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Interface stretching during mixing of a two-phase Quid in shear How is investigated numerically by
introducing a mesoscopic description of the Quid. Zhe classical infinitely thin boundary of separation
between the two phases is replaced by a transition region of small but finite width, across which the
order parameter of the two-phase Quid changes continuously. We consider the case of a conserved
scalar order parameter and a Quid velocity that satisfies a modified Navier-Stokes equation that
includes an explicit coupling term to the order parameter. In the macroscopic limit of a very thin
interface, this coupling term gives rise to capillary forces. We focus on the limit of low Reynolds
number Bow and compute the interface stretching as a function of time for a range of parameters
of the Quid. At early times and small coupling, our calculation agrees with the classical case of a
material line passively advected by the How. At later times, the interface stretching is seen to reach
a maximum as capillary forces and diffusive relaxation of the order parameter become dominant.

PACS number(s): 68.10.—m, 82.20.Wt, 05.70.Ln, 47.11.+j

I. INTR.ODU CTIDN

We present a computational approach, based on a
mesoscopic description of a two-phase Quid, to study the
motion of an active interface that separates two coexist-
ing Quid phases when the flow is driven by an externally
imposed shear stress. The configuration considered here
is that of cavity flow, a widely studied case that approx-
imates the mixing conditions found during extrusion [1].

The classical mathematical description of Inultiphase
Qows involves the solution of a moving boundary prob-
lem. In it, the equations governing Quid motion are
solved inside each phase, subject to boundary conditions
on the moving interface. In the particular case in which
the two phases are being mixed by the action of an im-
posed flow, the spatial regions occupied by either phase
are d.eformed, the amount of interface area per unit vol-
ume increases with time (interface stretching), and the
characteristic length scale of the resulting microstructure
decreases. Under these conditions, a numerical solution
of the coupled equations governing fluid. Qow and inter-
face motion becomes extremely complex.

The method described in this paper applies to both
passive and active interfaces, although we focus mostly
on the latter case. A passive interface separates two sim-
ilar Quids and has negligible interfacial tension. Hence
the interface is convected by the Qow without afFecting
it. If interdiffusion is also negligible, any material region
stretches and folds by the action of the Qow. If inter-
diffusion is not negligible, any sharp interface between
the two phases becomes progressively diffuse and the ex-
tent of mixing of the two phases has to be characterized
not only by the interface stretching but by the spreading
of the level sets of the composition field as well. A mov-
ing active interface, on the other hand, modifies the flow
through capillary effects. Furthermore, as the character-

istic length scale of the resulting microstructure during
mixing becomes smaller and smaller, surface tension ef-
fects become dominant leading in some cases to domain
breakup.

We introduce in this paper a computational method
to study the motion of an initially Qat interface that sep-
arates two coexisting thermodynamic phases, under the
action of an externally imposed shear flow. We aim at de-
scribing microstructure evolution during mixing in terms
of the amount of interface area per unit volume of the
Quid and of the geometrical shape and distribution of
the domains of the two phases. The basic idea underly-
ing the method. is to replace the dividing surface between
the two coexisting phases by a transition region of small
but finite width, across which the various thermodynamic
variables change continuously. Thus the original moving
boundary problem is replaced. by an ordinary system of
partial differential equations, with solutions that are con-
tinuous throughout the system but have large variations
in the interfacial region.

Our approach follows the same general principles as
Ginzburg-Landau models of phase separation [2], phase
field models of solidification [3—7], and various phe-
nomenological models used to study the decay of fluctua-
tions at a critical point [8]. The model that we study was
originally introduced to analyze the relaxation of critical
fluctuations in simple or binary fluids (model H) [8,9] and
critical fluctuations of fluids [10,11] or polymers under
shear [12]. We focus here on a difFerent region of param-
eters (away from any critical point), such that there are
large regions of space in which the order parameter P(r, t)
is almost uniform (bulk phases), separated by interfacial
regions of small width (, over which the order parameter
changes continuously. Additional previous work in this
region of parameters includes the study of hydrodynamic
effects during spinodal decomposition in a binary fluid
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[13,14]. We finally note that the model equations that
we use below can be derived by following the methods of
continuum mechanics [15].

Moving boundary problems arise in a variety of disci-
plines such as combustion, multiphase Qows, and crystal
growth. Analytic solutions are rare and a large num-
ber of computational approaches have been developed (a
review of the general ideas behind the various methods
can be found in Refs. [16,17]). Hyman [16], for exam-
ple, has divided interfacial tracking methods into surface
tracking, volume tracking, and moving mesh methods. In
surface tracking methods, the interface location and mo-
tion are defined by the position and motion of a number
of "marker particles, " which are advected by the Qow
without modifying it. Surface tracking methods often
fail when there are changes in the topology of the inter-
face (such as the reconnections that appear during coa-
lescence) or when noncontiguous elements of the interface
become too close to each other. The most often used vol-
ume tracking methods are the so-called "volume of Quid"

(VOF) methods [16,18—21]. These are generalizations of
the marker and cell method in which marker particles are
replaced by a function, called the fractional volume of
fluid function, that is discontinuous at the interface and
is passively advected by the Qow. Recent extensions of
these methods involve the introduction of a color or indi-
cator function [19—21] that changes continuously across
the interface. In eKect, the mathematical boundary of
separation between the two Quids is replaced by a transi-
tion region of small but finite width. Further extensions
have incorporated capillary forces as body forces in the
Navier-Stokes equation and thus active interfaces have
been considered. From a computational standpoint, the
approach that we follow in this paper is very similar to
these latter methods. However, there are two important
differences. First, the order parameter (which plays a role
analogous to a color function in terms of distinguishing
the two coexisting phases) does have a physical mean-
ing: it is a thermodynamic variable upon which the free
energy of the system depends. As a consequence, and
in contrast to VOF methods, the surface tension of the
interface is not an independent parameter, but is deter-
mined by this same free energy. The second difFerence
is that the equation being solved for the color function
C(r, t) in VOF methods is

BC
Bt

+e. V'C =0.

Differential velocities across the smeared interface result
in an artificial broadening of the interfacial region as a
function of time. To compensate for this problem, the
color function is continually redistributed around the new
location of the interface in some predefined way that de-
pends on the particular algorithm being employed. In
our method, the relaxation of the order parameter field
is driven by local minimization of the free energy. This
ensures that the transition region separating the two bulk
phases retains its integrity throughout the calculation.

Finally, in moving mesh methods the two bulk phases
are discretized into elements such that the interface
coincides with element boundaries. In problems in

which large deformations of the interface occur, frequent
remeshing is required, rendering the method impractical.
Also for active interfaces, special treatment is necessary
because of the multivaluedness of the pressure at the in-
terfacial nodal points.

Previous numerical work on mixing of Quids by cavity
How was done by Bigg and Middleman [22]. They used
the marker-and-cell method to track the evolution of the
interface between Quids of difFering viscosities. However,
their calculations did not take surface tension into ac-
count and were carried out only for relatively small val-
ues of the interfacial stretch S [S/S(t = 0) ( 5]. The
calculations that we report below reach values as high as
S/S(t = o) = 2o.

We present in Sec. II the model used and some of its
properties and in Sec. III the numerical algorithm used.
Section IV presents the results of our calculations of the
interface stretching as a function of time, as well as its
dependence on the various parameters of the Quid.

II. MODEL EQUATIONS

Consider a two-dimensional square cavity of side L,
enclosing an incompressible, Newtonian two-phase Quid.
Let P be the order parameter appropriate for the two
thermodynamic phases in question. Well within the bulk
phases, P(r, t) = P~, with P~ the two equilibrium values
of the order parameter across a Qat interface at the tem-
perature considered as dictated by minimization of the
free energy of the system T.

As discussed in the Introduction, in order to determine
the kinetic equation obeyed by P, as well as its coupling
to the Navier-Stokes equation, we borrow from previous
studies of critical phenomena and phase separation in bi-
nary systems. Since the description we use retains physi-
cal processes occurring at the length scale of the thickness
of the interface between the two phases, these processes
have to be explicitly modeled. At present, there are
no rigorous theories that describe dissipative processes
at that scale and therefore we follow the conventional
approach that involves introducing a phenomenological
free-energy density that includes terms proportional to
the gradient of the order parameter. In studies of phase
separation in binary Huids, T is normally approximated
by the Cahn-Hilliard free energy [23]. For an isothermal
binary system, the free energy per unit volume depends
on the total mass density p, temperature, and, for exam-
ple, the density of one of the species pc, where c is the
(dimensionless) mass &action, which plays the role of the
order parameter (denoted by P in the text). Due to the
large changes in order parameter in the interfacial region,
one introduces a modification of the local thermodynamic
equilibrium free energy by introducing an explicit depen-
dence of the free-energy density on the gradient of the
order parameter. However, typical density variations are
on scales large compared with the thickness of the inter-
facial region and a square gradient contribution for the
total mass density is not required. If, for example, one
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would use this formalism to study polymer solutions, T
would be the Flory-Huggins free energy instead [24,25].

In what follows, we consider an order parameter that
satisfies a local balance equation

+ V' . (Pv) + V' J = 0,

where v is the local velocity of an element of fluid and J
is the dissipative flux of P. A constitutive equation for J
is then introduced in the usual fashion

(3)

p = bX/bP(r, t) = KV P ——rP+ uP, (4)

The coeKcient M is a mobility or Onsager coeKcient of
microscopic origin, which in a binary fluid, for example,
can be calculated from measurements of the mutual diKu-
sion coefficient and of the order parameter susceptibility
away from the critical point. p is the chemical potential
conjugate to the order parameter p = bX/bp(r, t), where
b/bP(r, t) stands for variational derivative with respect
to P. This generalization of the definition of the chemi-
cal potential is necessary since T depends explicitly not
only on P but on its gradient as well. In what follows, we
restrict our calculations to the Cahn-Billiard free energy,
so that the chemical potential p is given by [23,8]

2Mr. Boundary conditions for the outer solution at two-
phase interfaces follow from the local conservation law

[Eqs. (2) and (3)] AP (u —v) . n = —M[V'p+ —V'p, ] n,
where AP = 2/r/u is the miscibility gap and u n is the
local normal velocity of the interface [n is the unit nor-
mal point from the (—) phase towards the (+) phase].
Furthermore, Eq. (4), in the absence of flow, leads to
the Gibbs-Thomson modification of the coexistence val-
ues across a curved interface. All terms in Eqs. (5) and
(6) are standard except for the last term on the right-
hand side of Eq. (6). Some further insight into the role
of this term can be gained by considering the limit of a
thin interfacial region. The unit normal to the level sets
of constant P is given by n = @ so that

y, V'P = ~V'P~ [
KV' P——rP+ uPs]n.

The mean curvature of each level set is

[V' + —V'V'P: nn] (8)

so that Eq. (7) can be rewritten as

pV'Q = Kv~V'Q~ —n+ [ rP+ u—qP —KV'V'(6: nn]V'P .

where K, r, and u are three positive constants. Equi-
librium solutions are given by minimization of T with
respect to P [p = 0 in Eq. (4)]. One finds two sta-
ble uniform solutions given by P+ ——gr/u and P
—gr/u, representing bulk coexisting phases, and a one-
dimensional (say, along the z direction) nonuniform solu-
tion Qo(z) = P+ tanhz/~2( that satisfies the boundary
conditions Po(z ~ Woo) = P~. This solution describes
a planar interface normal to the z direction of thickness
( = QK/r that separates the two bulk phases.

Equations (2)—(4) have to be supplemented with an
equation governing fluid flow. In the case of an incom-
pressible and Newtonian fluid, we consider the Navier-
Stokes equation, generalized to allow for an explicit cou-
pling to the order parameter P [8,13,15],

Recall that the surface tension o. is the excess free energy
per unit surface area due to the inhomogeneity in P in
the interfacial region [27]

/'dgol '
dz

( dz /

~2 Kl/2&3/2

3 D
(10)

In the limit of gently curved interfaces, and when the
motion of the interface is slow compared with the local
relaxation times of P, the order parameter field P can be
approximated by the one-dimensional stationary solution
$0 along the direction normal to the interface. Under
these conditions, the term in square brackets in Eq. (9)
vanishes. Furthermore, in this limit,

V' v=0, (5)
p, VQ = ~V'P~ K~n = orb(()n, —

p —+ v" V' v = —V'p+ V'. (2qD) + pV'P, (6)

where p is the pressure, p and g are the density and shear
viscosity of the 8uid, and D = (V'v + V'v )/2 is the
symmetric part of the velocity gradient tensor. In this
model, the density and shear viscosity of both phases are
equal.

We now briefly review the limit (v -+ 0 of Eqs. (2)—(6)
(see also Ref. [13]). Far away from interfaces, an outer
solution can be found by linearizing Eqs. (2)—(4) around
the bulk equilibrium solution. This procedure yields the
standard convection-diR'usion equation with diffusivity

with ( = 0 being the location of the interface and b(x) the
Dirac delta function. The second equality follows from
the definition of the surface tension and by integrating
both sides from ( = —oo to oo. Therefore the new term
pV'P is zero in the bulk regions and leads to a capillary
force at the interfaces. We note at this point that the
choice of free energy Eq. (4) is not unique. However, for
any reasonable choice of W that admits interfacial solu-
tions of small width compared to the scale of the struc-
ture, the same macroscopic equations will result in the
limit (r ~ 0, but with different values of the numerical
coeKcients.

Finally, the boundary conditions on the order param-
eter at the walls of the cavity are |7P . n = 0 (see the
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1 2
Oig = —v. VP+ —V p,Pe

(12)

where we have defined a Peclet number Pe = Vo(/Mr
The characteristic time has been chosen to be (/Vo, the
time required for the fluid to be convected a distance of
the order of the thickness of the interface (in the absence
of capillarity). The Peclet number is the ratio between
the diffusive tiine scale (2/Mr and the convective time
scale (/Vo. The dimensionless equation of conservation
of momentum (for constant viscosity) reads

Re Oiv+ v 7' v = —Vp+ V v" +CATV'P,

Appendix) and J n = 0, with J = —MV'p, the Hux of

P (n is the unit normal to the wall). No-slip boundary
conditions are applied on the velocity field at the cavity
walls: v = 0 at the three walls located at x = 0, x = L,
and y = I, and v = Vozv(x)i at y = 0, where i is the unit
vector parallel to the x direction and iv(x) is a dimen-
sionless function of x, of order 1, that will be specified
later [26]. Hence the wall at y = 0 is being displaced at
a prescribed velocity Voiv(x) to induce the shear How in
the interior of the cavity. With this choice of boundary
conditions, the integral of P over the cavity is constant
in time. It should also be noted that we do not prescribe
the value of P at any wall. Therefore the point of contact
between the interface and the walls can move through
diffusion of the order parameter near the wall.

We introduce dimensionless variables by scaling the
order parameter P by its mean-field equilibrium value
gr/u, lengths by the mean-field thickness of the interface

( = gK/r, and velocity by the imposed velocity at the
boundary Vo. In dimensionless variables, we have

V @+C V'(V' P) x V'P k=0. (16)

P + P V' ["(t)P(t+ At)]

CP(t+—At) + V'P'(t+ At), (17)

with 8 = V'4 + V'2. Note that the convective term is
kept in conservative form and that we use the velocity
at time t Althou. gh one could in principle use v(t + At)
in Eq. (17), this would result in a more complex itera-
tive procedure. If the iterative procedure to be described
below converges, the solution is (up to roundoff error) in-

dependent of this choice. An "outer iteration" is defined
as

P(t+ At) = P&+, —P&+ h& with P, = P(t) . (18)

Substituting P(t + At) in Eq. (18), linearizing in the
correction by, and rearranging terms, we obtain

Therefore the solution of the low field entails solving
a biharmonic equation for the stream function [Eq. (16)],
subject to the boundary conditions that @ = 0 at all
boundaries, O@/On = 0 at the boundaries at x = 0, x =
I, and y = I,, and Og/On = iv(x) at y = 0 (I is here the
dimensionless side of the cavity).

Concerning the equation for the order parameter Eq.
(12), we follow Ref. [28] and use a backward implicit
method

where the Reynolds number is Re = Vo(/v and C has the
form of a capillary number C = r (/uqVO ——30/2qVo.

—3V Pq —6V'Qi, . V' —3/i, V' bgLt

III. NUMERICAL ALGORITHM

We restrict our analysis to low Reynolds number Qows

(creeping Hows) and set the left-hand side of Eq. (13)
equal to zero. Since the flow is incompressible and two di-
mensional, it is convenient to introduce the stream func-
tion g,

where v = v~i + v„jis the fluid velocity in the plane of

the cavity and k is the unit vector in the direction normal
to it. By taking the curl of Eq. (13) in the creeping How

limit we obtain

V' g —C(Vp, x V'P) . k = 0.

Since p = —V' P + f'(P), we finally find

+Pe%' (vgbg) = CPk+ V' Pi—, —Pe(4~ —40)

—P«(vedi).

~k —~k,m+1 —~k, m + gm- (20)

Substitution of Eq. (20) into Eq. (19) and linearizing
with respect to g yields

The right-hand side of this equation is the outer resid-

ual, or r „t„&.The velocity vk is obtained by solving

Eq. (16) for the stream function with P = Pi, and by
substituting the solution into Eq. (14). The outer itera-
tion converges when

~~
r ~„&~]-+ 0 with, simultaneously,

]~ 8g ]~
—+ 0. When convergence is achieved, the original

Eq. (17) is satisfied identically and P(t+ At) is taken to
be the last iterate.

In practice, it is convenient to set up an additional
"inner" iteration to solve Eq. (19) defined as
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+ Pe iii, . V —3/i, V —6/i, V Pi,
Pe 2 2 2

At

Pe

—3gqV —6$gV' Pi bi (21)

a = 1 —3(&~) 6 = —6(pk V'pi, ), (22)

where () denotes a spatial average over the cavity. Equa-
tion (21) is now

where the right-hand side is the inner residual r,.
„„„

We next simplify the left-hand side by neglecting the
term Pe vk V'g and. by approximating the terms
3$&V' q and 6/i, V'—Pi, by average values as follows:

position of the level set P = 0). Examples of evolution of
the interface at various times are shown in Figs. 1 and 2.
The stream function corresponding to Fig. 2 is shown in
Fig. 3. The interfacial perimeter length 8 is computed
by adding the length of all the line segments connecting
grid nodes that separate regions of P of difFerent sign.
The contribution of each of these line segments is equal
to the grid spacing 6 or v 2h depending on whether the
line segment is oriented. parallel or diagonal to the grid
lines, respectively.

We first compare our numerical results with the clas-
sical calculation of the stretching of a material line ad-
vected by the flow. In this case, it is possible to obtain
analytically a Galerkin approximation to the flow in the
cavity [29] and then to compute numerically the interfa-
cial perimeter length of a material line passively advected
by the flow. We note that in the analytic calculation
given in Ref. [29] the discontinuity in velocity at the cor-

V' +a%' +6 g = r,
„„„

(23)

Equation (23) has now the same functional form as
Eq. (16) and both are solved with the aid of a fast bi-
harmonic solver [28]. In practice, for k fixed, Eq. (23) is
iterated over m until convergence is achieved and hence
bi, is determined. Following [28], the convergence crite-
rion used for the inner iteration is given by

II&'--,-ll (
E II"o t .,oil)

(24)

with n = O.l and P = 0.5. Next Pg+i is computed and
used to obtain vs+i by solving Eqs. (16) and (14). A
new inner iteration is then used to find bg+q for the new
velocity field vA, +i. This procedure is repeated until the
outer iteration converges. The convergence criterion used
for the outer iteration is

max[ll~~ II llr-t-(A:) II] «-i[ll+(k) II] + e-b (»)
where e, ~ and e b, are the relative and absolute error
norms, chosen here to be 0.1 and 10, respectively.

IV. RESULTS

We have used the algorithm described in the preced-
ing section to track the evolution of an active interface
in the configuration described in Sec. II. Unless other-
wise noted, the results presented below correspond to
a square, two-dimensional cavity of dimensionless side
L = 100. The solution of the biharmonic equation is
done on a uniform, square grid, with N = 256 nodes in
each direction. The time step used for the integration is
b, t = 0.1. At t = 0, P = —1 for 0 & z ( I, 0 ( y ( L/2,
and P = 1 in the remainder of the cavity. This corre-
sponds to an initially Bat interface parallel to the direc-
tion of shear (we define the interface location to be the

FIG. l. Instantaneous values of the order parameter P (in
gray scale) as a function of time for C = 0.1 and Pe = 10 .
The configurations shown (froin top to bottom and left to
right) correspond to intervals of At = 500, starting from the
initial configuration.
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m(z) = A+2(I —x)', (26)

vrith p = 21. The corresponding velocity field in the
cavity is given by

v = px (I —x) JA2[(b, + b2)/bl] sinh(hly) sin(h2y)

+Bl [b2 sinh(bly) cos(b2y)
+b I cosh(bl y) sin(b2y)] $,

v„=2px(1 —x) (I —2x) [A2 cosh(bly) sin(h2y)

+ Bl sinh(bly) sin(h2y)

+B2 sinh(bly) cos(b2y)],

with hl ——4.15, b2 ——2.286,

ners of the moving plate is avoided [26). The How field is
obtained by using a single-mode Galerkin approximation
and by solving self-consistently for both the an1plitude
of the mode and the tangential velocity of the moving
plate. The solution found is [291

bl sinh h'I sin b2

b22 sinh2 bl —b12 sin2 h2

bl cosh bl sin h2 —b2 sinh bl cos b2

b2 slIlll bl —bl slII b2

alld B2 = —A2b2/b1. Tile houndary condltlon ill Eg.
(26) is also used in all our numerical calculations.

Tile velocity field lll Eq. (27) ls tllell llsed to calclllate
numerically the stretching of a passive interface by follow-
ing the motion of the material line originally located at
P = 0. In Fig. 4 the interface stretching thus calculated
is compared vrith the results given by our model @faith

C = 0. Tile agl'eenlellt ls good lip to S(t)/8( t= 0) '5.
The local normal velocity of the interface has tvro con-
trlbutloIls: local advectloIl due t0 the induced 80'w' lIl
the cavity and Bow resulting f om Ielaxatlon of the oI-

FIG. 2. Instantaneous values of the order parameter P (in
gray scale) as a function of time for C = I and Pe = 10 . The
confjgurations are shoran for the same tixnes as in Fig. 1.

FIG. 3. Stream func&. '.on (in gray scale) corresponding to
the configurations shovrn in I ig. 2. The maximum values of
the stream function are 9.50, 9.34, 9.19, 8.53, 8.81, an«I 9.57,
respectively. The minimum value of the stream function is at
the boundary an«I equals zero.
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FIG. 4. Interfacial stretch S(t)/S(t = 0) as a function
of time for various values of the capillary number C and
Pe = 10 . The solid line is the approximate analytic cal-
culation described in the text for the passive advection of a
material line (C = 0 and Pe —+ oo). The other curves shown
correspond to C = 0 (passive interface), C = 0.1, C = 0.5,
and C = 1. We note that the ratio t/L = t*VO/L', where we
have denoted dimensional variables with an asterisk. The lat-
ter quantity is normally the unit of time employed in classical
macroscopic calculations.

1.3

1.2

C4

1.0

der parameter to maintain its local equilibrium value as
a function of the local curvature of the interface (Gibbs-
Thomson effect). At later times, the curvature of the
interface increases and the latter contribution becomes
significant. This is why the interface stretching given by
our solution is smaller, even for C = 0, than the stretch-
ing that follows from the passive advection of a material
line.

Figure 4 also shows the interfacial stretching for dif-
ferent values of the capillary number C. With increas-
ing C, the slope of the curve decreases. Capillarity acts
to reduce the interfacial deformation and hence coun-
teracts the effect of the imposed fiow on the interface
displacement. As a consequence, for example, the inter-
facial shape shown in Fig. 2 (C = 1) is blunter than that
shown in Fig. 1 (| = 0.1) at comparable times.

Figure 5(a) shows the interfacial stretching as a func-
tion of time for constant C and different values of
the Peclet number. The interfacial length S increases
roughly linearly with time, until it reaches a maximum
at roughly S „,a value that depends on Pe. At this
point, the microstructure coarsens since further stretch-
ing by the Bow is balanced by di8'usion of the order pa-
rameter. Whereas the diffusive contribution in Eq. (12)
is proportional to Pe, the chemical potential p, is of the
order of o.x, which becomes large as the scale of the mi-
crostructure decreases. At even longer times (which we
will not address here) and for small values of Pe, S further
decreases with time as the system evolves into a station-
ary state in which a strip of one phase rotates inside the
other, with an axis of rotation located approximately at

0.9 (b)

0.8 (b'

1.0
log„(Pe)

3.0 4.0

1.30
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1.10
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FIG. 5. (a) Scaled interfacial stretch S(t/t „)/S „
for

C' = 0.1 and the values of the Peclet number shown. The
value of S

„
is the largest interfacial stretch (reached at time

„
for a given set of parameters, when the microstructure

begins to coarsen). The dependence of S „and t „onPe
is shown in (b) and (c) respectively. The solid lines in. (b) and
(c) have a slope of approximately 0.15.
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the point where the velocity of the fluid vanishes. This
asymptotic stationary state is known for this type of How
and results in poor mixing of the two phases. In Fig. 5(a)
we have scaled S by S „and t by t „,the time that
corresponds to S „.In Figs. 5(b) and 5(c), the depen-
dence of S and t „with Pe is shown. In the limit
of Pe ~ oo, the problem efFectively reduces to that of
advecting the interface separating two immiscible fIuids.
However, Eq. (12) becomes hyperbolic and the numerical
algorithm must be modified. In practice, we are able to
achieve convergence in the cavity configuration studied
for Pe & 2000.

Finally, we have analyzed the dependence of the inter-
facial stretch S on the size of the cavity L. For early
times, S grows linearly in time (see, for example, Fig.
5), with a slope that is proportional to 1/L The .reason
for this is that, at constant velocity of the top plate, the
resulting shear is inversely proportional to the size of the
cavity. The maximum value of S also grows linearly in
time for sufficiently large L (L ) 75). Since the smallest
length scale in the system is efI'ectively determined by the
values of the Peclet and capillary numbers, the scale of
the structure is expected to be proportional to the system
size, at constant values of the other fluid parameters.

In summary, we have introduced a mesoscopic descrip-
tion of a two-phase fluid to study interface stretching
induced by an externally imposed shear flow. The al-
gorithm allows us to track interfacial stretchings that
are much higher than those obtained with previous ap-
proaches and opens the possibility of quantitative studies
of the resulting microstructure. The validity of the al-
gorithm discussed is restricted to low Reynolds number
flows, but the method can in principle be generalized to
other situations.

dE bE 8$ bE Og

dt bp Bt bj Bt

p dA + V' ndl + v. —dA,

where n is the outward pointing normal to the cavity and
dl is the element of perimeter length of the cavity. By
using Eqs. (2)—(4) and (6), we find

dE 2

dt P (MV' ls —v VP) dA

+ v . 2gV' - D —Vp+ pV' dA

8$-+ V'P. Rdl. (A1)

The first term on the right-hand side can be rewritten by
using the identity pV' y, = V' (pV'p) —(7'p) and the
divergence theorem as

pV2pdA = p V'p n dl — V'p 2dA.

The third and fourth terms on the right-hand side of Eq.
(Al) can be rewritten by using the identities v. (V' D) =
7'-(D v) D:D and —v. V'p = V'. (pv) —p(V'. v) = V' (pv),
where the incompressibility condition was used in the last
step. Then using the divergence theorem again

v (v D) dA = f(D. v) ~ ndl —f D:BdA

where g = pv is the momentuin density. The rate of
change of the total energy can be obtained as
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v V'pdA = pv n dl.~ ~
~

Finally, by using the boundary conditions

n=O, 7'p, . n=O, v=0,
we have the dissipation inequality

APPENDIX: DISSIPATION INEQUALITY

YVe define the total energy E of the fluid as

E(& g) = ~(&) +-1 g
2 p

dE
dt

= —M (VP) dA —2il D:DdA & 0 .

Therefore, in the absence of shear, the natural boundary
conditions to consider in order to ensure that the energy
decreases monotonically are given by Eq. (A2).
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