in accord with the existence of currents circu-
lating in the direction t, there is no such circulation in
the reaction-difFusion problem. But of course, as seen in
the derivation (4.3), this scalar product may equally well
be written in terms of the normal vectors as n(s) ri(s').
This formulation makes it clear that the central issue is
whether or not &onts oppose one another with a region of
low activator concentration in between. The normal vec-
tor representation allows a straightforward generalization
to the interaction of two-dimensional surfaces, for which
there is no natural or unique assignment of tangent vec-
tors. We suggest that certain three-dimensional patterns
may be profitably studied by models embodying this non-
local interaction. In addition to the block copolymer sys-
tems mentioned earlier, other candidates include highly
convoluted structures such as brain coral, which displays
labyrinthine structures with features such as threefold
coordinated nodes like those seen in the present work.
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One may imagine that these arise from the interplay be-
tween growth of individual members of the colony and
the competition for nutrients.

As discussed in Sec. VII, a heuristically derived con-
tour dynamics for small deviations from the fast-inhibitor
limit appears to conform to a rather general variational
principle much like that of a damped mechanical sys-
tem. An issue of some significance is the extent to which
the contour dynamics approach may be more rigorously
extended to incorporate the front bifurcation that ul-
timately occurs for ~ sufFiciently large. Related issues
concern the connection between such a description and
spiral-wave behavior, as well as the nature of the front
bifurcation for surfaces moving in three dimensions.

In light of the present derivation of the contour dy-
namics from the FitzHugh-Nagumo model, it remains of
great interest to investigate as well whether the particular
chemical kinetics [70] relevant to the experiments of Lee
and co-workers [1,2] may be recast as an interface dynam-
ics. Recent work [71] has shown that those very complex
kinetics have dynamics on many time scales and may
be reduced to an effective two-variable model through a
sequence of slaving approximations. While the form of
that reduced description is somewhat different than the
FitzHugh-Nagumo model, the possibility that it shows
similar, near-gradient-fIow behavior is an intriguing area
of investigation.
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APPENDIX: NUMERICAL METHODS

Here we summarize established pseudospectral meth-
ods [72,73] that we have adapted to study both the
reaction-diffusion dynamics and the contour evolution.
For the case of a scalar partial differential equation in
1 + 1 dlmenslons

with w(k) = Z(ik). The nonlinear terms are obtained
pseudospectrally by fast Fourier transforming A' in real
space, A (k, t) = %[A (u(x, t) )), and u(x, t) is computed
by an inverse fast Fourier transformation of u(k, t). Now
define

6(k, t) = e " 'u(k, t), (A3)

and multiply (A2) by the exponential factor, yielding

( ~ ) ur(k—)tg-'(u(k)t

ln the simplest Euler method, the solution to Eq. (A4)
1s

u( 1 + ) ( & ) w(k)t—g (k 't) m(k)t (A5)

which yields

u(k, t + At) = e (")~' u(k, t) + AtA/(k, t) (A6)

(k) ~(k)At/2 L (k) ~(k)At (A7)

and the intermediate results

Ug(k) = I,/2(k)[u + 2b, tA'(u)],

U2(k) = L,/2(k)u+ 2btAg,

U. (k) = I(k)u+ ~tI.„2(k)%2,

(As)

(A9)

(A10)

with JV& ——A U~. . Then the time-stepping routine

analogous to (A6) is

u(t+ At) = I(k)u+ —,'AtI(k)JV+ —,'btI. ,/2(k)A',

+ 3+t~] /2 (k)~2 + s +Mr3 ~ (A1 1)

The exponentiation of the growth rate w(k) in (A6) plays
a useful role in guaranteeing stability for a diffusive linear
operator [w(k) = —pk ]. The usual stability considera-
tions [74] would require a time step At such that for
large values of momentum (near the Brillouin zone edge
k „= vr/a, with 0, the lattice spacing in real space)
the quantity k Lt be less than unity. This requires an
extremely small time step, rendering the calculation pro-
hibitively slow. Here, even if I(' At ) 1, the calculation
is stable due to the incorporation of the exact dynamics
of the linear operator, namely the exponential damping
at high momentum.

The generalization of Eq. (A6) to a fourth-order
Runge-Kutta method proceeds as follows. De6ne

= Z(c) )u+ JV[u],

where 8 is a linear operator and JV is nonlinear. We
assume that the highest-order spatial derivative appears
in the linear operator. In Fourier space (Al) is

(A2)

u, =A u+A, (A12)

with A a matrix of wave-vector-dependent growth rates
in. Fourier space and A' a vector of nonlinear terms ob-
tained pseudospectrally. Now suppose that det A —uI =

To generalize this method to situations with n coupled
variables u, (i = 1, 2, . . . , n), we write the equation of
motion in Fourier space in vectorial form
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a, = T-x n T a+ T-x.g. (A13)

The matrix D = T A T is diagonal. Now let v =
exp( —Dt)a, so

0 has as solutions eigenvalues u; and associated eigen-
vectors e, (i = 1, . . . , n). The matrix T whose columns
are the components of the eigenvectors de6nes a linear
transformation between u and the vector a of expansion
coefBcients in the basis of eigenvectors. That is, u = T.a,
where T T = I. The equation of motion (A12) then
becomes

suiting transform is

k2
~(k) = D—k —r+ p 1+k2 ' (A22)

precisely the growth rate of the mode + in Eq. (2.7).
The diffusive contribution —Dk dominates at large wave
vector.

Contour dynamics. In numerical studies of the contour
dynamics, we have employed techniques described else-
where [39,43], summarized briefly here. Starting from an
equation of motion in the form

—DtT —i g' (A14) rt ——Un+ Wt, (A23)

It follows that for a Euler method, one need only know
the matrix

we study the evolution of the tangent angle [49] 0(s),
related to the curvature by K(s) = 08/Bs [49],

D&trp —1 (A15) (A24)

for then

u(k, t+ At) = L. u(k, t)+AtA'(k, t) (A16)

whereas in the lunge-Kutta method we obtain the vec-
torial analog of Eq. (All), 8(n, t) = 2z.ex+ /(a, t) . (A25)

The spectral method described above requires that we
utilize a periodic function. A convenient choice is the
deviation g of g froxn the linear form 8 = 2ms/I for a
circle,

(A17)

where

u(k, t+ At) = L u(k, t) + sb, tL A'+ sAtLxg2 A'x

+-,xAtLx&, .JV, + —,xAtA&,

A natural choice of gauge is that of "relative arclength, "
for which equally spaced points in the parametrization
n = s/L remain equally spaced in tixne. This corresponds
to a tangential velocity [39,43,49]

Z rp D&t j2rlt —1
X/2 =

and the intermediate results are

ui ——Lx)2. [u+ 2htJV (u)],
u2 ——Lx(2. u+ 2AtAx,

u3 —L ' u + AtLx/2 ' JV2

{A18)

(A19)

(A20)

(A21)

1 a
W(n) = I

~

n dn'rU — dn'IcU
[

0 0

L,2 /~2 (A27)

The highest-order arclength derivative in the @ dynamics
is then diffusive,

with JV, = JV (u, ).
The fast-inhibitor limit. In the limit e = 0, Eq. (2.17),

the single equation of motion for u contains a contribu-
tion that while nonlocal is nevertheless linear. Since it
is a convolution, it is local in Fourier space and can be
incorporated directly into the linear operator Z. The re- It —— dsKU . (A28)

and amenable to the integrating factor method outlined
above. The dynamical variables of the problem are then
@ and the contour length I which obeys the simple evo-
lution
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