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Observation of a two-stage melting transition in two dimensions
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We have performed hybrid Monte Carlo and molecular dynamics computer simulations to study the melting
transition for a two-dimensional material consisting of classical point particles interacting via an r ' repulsive
pair potential. As the density increases, the liquid phase develops hexatic structure at values of the pressure that
are too low to allow coexistence with a stable crystal possessing an equilibrium concentration of vacancies.
Bond orientational order, translational order, and densities are computed for sub-blocks of the total system.
Histograms of these quantities remain unimodal throughout the transition region, indicating no tendency for
phase separation. Through the use of block analysis techniques, we extract exponents for the bond orientational
and translational correlations in the hexatic and the solid that are consistent with the predictions of the
Kosterlitz- Thouless-Halperin-Nelson- Young theory.

PACS number(s): 64.70.Dv, 05.70.Fh, 61.20.ja, 64.60.Fr

I. INTRODUCTION

During the 1970s, Kosterlitz and Thouless [1]advanced a
theory for the melting of two-dimensional solids based on
the unbinding of dislocation pairs. Young [2] provided addi-
tional information about the characteristics of this
dislocation-unbinding transition. Halperin and Nelson [3]
found that an additional transition, based on the unbinding of
disclination pairs, is needed to complete the conversion of a
solid to a liquid. The Kosterlitz-Thouless-Halperin-Nelson-
Young (KTHNY) theory, as it is commonly called, thus pro-
poses the following two stage scenario for melting: As the
temperature of a solid is increased (or the density decreased),
the solid undergoes a continuous transition to become a
hexatic phase, which is characterized by quasi-long-ranged
bond orientational order and finite-ranged translational order.
When the temperature is increased (or the density is de-
creased) further, the hexatic undergoes another continuous
transition to become a liquid. This fascinating possibility
sparked considerable computer simulation studies, some of
which found supporting evidence for this scenario [4—9].
However, a comparable number of studies primarily found
evidence for the traditional first-order melting transition [10—
15]. It is interesting to note that similar simulation tech-
niques have led to contradictory conclusions, even when ap-
plied to the same material.

This discrepancy may be a natural result of artifacts that
arise in the study of phase transitions using simulations. Near
a phase boundary, correlation lengths can be extremely long
and thereby introduce spurious results due to finite system
size. Similarly, long relaxation times make equilibration dif-
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ficult and long correlation times make it necessary to do long
runs to reduce statistical error. Naidoo, Schnitker, and Weeks
[16]confirmed the importance of these problem by studying
an r ' potential system; they concluded that the results
were sensitive to the choice of boundary conditions and ini-
tial configurations. Finite-size scaling analyses, which have
been used to circumvent some of these complications, can
also be frustrated by the presence of two distinct and long
correlations lengths, corresponding to bond orientational and
translational order. A review of the KTHNY theory and both
experimental and simulation studies can be found in an ar-
ticle by Strandburg [17].

In the present paper, we have applied different equilibra-
tion techniques and a block analysis method in a computer
simulation study of the r ' potential system. The results
show that the traditional first-order melting scenario does not
hold for this system. We have found a homogeneous equilib-
rium phase with hexatic structure and exponents for the bond
orientational and translational correlations that agree with the
KTHNY theory. In Sec. II we present details of the simula-
tion methods. We follow in Sec. III by giving results for a
block analysis used to extract critical exponents for the cor-
relations. Section IV gives details of the pressure data. We
finish with conclusions in Sec. V.
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FIG. I. Equilibration and tluctuations with and without the BCE method. (a) The number of times the p6, and lI'16„curves cross as a
function of the number of HMC steps (see the text for a more complete explanation). (b) A similar plot for P, . For both plots, the solid lines
correspond to the runs for which the BCE method was used in addition to the HMC method and the dotted lines to runs for which only the
HMC method was used.

II. SIMULATION METHODS

The system of interest consists of classical point particles
under periodic boundary conditions. The potential of interac-
tion is pairwise additive and of the form u(r) = e(olr)',

truncated and shifted so that it is continuous and zero for
r ~2.5o [18].All data are presented using reduced units such
that e= 1, o.= 1, m= 1, and k= 1, where k is the Boltzmann
constant. Potentials of this form are particularly convenient
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TABLE II. MD pressure and chemical potential data for 4096-particle systems. No time-step error cor-
rections have been applied to this data; however, the same time step (0.0lr) was used for all runs. The
second column denotes whether the initial configuration was a random liquidlike configuration or a perfect
crystal. The third column indicated the length of the run over which the data were collected. The error bars
quoted are single standard deviation estimates of the statistical error, computed via a block analysis method

[~9]

0.9935

0.9950

1.0000

Start

random

crystal

random

crystal

random

crystal

Length

(Units of r)

12 000
12 000
24 000
12 000
48 000
48 000

Pressure

(Units of err )

14.628 ~ 0,006
14.617 ~ 0.006
14.670 ~ 0.007
14.654 ~ 0.009
14.687 ~ 0.011
14.699 ~ 0.009

p
(Units of e)

18.94 ~ 0.03
19.02 ~ 0.04
19.10 ~ 0.02
19.01 ~ 0.04
19.08 ~ 0.02
19.07 ~ 0.02

for simulation studies because of a scaling property that al-
lows one to obtain information about transitions along all
isotherms from the study of a single isotherm [13,19].Along
the isotherm T*=kTle=1, we simulated the material at
various values of the reduced density p*= (N/V) o, where.
V is the area of the system. The data presented are for states
near p*=1, which previous work has identified as the ap-
proximate solid-liquid phase boundary [6,7, 13].

To study the effects of finite system size, we did molecu-
lar dynamics (MD) simulations with 4096 (4K), 16384
(16K), and 65 536 (64K) particles under periodic boundary
conditions. We employed the velocity Verlet algorithm [20]
with a time step of 0.01r, where r= (mo. /e) ", to integrate
the equations of motion; stochastic collisions [21]were used
to maintain the proper temperature. The pressure was calcu-
lated using standard techniques [22].

As can be seen in Table I, the qualitative nature of the
bond orientational and translational correlations are distinc-
tively different in liquid, hexatic, and solid phases. There-
fore, in addition to estimating the pressure, we calculated
both order parameters. The bond orientational order pararn-
eter is defined as P6= ~1/6N X&X,exp(6i9&, )~, where the sum

on l is over all particles, the sum on j is over the nearest
neighbors of particle l, and 0I, is the angle between the line
joining particle l and particle j and some fixed reference
axis. A Voronoi analysis is used to determine which pairs of
particles are near neighbors. The translational order param-
eter can be computed via P, = ~1/NX&exp(ik rI)~, where

rl is the position of particle l. The wave vector k has a

magnitude of 2'/A+3/2p, where the denominator is the
average lattice spacing. To allow for the possibility of the
crystal tilting, we varied the direction of k over a 120' range;
the k that produced the maximum value of the sum was used
to calculate the order parameter.

As we previously mentioned, we were concerned about
the ability of standard molecular dynamics to equilibrate
states near the transition region. For a solid to form a hexatic,
dislocations must form, unbind, and separate. The "climb-
ing" of dislocations, however, essentially amounts to the ex-
tension of a row of interstitials or a row of vacancies. This
requires the motion of particles over long distances and such
motion may be inaccessible on typical MD time scales.
Hexatic states may not be seen if solids persist in metastable

phases in the transition region. Similarly, for an isotropic
fluid to gain long-range bond orientational order, large num-

bers of particles must participate in the structural change.
Metastable fluids can survive beyond the true limit of liquid
stability and eventually freeze into defective solids; this last
possibility was in fact seen by Broughton, Gilmer, and
Weeks [13].

We have employed a simulation method of Swope and
Andersen [23] that was designed to address the problem of
equilibrating defects by utilizing the bicanonical ensemble
(BCE). This technique has the added benefit of providing the
chemical potential for the simulated state. This method in-
volves a particle insertion and deletion process that alternates
the total number of particles between N and N —1 in accor-
dance with an appropriate detailed balance condition. It can
be used with a variety of simulations methods; in the present
work, we have used it in conjunction with MD and hybrid
Monte Carlo (HMC) methods [24]. The deletion and subse-
quent insertion of a particle at a different point in the sample
greatly enhances not only the net migration of holes and
interstitials but also the climb of dislocations as well.

To demonstrate this enhanced equilibration rate, we per-
formed simulations for a 4096-particle system at p*=1.004
starting from two initial states: an almost perfect triangular
lattice and a random liquidlike configuration. Using the
HMC method, including the BCE insertion and deletion of
particles, a simulation was performed using each of these
starting states. For each simulation, we computed P6 and

after every ten HMC steps. We denote the results ob-
tained from the run with the crystalline starting state as

P6, and P, , and those from the run with the random initial
state as P„„and |/I, „.Initially, P6, and P6 „are very differ-
ent because of the qualitative difference in the nature of the
initial states. At equilibrium, both P6, and $6„should fluc-
tuate about the same mean value. We therefore expect that
plots of these two data sets versus the number of HMC steps
should approach one another as the systems equilibrate and
then at equilibrium should cross each other with a mean time
between crossings that is related to the correlation time for
fluctuations. In Fig. 1 we have plotted the number of times
the two curves have crossed as a function of the number of
HMC steps that have occurred. We also include a similar plot
for P, . Then the simulations were repeated, using the same
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two initial states, but using only the HMC method with no
BCE insertion and deletion. The number of crossings that
were observed without BCE insertion and deletion is shown
in the figures for comparison. Clearly the BCE simulations
have more crossings than simulations with a constant num-
ber of particles. Note, especially, that the plateaus in these
plots, which are indicative of long-lived fluctuations of the
properties of the system, are generally much longer for the
simulations with a constant number of particles.

In our "production" MD simulations, we performed two
runs at each Quid density studied: one starting from a liquid-
like initial configuration and the other from a perfect trian-
gular lattice. Both states were run for 1000~ using only MD
and stochastic collisions; no data from this initial equilibra-
tion period were considered. The two final configurations
were then used as starting states for MD runs that employed
the BCE method in addition to stochastic collisions. Data
were collected over the next 12 000~—48 0007. and average
results are summarized in Tables II and III. At each density,
the pressure and chemical potential of the two runs agree
within statistical error; given the significaritly different initial
configurations, this serves as strong proof of the ability of
MD simulations of the BCE to equilibrate systems with runs
of this duration.

The final configurations from the 64K MD runs were then
used as starting states for HMC runs. This method has an
advantage over MD because it can generate configurations
consistent with a canonical distribution without any system-
atic errors due to nonzero time step. These simulations con-
sisted of 20000—30000 HMC steps. The duration of the
microcanonical runs used to generate the trial configurations
was 200 time steps, where the length of a single time step
was 0.005m. This particular combination of parameters pro-
duced a 65% acceptance rate.

At equilibrium, the mean value of the chemical potential,
pressure, bond orientational order parameter, and transla-
tional order parameter should not drift with time. To test for
such drift, we use linear regression to fit a line to plots of the
various quantities versus the number of HMC steps. For
equilibrium systems, the slope of the resulting line must be
approximately zero, when statistical error is taken into ac-
count. The standard formulas for the slope and its error, how-
ever, assume uncorrelated data I25]. We therefore blocked
the data until the residuals to the fit were uncorrelated before
we applied the standard formulas. Sample plots can be found
in Fig. 2. Further details of the analysis are given in the
caption of the figure.

III. BOND ORIENTATIONAL AND TRANSLATION
ORDER

The nature of the bond orientational and translational or-
der was studied using a block analysis technique, which we
applied to the 64K particle runs. Each 64K configuration was
divided into 4 equal sub-blocks (which we refer to as 16IC
sub-blocks since they contain approximately 16 384 par-
ticles) and also into 16 equal sub-blocks (which we refer to
as 4K sub-blocks). Both order parameters were calculated for
the entire system and for all the sub-blocks, and average
results as a function of (sub-)block size were computed. A
plot of the logarithm of an average order parameter versus
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FIG. 2. Time series analysis of P6 and P, for 64lt

simulations at p*=1.004. The solid irregular curve represents P6
measured after every ten HMC steps. We denote the total number of
data points by N. We used linear regression to fit this curve to
a line and then computed the residuals. The autocorrelation function
of the residuals was calculated and used to determine the
number of HMC steps N, required for this autocorrelation function
to decay to zero within the noise. To allow for a possible
transient response, the first N, data points were discarded. The
remaining X' =N —N, points were fit to a line via linear regression;
we have shown this fit as a dark dashed line. The autocor-
relation function of the residuals from this line were calculated
and used to determined N,', the number of HMC steps
required for this autocorrelation function to decay to zero
within the noise. The data were grouped into N'IN, ' blocks and

averaged within each block. These block averages are shown
in dark circles. Since the random errors in these. points are
uncorrelated, the standard formulas for the slope and its associated
error could be then applied I 25]. The slope of this
line is —2.3X 10 ~2.2X10 . Thus this quantity is not drifting
with time, when statistical error is taken into account. The
data near the bottom and the right axis correspond to a similar

plot for P, . We have used white circles and white lines for visual
reasons. Here the slope was found to 8.1&& 10 ~4.2X 10
Again, this quantity is not drifting with time. Similar analyses
were performed on all the 64K HMC data to verify the absence
of drift. Transients, such as that seen at the far left of the upper
curve, are sometimes seen when the final state of a MD calculation
is used as the initial state of a HMC calculation. This is related
to the fact that the MD results contain systematic error due to
nonzero time step, whereas the HMC results represent a true
canonical ensemble. The magnitude of the transient appears to be
related to the fact that the state being simulated has a very long
correlation length, i,e. , it is a critical phase with enhanced
susceptibility. Similar, but sra~aller, transients are seen even within
MD calculations if the time step is changed. The two stage regres-
sion analysis was needed to provide an unbiased way of estimating
how much initial data to discard. Only when this data is discarded
can we have confidence that the rest of the data can reasonably be
fit by a straight line.
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FIG. 3. (a) The natural logarithm of the ratio P, (La)/P, (L) as a function of the natural logarithm of (L~/L), where P, (La) is the

average translational order parameter for a sub-block of length Lz and L is the length of the total system. Error bars represent single standard

deviation error estimates for the ratio. The dark steep dashed line corresponds to a slope of —2, which indicates a finite correlation length.
The dark flatter dashed line has a slope of —1/3, corresponding to the curve expected at the KT transition. (b) The natural logarithm of the

ratio g~(Lz)/$6(L) as a function of the natural logarithm of (Ls /L), where P&(Ls) is the average bond orientational order. Again, the dark

steep dashed line has a slope of —2, corresponding to a finite correlation length. The dark flatter line has a slope of —1/4, which is the

expected power law behavior at the HN transition. (c) The natural logarithm of the ratio $4(L&)/$4(L) as a function of the natural logarithm

of (La /L), where P„(L~) is the average of another bond orientational order parameter discussed in the text. The dark dashed line has a slope
of —2, corresponding to a finite correlation length. For all plots, the 0 points correspond to a density of p =0.9935, the 6 to a density of
p*= 1.000, the 0 to a density of p*= 1.007, and the '7 to a density of p~ = 1.0108. The first three are 65 536-particle systems and the last

is a 16 384-particle system.

the logarithm of the (sub-)block length provides a diagnostic
about the nature of the correlations.

The basis for this diagnostic is the following analysis. For
both order parameters as defined above

2 1
drp(r) =

2 dr dr' p(r) p(r'),
Ngy &'sv Jv

where r; is the position of the ith particle and 8' denotes the
Dirac delta function. In the bond orientational case

where the integrals are over the area V of the system. In the
translational case

where the sum over j is over all near neighbors of particle
i. The average order parameter obtained in a simulation,
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TABLE III. MD pressure and chemical potential data for 16 384-particle systems. The data are computed
and presented in a manner described in Table II.

1.000

1.004

1.007

Start

random

crystal

random

crystal

random

crystal

Length

(Units of r)

12 000
12 000
12 000
12 000
12 000
12 000

Pressure

(Units of eo. )

14.759 0.012
14.738 ~ 0.009
14.717 ~ 0.009
14.711 ~ 0.008
14.725 ~ 0.013
14.737 + 0.010

p
(Units of e)

19.15 ~ 0.03
19.09 ~ 0.03
19.11 ~ 0.03
19.06 ~ 0.03
19,09 ~ 0.03
19,11 ~ 0.03

which we denote P, is equivalent to the bicanonical en-
semble average of the order parameter. Thus

1

2~
dr dr'(p(r) p(r')) v,

where ( )v denotes an ensemble average for an ensemble of
area V. The correlation function on the right-hand side is
translationally invariant and we define

Gv(r r ) =(P(r)P(r'))v.

Making use of the translational invariance, we find

(V'l 1

(P )v=~ 2
— drGv(r).IX] V„v

The factor in large parentheses is an intensive, size-
independent quantity.

The simulations can give no information about the corre-
lations for distances larger than the length of the simulation
system L (= V' ). We assume, however, that

Gv(r)=G (r) for ~r~(L.

Hence

f I
2

— drG (r)~ —
2 rdrG„(r)

(W jVJv L o

We have assumed that the correlation function depends on
the scalar distance r= ~r~ only. These reasonable assumptions
imply that the size dependence of the order parameters is
determined by the large-r behavior of the correlation func-
tion in the limit of infinite size.

For correlations that decay to zero more rapidly than
1lr, the integral is convergent in the limit of large L and it
follows that P ~L for large L. On the other hand, if

G„(r)~r "for large r, with 0~y(2, then an elementary

calculation gives P ~L ~[1+0(L ")]. Finally, if the
correlations are long ranged and G„(r) approaches a non-

zero constant for large R, then P ~L for large L.
The same result is obtained when, instead of considering

the entire area of the simulated system, we calculate the or-
der parameter for a part of the system. In this case, replace
L by the length of the subsystem studied.

Seeing the predicted asymptotic behavior in simulations
of finite size is possible only if a range of values of L can be
studied that are all in the asymptotic regime. In the case of
finite-ranged correlations, this means having data for a range
of L corresponding to distances at which the correlation
function is effectively zero. If the data are in the range where
the correlation function is small but not zero, (P )v will
decrease less rapidly than L if the correlation function is
positive for large r, which is to be expected for both bond
orientational and translational order. In the case of power law

decay, the L ~ behavior will be seen only if L is large
enough to make the L + ~ correction small. In the case of
long-range order, the O(L ) behavior will be seen only if
data are available for values of L large enough that G (r)
has approached its asymptotic value.

To carry out this analysis, we plot p (Ls)lp (L) vs
ln(Ls!L), where Ls is the length of a sub-block of the system
and L is the length of the entire system. Figure 3 contains the
results for several densities near the phase boundary.

As a test of the method, we computed an order parameter

P4 that is defined in a way similar to that of P6 except that

exp(6i0) is replaced by exp(4i8). Because of the predominant
sixfold coordination in this material, A/4 has correlations that
are short ranged. The plots in Fig. 3(c) clearly have a slope
of —2 at all densities shown, which include states that we
shall below identify as liquid, hexatic, and solid.

For a density of 0.9935, Fig. 3(a) indicates that the trans-
lational correlations are short ranged. The bond orientational

TABLE IV. (P, ) as a function of sub-block size for different total system sizes at p*= 1.000. The error
bars represent single standard deviation error estimates.

Sub-block
size

Total system size

16E

4E
16K
64E

0.051 ~ 0.003 0.036 ~ 0.002
0.012 ~ 0.001

0.033 ~ 0.001
0.0096 ~ 0.0006
0.0025 ~ 0.0002
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FIG. 5. (a) Scatter plot of the bond orientational order parameter
versus the density for 16K sub-blocks at p* = 1.007. The
dark dashed line represents a linear regression fit to the data.
(b) A histogram of the data after projection on to the linear regres-
sion fit.

length of the 4E sub-block. The bond orientational curve, in
contrast, is now consistent with a power law decay with an
exponent of y6-1/4. Hence we identify this state as being at
or near the Halperin-Nelson (HN) transition. For

p*=1.007, the translational plot is approximately straight
within statistical error, but the slope is too large in magnitude
to correspond to a reasonable exponent for translational cor-
relations in a solid (see above). The slight negative curvature
suggests that the correlations may be of finite range but with
a correlation length that is much larger than the systems stud-
ied here. This agrees well with the KTHNY theory, which
predicts this correlation length to diverge as it approaches the
Kosterlitz-Thouless transition from below. The power law
exponent extracted from the bond orientational data for this
density is very close to zero, which is again expected for a
high-density hexatic. The state with a density of 1.0108 is a
solid near the limit of stability of the solid phase [26]. The
translational correlations now appear to have a power law
decay with an exponent less than 1/3. Within noise, the
power law exponent for the bond orientational correlations is
zero; this is consistent with the prediction of true long-range
order in the solid.

Above we concluded that the state at a reduced density of
1.000 was at or near the HN transition. The curvature of the
translational order parameter plots suggests that the transla-
tional correlation length at this density is of the order of the
length of a 4K sub-block. If this were the case, we might
expect that periodic boundary condition simulations of a
4K system might tend to stabilize the crystalline order and
lead to a larger average order parameter than would be seen
in a 4E sub-block of a larger system simulated using peri-
odic boundary conditions. To test this suggestion, we per-
formed HMC simulations at this density using periodic
boundary conditions for system containing 4K, 16K, and
64K particles. We computed the average translational order
parameter for the 4K periodic system and for 4K sub-blocks
of the 16K and 64K periodic systems; we have summarized
the results in Table IV. The values obtained for the 4K sub-
blocks of the larger systems agreed, within statistical error.
The value for smallest system, however, was clearly much
larger. In contrast, the average value for the 16K periodic
system and for the 16K sub-blocks of the 64K periodic sys-
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TABLE V. Pressure data. The first column lists the reduced densities. The remaining columns give the
pressure data in reduced units of eo. . The MD data have been corrected for the effect of nonzero time step.
The error bars for the MD data are estimates of the error in this correction. The error bars for the HMC data
represent single standard deviation estimates of the statistical error.

Pressure

0.9935
0.9950
1.0000
1.003 77
1.0040
1.0070
1.0108

4096 particles

14.562 ~ 0.01
14.602 ~ 0.01
14.632 ~ 0.01
14.602 ~ 0.01

14.562 ~
14.621 ~
14.688 +

0.01
0.01
0.01

14.654 ~
14.671 ~
14.700 ~

0.01
0.01
0.01

MD
16 384 particles 65 536 particles

14.560 ~ 0.01

14.675 ~ 0.01

14.689 ~ 0.01
14.691 ~ 0.01
14.700 ~ 0.01

HMC

65 536 particles

14.571 ~ 0.003

14.685 ~ 0.006

14.676 ~ 0.005
14.691 ~ 0.006
14.711 ~ 0.003

tern almost agreed, when statistical error was taken into ac-
count. This confirms the suggestion that at this density the
translational correlation length is finite and on the order of
the length of the 4K cell.

A long, but finite, translational correlation length at
hexatic densities could complicate certain finite-size scaling
analyses. A histogram method by Lee and Kosterlitz [27] and
a fourth-order cumulant method by Binder [28] can be ap-
propriately applied only at system sizes that are "sufficiently
large so that irrelevant fields have been scaled away" [14].
This means that, for hexatic states, the length of sub-blocks
studied must be larger than the finite translational correlation
length. Lee and Strandburg [14] and Weber and Marx [15]
have applied such finite-size scaling techniques to the study
of hard disk melting; they concluded that a traditional first-
order melting transition occurs at p*-0.9. The largest sys-
tem studied by Lee and Strandburg was only 400 particles.
The total system sizes studied by Weber and Marx are quite
large; however, the largest sub-block analyzed contained
only 1024 particles. Given the similarities between the hard
disk potential and the r ' potential, it seems plausible that
such sub-block lengths are not large compared to the finite
translational correlation length near the melting transition. If
this is in fact the case, a more complicated analysis may be
required before any conclusions can be drawn about the na-
ture of the transition.

In addition to calculating the average of both order pa-
rameters for various sub-block sizes, we also computed his-
tograms of the distribution of values of the order parameters
and of the density. If the system separates into distinct
phases, histograms of all three quantities should show a bi-
modal distribution. The two peaks would then correspond to
the values for the coexisting phases. Alternatively, if the sys-
tems are homogeneous, as expected for continuous transi-
tions, these plots should be unimodal. In Fig. 4 we have
plotted some representative histograms for p* = 1.007.
Clearly, all the graphs are unimodal. These are typical of the
distributions found at all densities studied. It may also be
informative to examine the joint distribution of two or more
of these quantities. The existence of two "islands" in a scat-
ter plot of these quantities would be a sign of two-phase
coexistence, while a single island would denote a homoge-
neous material. Figure 5 shows such a plot and again con-

firms the homogeneous nature of our system. In summation,
the data presented in this section identify a range of reduced
densities from 1.000 to 1.007 with hexatic correlations and
provide strong support that such states are homogeneous
with no tendency for phase separation.

IV. PRESSURE DATA

We have summarized the pressure data as a function of
density in Fig. 6 and Table V. Raw pressure data obtained
from MD simulations contain systematic errors due to non-
zero time step. For sufficiently small time steps, this error
should grow quadratically with time step, under velocity Ver-
let integration. We performed short MD runs and plotted the
mean pressure as a function of the square of the time step
[23]. By linearly extrapolating to zero time step, we esti-
mated the magnitude of the systematic error. For a time step
of 0.01~, we found this error to be 0.06+.0.01 in the transi-
tion region. We have applied this correction to the MD pres-
sure data reported in this section. The statistical errors are
not quoted since they are smaller than the error in the time-
step correction. The HMC data, in contrast, contains no sys-
tematic error due to nonzero time step and the uncertainties
reported are the relatively small statistical errors.

As we will discuss in detail elsewhere [26], the state with
a density of 1.0108 is very near the lower limit of stability of
the solid with an equilibrium concentration of vacancies. Ac-
cording to the more accurate HMC data, the pressure of this
state is higher than those of the liquid and hexatic states with
a reduced density of 1.007 and less. Therefore, the transition
out of the solid cannot be of the traditional first-order type to
a liquid with short-ranged bond orientational order. We were
unable to equilibrate states within a density of about
0.1 —0.2 % of the lower limit of solid stability and hence we
cannot comment directly on the nature of the transition from
the solid to the hexatic.

At this point, we concentrate on data for the liquid and
hexatic states with p*~1.007. For the 4K and 16K MD
simulations, the pressure data as a function of density show a
maximum, which might be interpreted as a van der Waals
loop. Such a feature is normally taken as evidence for a
first-order transition. As the system size increases, however,
the amplitude of the oscillation and the apparent width de-
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creases. At the 64K size, the MD data are monotonically
increasing throughout the transition region. The 64K HMC
data are consistent with both the MD data and a monotonic
rise, when statistical error is taken into account. The trend of
the pressure data with system size leads us to conclude that
there is no first-order transition in the thermodynamic limit
in this density range. Given the uncertainties, however, we
cannot rule out a narrow first-order transition with coexisting
densities separated by less than 0.5%; if such a transition
were to exist, it would be in a range of densities for which
only liquid and hexatic states are stable.

V. CONCLUSION

geneous; block analysis gives critical exponents for the bond
orientational and translational correlations for the interven-
ing phase that are in agreement with the KTHNY predictions
for a hexatic. A simple and consistent interpretation of the
data is that the r ' pair potential in two dimensions has a
Halperin-Nelson second-order transition and a Kosterlitz-
Thouless second-order transition, with an intervening hexatic
phase that is stable over a range of densities that is about
1.2% wide. The pressure-density isotherm is very flat at the
hexatic densities and we cannot rule out a first-order transi-
tion. In such a case, however, it must lie in a density range
for which only liquid and hexatic states are stable.

The thermodynamic data presented in the paper clearly
rule out a first-order phase transition from a liquid with
short-ranged bond orientational order to a solid with an equi-
librium coricentration of vacancies. Density and order pa-
rameter histograms show that the intervening phase is homo-
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