
PHYSICAL REVIEW E VOLUME 53, NUMBER 4 APRIL 1996

Computation of the dendritic operating state at large supercoolings
by the phase field model
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The phase field model in two dimensions is used to calculate numerically the operating states
(tip velocity v and tip radius p) of dendrites grown from pure melts. At large supercoolings, a
dendrite has a nearly hyperbolic envelope close to its tip, as opposed to being nearly parabolic, as at
small supercoolings. The corresponding tip radius increases with supercooling for anisotropy .only
in surface tension, decreases for anisotropy only in interface kinetics, and displays a mixture of these
behaviors when both are anisotropic. The growth velocity is found to increase as a power law with
increasing supercooling, to decrease with increased e8'ect of interface kinetics, and to increase with
increased anisotropies of surface tension and interface kinetics. Interface kinetics are shown to have
a strong efI'ect in that a smaller kinetic coe%cient leads to a smaller velocity and a larger tip radius
at a given supercooling. The Peclet number P = vp/(2e), where K is the thermal diffusivity, is found
to increase with supercooling while the opposite is true for the selection parameter o = 2@do/(vp ),
where do is the capillary length. The dependencies of P and o on interface kinetics are found to be
influenced strongly by anisotropies.

PACS number(s): 68.70.+w, 47.54.+r, 64.70.Dv, 68.10.Gw

I. INTRODUCTION S = v'vrP exp(P)erfc(V P),

Theoretical research on the issues of dendritic growth
patterns and the selection of the tip operating state (i.e. ,
the tip growth velocity v and the corresponding radius
of curvature p) has been very rich in the literature. (See
[1] for a recent review. ) The growth of crystals from
pure melts is generally recognized to be determined by
the interplay of heat transport in the bulk phases and,
at the crystal-melt interface, the presence of excess inter-
facial kee energy, which shifts the local thermodynamic
-&luilibrium (capillary efFect), and the dynamical rear-

rangement of atoms or molecules &om one phase to the
other (interface kinetics). Mathematically, the growth
process is modeled by a moving boundary problem, often
referred to as the modified Stefan problem. The tempera-
ture fields in each phase satisfy a heat diffusion equation
and are coupled at the unknown crystal-melt interface
through two boundary conditions that account for con-
servation of energy and relate the interface temperature
to the thermodynamic melting point by accounting for
the effects of capillarity and interface kinetics.

In the absence of capillary and interface kinetic effects,
i.e. , when the interface temperature is assumed to be
constant and equal to the equilibrium melting point, a
steady-state solution of this free boundary problem was
first obtained by Ivantsov [2]. He found steady-state so-
lutions for a "needle crystal" (branchless dendrite) in the
shape of a paraboloid of revolution (three dimensional)
or a parabola (two dimensional) moving at constant ve-
locity. In two dimensions, his solution leads to the rela-
tionship

where S is the dimensionless supercooling

TM Too

Lrp c (2)

and P is the dimensionless Peclet number

P = —.
2K

2Kdp

vp2 (4)

Here TM is the thermodynamic melting temperature, T
is the temperature at far field, I p is the latent heat per
unit volume, c is the volumetric heat capacity and x is
the thermal diffusivity of the melt. Here, erfc denotes
the complementary error function. Thus, for Ivantsov's
solutions, specification of the supercooling S will only de-
termine the product of the growth velocity and tip radius
rather than the individual quantities v and p.

Considerable effort in theoretical analysis has been
directed. toward understanding the unique dendrite op-
erating state, mostly based on models that pertain to
the steady state growth of a (branchless) Ivantsov den-
drite. One important breakthrough on tip selection was
the marginal stability criterion introduced by Langer and
Miiller-Krumbhaar [3,4]. They conjectured that the tip
radius of the Ivantsov paraboloidal dendrite was essen-
tially the marginal morphological stability wavelength
according to the Mullins-Sekerka instability theory [5].
This conjecture then led to a prediction that a selection
parameter o, defined as

'Present address: Technology Modeling Associates, Inc. ,
3950 Fabian Way, Palo Alto, CA 94303-4605.

is a universal constant o*, equal to about 0.025 in the
limit of small supercoolings. Here do ——pic/Lo is the
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2K 2v= —oP, (5)

(6)

In other words, to obtain the dendritic operating state for
a given value of S, it is necessary to determine both o and
P. However, although it is understood that anisotropy
is crucial in determining the selection parameter o, most
studies, such as those in the &amework of microscopic
solvability theory, assume that the Peclet number is de-
termined solely by supercooling via Eq. (1), independent
of the effects of capillarity and interface kinetics as well
as their anisotropies. In actuality, however, this may not
be the case, in particular at large supercoolings when
interface kinetic effects become significant.

The predictions of o., however, are neither confirmed
nor contradicted by experimental data. For instance,
highly purified succinonitrile (SCN) was reported [17] to
have nearly identical values of o = 0.0192 for a range of
supercoolings, which is roughly in agreement with the
marginal stability prediction. Reports on pivalic acid
(PVA) [18] show that 1ja increases nearly linearly with
supercooling. For PVA, the resulting dendrites display
strongly anisotropic morphologies that are characteristic
of kinetic inHuence and the anisotropy of surface tension
is ten times stronger than for SCN. Growth of krypton
and xenon studied by Bilgram et al. [19,20] showed o
to be decreasing somewhat with supercooling. Since the
surface tension of rare-gas solids was shown to be nearly
isotropic [21],anisotropic interface kinetics was suggested
to play an important role. Recent experimental data for

capillary length, proportional to the surface tension p.
This condition, combined with Eq. (1), determines the
unique dynamical operating state. A more recent theory,
called microscopic solvability theory, showed that there
is no steady-state solution for a parabolic dendrite un-
less the anisotropy of surface tension is accounted for,
which leads to a discrete set of steady-state solutions.
Among those solutions, only one is stable with respect to
small perturbations on the tip. This solution, which cor-
responds to the Solvability condition, gives a unique value
for the tip radius. Accordingly, the value of o is predicted
to be a function of the anisotropy. For instance, in the
li.mit of very small anisotropies and negligible interface
kinetics, o varies as the 7/4 power of the anisotropy of
surface tension, which has a specific value for a given
material. Thus the macroscopic form of a dendrite is
determined by the microscopic length scale of capillar-
ity, characteristic of surface tension and typically of the
order of angstroms, and its associated anisotropy. The
extension of this solvability theory has been explored in a
variety of situations. For instance, some models include
interface kinetics and some consider the effects of vary-
ing the Peclet number, which results in various functional
forms for the selection parameter o [6—12]. Some reviews
of the recent developments of microscopic solvability the-
ory can be found in [13—16].

Note that once P are o. are known, v and p can be
calculated by the equations

nickel [22] displays a discontinuity in the dependence of
growth velocity with the supercooling. The authors ex-
plained this by appealing to a kinetic effect. A more de-
tailed comparison of the theoretical prediction of a with
experimental data can be found in [1] and [23].

For a better understanding of dendritic growth, it is
therefore essential to consider heat diffusion and the ef-
fects of capillarity and interface kinetics simultaneously,
as well as their anisotropies. Since models of dendritic
growth are inherently nonlinear, analytic methods are
not applicable and numerical approaches are usually nec-
essary.

The classical numerical approach is to solve the mod-
ified Stefan problem. However, this is a difFicult free
boundary problem to implement numerically, since ex-
plicit tracking of the moving interface is necessary. An
alternative numerical method can be based on the phase
field model, which was adopted independently for the
crystallization problem by Langer [24,25] and by Collins
and Levine [26]. In this model, a phase field P(x, t) is
postulated to identify the phase. The variable P assumes
a representative value in each phase, say, 0 in the solid
and 1 in the liquid, and changes rapidly but continuously
over a thin transition layer near the solid. -liquid inter-
face. Explicit interface tracking is thus replaced by two
coupled partial differential equations, one for the tem-
perature field and another for the phase field. Since its
introduction to the crystallization problem, the physical
and mathematical basis of the phase field model has been
studied extensively [27—49].

Moreover, the operating state and interface morphol-
ogy of dendrites have been studied via the phase field in
both two [50—56] and three [57] dimensions.

In our previous study [46], we developed a self-
consistent nonisothermal version of the phase field model
based on an entropy functional [44], distinguished &om
others in that it guarantees positive local entropy produc-
tion. Moreover, it was shown that the parameters that
control anisotropies of interfacial properties can be spec-
ified quantitatively [47]. The utility of the phase field
model is thus strengthened, since it allows us to control
independently the anisotropies as well as the strengths of
surface tension and interface kinetics. As a result, the
roles played by these parameters in dendritic growth can
be studied extensively.

In this paper, we use the phase field model to study
dendritic growth during solidification from a pure sub-
stance. The main objective is to calculate dendritic oper-
ating states that are quantitatively independent of com-
putational parameters.

We applied finite-difFerence methods on a two-
dimensional uniform grid to solve the phase field equa-
tions. Details of our numerical methods are discussed
elsewhere [58]. In that paper, we consider carefully the
length scale differences among the capillary length, the
interface thickness, the tip radius, and the computational
domain size. We show that results independent of com-
putational parameters can only be obtained at very large
supercoolings. Presumedly, one could employ adaptive
moving grids to get results at lower supercoolings, but in
some sense such algorithms run counter to the advantage
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of the phase Geld model, which is supposed to eliminate
interface tracking. A range of values of anisotropy is
adopted by considering affordable computational times.
Generally speaking, these values of anisotropy are higher
than those for which analytical analyses are applicable.

This paper is organized as follows. In Sec. II we sum-
marize the formulation of the phase field model for so-
lidification. Also included in this section is a brief de-
scription of the numerical implementation. Section III
discusses the tip shape of a dendrite at large supercool-
ings. Section IV contains the quantitative values of the
tip radius and tip velocity as functions of supercooling,
surface kinetics, and anisotropies. Section V ofFers a dis-
cussion of our work and others.

II. PHASE FIELD MODEL

Consider a system of volume V in which a pure ma-
terial undergoes a first-order phase transition between
crystalline solid and liquid. For simplicity, we assume
uniform density throughout the system and that there is
no convection in the liquid.

By guaranteeing spatially local positive-entropy pro-
duction for the system [46,47], the phase field model in
two dimensions leads to a pair of coupled partial dif-
ferential equations. The dimensionless temperature field
u = (T —TM)/(TM —T ) is governed by

Bu 30$'(1 —P) 2 0$
Ot S Ot

which reduces to the heat equation in the region where
P = 0 and 1, and the phase field is governed by

= F(g, u) + V. [B(0)V'P],

where

E r(0)r'(0) r (0)

and

1 1
Il(g, u) = —P(l —P) P ——+ 30enS2 2

x P(1 —P)1+ (Lp/cTM)u

Here lengths are scaled in units of the characteristic do-
main size tv and time in units of iv /K Both e and .n
are computational parameters: e = b/tv is the ratio of
the interface thickness parameter to the characteristic
domain size and n = tv/(6~2dp), where dp is related to
the strength of surface tension p by dp ——pic/Lp By.
means of matched asymptotic expansions for e —+ 0 with
n and m fixed (i.e., the interface tends to nearly zero
thickness), two deductions can be made. First, the pa-
rameter m can be related to the strength p, of a linear
kinetic law of the form v = p(l+b& cos40)bT, where bT is

the interfacial undercooling, by the equation m = dp/pit,
where prt- = ck/(pLp) is a kinetic length. Therefore,
m =p,ATM/(rLp) is completely determined by material
parameters and is proportional to the kinetic coefFicient.
The smaller the value of m, the more significant the inter-
face kinetic effect compared to the capillary effect. The
other deduction is that, with 0 defined as the angle be-
tween the normal to the interface (defined asymptotically
as the locus of P = 1/2) and a reference direction, pre-
sumed to be of crystallographic significance, i.e.,

0 = arctan
~

—"(P„l
4 ~~ ) /=const

proper choices for the functions r(0) and q(0) enable in-
dependent control of the anisotropies of surface tension
and interface kinetics [47]. As an example, which will be
used in subsequent computations, we choose

r(0) = 1+ b~ cos(40),
1 + b~ cos(40)
1 + b„cos(40)

(12)

III. RESULTS FOR THE TIP SHAPES
OF DENDRITES

Recently, Brener and Temkin [60] conjectured that
dendrites at large supercoolings are "angular, " i.e., in-
stead of being parabolic cylinders, they would have pla-
nar sections far &om the tip and the entire shape would
be relatively branchless. Based on a boundary layer
model, Brener and Temkin predict that this morpholog-

This corresponds to the choices of fourfold anisotropic
surface tension p(0) = p[1 + b~ cos(40)] and fourfold
anisotropic kinetic coefficient p(0) = p[1 + b„cos(40)],
where b~ and b„are the corresponding strengths of
anisotropy, respectively. As a result, the phase field
model enables one to understand the separate effects that
four physical parameters (S, m, b~, and b„) have on the
selection of the dendritic operating state.

To solve Eqs. (7) and (8), we applied finite-difFerence
methods on a uniform grid. An alternating direction im-
plicit method [59] is applied for Eq. (7) and an explicit
Euler scheme is employed for Eq. (8). Due to the large
differences among the length scales involved in dendritic
growth (capillary length, interface thickness, dendrite tip
radius, and computational system size) we have deter-
mined that results independent of computational param-
eters can be obtained for affordable computation times
only at very large supercoolings ranging &om 0.7 to 1.1
and strong anisotropies of several percent. Other de-
tails of the numerical algorithm and the selection for the
proper range of supercooling are presented in [58].

Computational results are presented in the next two
sections. We Grst address the tip shape of the dendrites
at large supercoolings. This is followed by results for the
calculated dimensionless growth velocity v = v/(~/dp)
and the dimensionless tip radius p = p/dp for a range of
parameters S, m, b~, and b~.
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FIG. 2. Evolution of a dendrite with parameters 8 = 0.8,
m = 0.1, and b~ = b„= 0.03. The growth shapes are shown
at time increments of 0.04 for time intervals 0.0-0.4.

FIG. 1. Interface defined by the locus P = 1/2. Its position
is estimated by the linear interpolation along the x direction
from the values of P at the mesh points located at equal in-
tervals of y. The numbering starts from the bottom of the
domain. The coordinate of the Mth point is (xM, MAy),
where Ay is the mesh size.

ical transition (from parabola to angular) occurs for val-
ues of supercooling S & 1. We recognize that an angular
shape is more nearly "hyperbolic" than parabolic, since
a hyperbola resembles a parabola very near the tip but
asymptotically approaches straight lines far &om the tip.
Our calculated results suggest that a hyperbolic shape
may be incipient at large values of S, even for S ( 1, as
will be discussed in the following.

We define the interface by the locus P(x, y, t) = 1/2
and estimate its position by linear interpolation along
the x direction from the values of P at mesh points that
occur at equal intervals of y. Thus the interface locus
is represented by a series of data points (x;, y;) for i
0, . . . , N as depicted in Fig. 1. We then compare the
calculated locus of the dendritic tip to the best-6tting
parabola (the one that gives the least-squares residue y„)
and the best fitting hyperbola (the one which gives least
squares residue y&). If y& ( y„, the shape of the dendrite
is said to be more nearly hyperbolic than parabolic and
vice versa.

A dendrite growing along the x axis will be the subject
of our study. In general, a parabola is described by

xi'(y, ap, a2) = ap —a2y 2 (14)

where a linear term in y does not appear because we have
imposed a reBection symmetry in y. A general hyperbola
is described by

xh, (ylbp, bi, b2) = bp —bi 1+y /b2

Further, we impose one more constraint on Eq. (15) by
forcing the 6tted hyperbolic curve to pass through the
point (xp, 0). As a result, bp = bi + xp. This constraint
will not be imposed on Eq. (14), however, for the fol-
lowing reason. If this condition is applied to Eq. (14),
there will be only one free parameter a2 left in Eq. (14)
with the value of ao determined to be xo. Because a quite
general curve can be represented by a polynomial of large
degree, the calculated residue may decrease when more
terms are included. Thus the residues calculated by hav-

ing two fitted coefficients, both ap and a2 in Eq. (14),
would be expected to be smaller, or at least as small, as
for 6tting with one coefBcient a2. Therefore, we choose to
compare the residues with two &ee fitting parameters in
each equation, Eq. (14) and Eq. (15). Note that Eq. (15)
does not resemble a general polynomial of in6nite de-
gree; the coefficients of the series expansion of Eq. (15)
are mutually dependent while the coeKcients of a general
polynomial are mutually independent.

The fitting parameters ao 2 and bi 2 are to be deter-
mined by minimizing the squared residues

X„'(ap a2) = ) [*' —x~(y' ap a2)]'
i=0

Xh(bl b2) —) [x' xh(y;, bi, b2)]

separately, where M is the number of points used for
fitting. Therefore, there is a total of M + 1 sampling
points (xp —xM) to be fitted to Eq. (14) and M sampling
points (xi —xM) to be fitted to Eq. (15). The data
range of the sampling points is between 0 and MLy along
the y coordinate (see Fig. 1). The average least-squares
residue is estimated by g2 = y2/(M —1) for M ) 1
and y2&

——y2&/(M —2) for M ) 2, respectively. [The
value of y h is zero if only two sampling points are used
for fitting to Eqs. (14) and (15).] Note that g2& depends
nonlinearly on its 6tted coeKcients bi and 62, so that
the minimization requires an iterative procedure: Given
trial values for the parameters, the procedure is iterated
to improve the trial values until yi2 stops (or efFectively
stops) decreasing.

Figure 2 shows a time sequence of dendritic shapes of
the type that we analyzed at late times, after a steady
state is reached near the dendrite tip. Figure 3 gives

an example for the calculated results of y& and
which we label "root-mean-square residue, " as a func-
tion of the number of sampling points. The dimensional
value of the mesh size is Ay = 1.05 do. Since the tip ra-
dius of the parabola is related to a2 by p = 1/(2a2) and
to the radius of the hyperbola at the tip by p = b2/bi,
the corresponding radii &om each 6t are calculated and
presented in the 6gure. As may be observed, the value
of the root-mean-square residue obtained by 6tting to an
hyperbola is smaller than by fitting to a parabola. When
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M is small, the values of these residues are comparable
to each other. This is reasonable since the geometries
of the parabola and hyperbola are about the same very
near the tip. When the value of M increases, the diÃer-
ence between the residues increases rapidly. The calcu-
lated values of tip radii &om fitting to a parabola is sig-
nificantly dependent on the number of sampling points
while the results &om fitting to a hyperbola results in
relatively little change in the tip radius when the data
range on the y coordinate is between 0 and p. Therefore,
the result demonstrates that the region around the tip
may be more nearly hyperbolic than parabolic, as shown
in Fig. 4. As noted in our other paper [58) that deals
with computational aspects of this study, we employed
a rectangular domain to save computational time. This
sharply aEects growth in the y direction, but has negli-
gible effect on growth in the x direction, including con-
sideration of tip shape. Besides, the eKects of a finite
domain in the y direction would be expected to favor a
parabolic shape, not a hyperbolic shape. On the other

hand, the hyperbolic shape might be due to the incipient
emergence of sidebranches, in real systems as well as in
our calculations. Far back &om the tip, a steady-state
branchless "needle crystal" must tend to a parabola for
S ( 1; but our calculated shapes are finite in extent,
even though the tip speed and radii of curvature become
practically constant at suKciently large times. In Fig. 2,
for example, the first sidebranch occurs about 5—10 tip
radii &om the tip, but could influence the shape closer
to the tip.

IV. RESULTS FOR SELECTION OF THE
OPERATING STATE

Below we present results for the calculated dimension-
less growth velocity v = v/(K/do) and the dimensionless
tip radius p = p/de for a range of parameters S, b~, b„,
and m. We classify our results in terms of anisotropies of
surface tension (b~) and interface kinetics (b&) as follows:
case (i), b~ g 0, and b„= 0; case (ii), b~ = 0, and b„g 0;
and case (iii), b~ g 0, and b„g 0.

In each classification, the variations of growth velocity
and tip radius with S and m are studied. To understand
quantitatively the influence of anisotropy on the selection
of operating states, the variations of growth velocity and
tip radius as a function of anisotropy are examined at
fixed values of S = 0.8 and m = 0.1 for each classification.
These values of S and m were chosen on the basis of
aKordable computational time.
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FIG. 3. Root-mean-square residue and calculated tip radii
as a function of the number of 6tting points. The 6t is with
respect to the locus of the interface of Fig. 2 at time 0.40.
The crosses are for 6tting to an parabola and the diamond
marks are for 6tting to a hyperbola. The unit for the residue
and tip radius is dp and that for the grid size is 1.05dp.

FIG. 4. Locus of the interface, Fig. 2 at time 0.36,
compared to the best-fit hyperbolic curve and the best-fit
parabolic curve, which are fit by using data points up to
M = 50. The unit for the distance is dp and that for the
grid size is 1.05dp.
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In previous theoretical work, the Peclet number was
assumed to be independent of m and anisotropy, whereas
the selection parameter cr could be a function of S, m,
b~, and b'„( [7]). This motivates us to examine, at large
supercoolings, the behaviors of P and m, in addition to v
and p, as functions of S, m, b~, and b„.

The growth velocity and the tip radius are calculated
in the following manner: Since our study showed that
the shape of the dendrite is more nearly an hyperbola,
we chose the value of the tip radius as that of an hy-
perbola best 6tted by the data points that range from
0 p on the y coordinate (see Sec. III), i.e. the point
where p 1.05M, as in the diamond curve in Fig. 3.
The tip velocity is derived by dividing the distance of
propagation of the tip by each corresponding interval of
time. Additionally, the temperature at the tip is also
checked as a function of time. If the dendrite reaches a
steady state, the temperature at the tip should remain
at a constant value.

A. Case (i): Dendrites with b~ g 0 and b„= 0

In this section, we deal with dendrites that have
anisotropy in the surface tension alone [Case (i)]. The
computed values of v as a function of S for m = 0.1,
b'„= 0, and three values of b~ are shown on a log-log
plot in Fig. 5(a). From the velocity plot, it is evident
that a power law exists and that b~ = 0.05 leads to a
higher velocity than b~ = 0.04 or b~ = 0.03. The expo-
nent (b) of S for n is given in Table I. There is about
a 10'Fo variation in the exponent of S from b~ = 0.03 to
0.05.

The variation of the calculated values of 8 with S for
b~ = 0.05 and m = 0.075 is shown in Fig. 6(a), in which
the results obtained for m = 0.1 are also plotted for com-
parison. Again, a power-law-type relationship is deduced
&om the log-log plot. Also, a larger value of m is seen to
lead to a larger value of v.

A graph of p versus S for m = 0.1 and three values of
b~ is displayed in Fig. 5(b). We can make the following
observations.

(a) There is a definite decrease of p with increasing
anisotropy.

(b) In contrast to the linear behavior between log v and
log S, there is no such linear dependence of log p on log S.

TABLE I. Least-squares fit of the growth velocity v as a
function of supercooling S, log 8 = a+ blog S.

b~
0.03
0.04
0.05
0.05

b„
0
0
0
0

0.1
0.1
0.1
0.075

-1.71
-1.62
-1.55
-1.69

b

2.78
2.62
2.55
2.37

(c) At smaller supercoolings (S 0.75), the value of
p does not change appreciably as supercooling increases.
At larger supercoolings (S ) 1.0), there is a notable in-
crease in p with increased supercooling. This increasing
trend for 0.7 & S & 1.1 is quite unexpected since the
results obtained from experiments and Rom theoretical
predictions that are carried out at very small supercool-
ings (S ( 0.1) indicate that p decreases with supercool-
ing. This unusual dependence of p on S is possibly due
to the effect of isotropic interface kinetics.

(d) A coznparison of the variation of p for two different
values of m, plotted in Fig. 6(b), shows that the increase
of p with S is somewhat enhanced with a smaller value
of m, that is, with a stronger effect of interface kinetics.

Since v decreases with m while p increases with m,
further studies of the variations of v and p with S for
values of m smaller than 0.075 (for example, for m
0.05) are not practical from a computational standpoint
(due to the requirements of a larger computational do-
main and a much longer interval of computation time).
Consequently, the variations of v and p with three dif-
ferent values of m are studied at a fixed supercooling,
S = 0.8. The results are presented in Table II. Based
on the data presented, we estimate that v m and
p m ' . As we showed previously that the scaling
of 8 with S is rather insensitive to m, it is reasonable
to conjecture that v ~ m would hold for all S in the
range studied.

We have plotted in Fig. 7 the variations of v and p with
the fractional anisotropy of surface tension. It is evident
that both the growth velocity and the tip radius vary
as power laws of the strength of anisotropy, the former
being an increasing function and the latter a decreasing
function. According to a least squares Bt, v b and

p b for 003&8 &005.
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FIG. 5. Computed tip ve-
locity v and tip radius p as
a function of supercooling S
(logarithmic scale) for two val-
ues of anisotropy. The straight
lines through the values of
the computed data points are
least-squares fits. Diamonds
are for b~ = 0.03, crosses for
b~ = 0.04, and squares for
b~ = 0.05. The value of m is
fixed at 0.1.
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Since the growth velocity and the tip radius both in-
crease with S, the Peclet number is an increasing function
of S whereas o. is a decreasing function of S. The value
of P is between 0.1 and 2.6 and o is between 0.01 and 0.4
in the range of S where calculations were done. On the
other hand, since the growth velocity and tip radius both
exhibit scaling behavior with the strength of anisotropy,
P - b-' "and o. - b4'4

'Y 'Y

The plots in Figs. 6(c) and 6(d) display P and o as
a function of S for two difFerent values of m. As seen
from the plots, a larger Peclet number and a smaller o.

are associated with a smaller m for a fixed S.
A brief summary of case (i) follows.

(a) Power-law relationships between v and S, m, b'~ are
obtained. The exponents of S, m, or b~ are somewhat
insensitive to the values of the other two parameters.
Therefore, we proceed to represent 8 as a power-law func-
tion of S, m, and b~. An estimation of this function by a
least-squares fit of the data obtained in this section yields

(b) The value of tip radius increases with S, but no
power-law relationship is observed. p decreases with m
and b~. For S = 0.8 and m = O. l, p b'

(c) The Peclet number P increases with S and de-
creases with m and b~.

(d) The selection parameter o decreases with S, but
increases with m and b~.

B. Case (ii): Dendrites with b~ = 0 and b„g 0

We now proceed to discuss dendrites with anisotropic
interface kinetics and isotropic surface tension [case (ii) j.
The variation of 6 with S is shown in Fig. 8(a) for m = O. l
and three different values of b„. As in case (i), there is a
power-law relationship between 8 and S, as evident from
the log-log plot. For a fixed S, the calculated value of v
increases with increasing b~. The paraxneters of a least-
squares fit for the computed data are shown in Table III.
There is a 15%% variation in. the exponent of S as the
value of b@ changes kom 0.05 to 0.075. For m = 0.1,
a comparison of the best Gt 8 S ' 2 for b~ = 0.05
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surface tension b~. The super-
cooling is 6xed at S = 0.8.
m = 0.1 and b~ = 0. The
straight lines through the val-
ues of the computed data points
are least-squares Gts.
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b~
0.04
0.04
0.04

b„
0
0
0

m
0.05
0.075
0.1

V

0.0061
0.0098
0.0135

P
134
73
50

TABLE II. Calculated tip velocity v and tip radius p for
three diferent values of I,. The supercooling is fixed at
S = 0.8.

b~
0
0
0
0
0

b„
0.05
0.06
0.075
0.075
0.075

0.1
0.1
0.1

0.075
0.05

-1.65
-1.60
-1.55
-1.66
-1.81

6
3.82
3.64
3.34
3.10
2.79

TABLE III. Least-squares 6t of the growth velocity 8 as a
function of supercooling S, loge = a+ blog S.

0.05
0.05
0.05

0
0
0

0.05
0.075
0.1

0.0076
0.0120
0.0162

66
36
25

(h~ = 0) with that v - S for h~ = 0.05 (h„= 0) in
case (i) shows a difference of approximately 1.3 in the
exponent of S.

The calculated values of 8 as a function of S for
b~ = 0.075 and three different values of m are presented
in Fig. 9(a). Again, a linear dependence of log v on log S
is evident &om the log-log plot. The least-squares pa-
rameters are shown in Table III. An increase in v is
associated with increasing m.

The dependence of p on S with m = 0.1 and three dif-
ferent values of b„are presented in Fig. 8(b). Contrary
to the increasing trend obtained in case (i), there is a
definite decrease in p with supercooling. As the values
of the parameter b~ increase, p decreases for a Axed S.
For b„= 0.05, the curve of p versus S is somewhat "Bat-
tened" in the range 1.0 & S & 1.1 as compared to the
range 0.8 & S & 0.95. A crude power-law approxima-
tion of p versus S leads to p S for b„= 0.075,
p ~ S . for b„= 0.06, and p ~ S for b„= 0.05.

In Fig. 9{b) we plot the computed values of p versus
S for b~ = 0.075 and three different values of m. As

seen &om the plot, there is a decreasing trend in p with
m. A least-squares fj.t gives p S for m = 0.05,
p ~ S 2 for m = 0.075, and, as obtained earlier, p ~

for m = 0.1.
Since v is an increasing function of S and p a decreasing

function, the variations of P and o with S need to be
examined carefully. The values of P and o corresponding
to the computed values of v and p in Figs. 8(a) and 8(b)
are presented in Fig. 8{c) and 8{d). The Peclet number
is evidently an increasing function of supercooling and
smaller values of P result &om larger values of b&. On the
other hand, the value of o is found to be small and weakly
decreasing with supercooling. Note that for b„= 0.05
and b~ = 0, the value of o is about 0.01 for 0.8 & S & 1.1,
whereas it ranges from 0.4 to 0.01 for b~ = 0.05 and
b„= 0 in case (i).

We examined the effect of m on the values of P and
o for h„= 0.075 in Figs. 9(c) and 9(d). We see that
P increases with increasing m, whereas o. has a weak
dependence on S and it decreases slightly with increasing
m. Note that these behaviors are opposite those obtained
in case i .

Finally, we present the variation of 8 and p with b„
for m = 0.1 and S = 0.8 in Fig. 10. Linear behaviors
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are seen from the log-log plots. Least squares fits give
6 ~ b„and p ~ b„.Correspondingly, P ~ b„
and 0- - b'-4'.

P
The results of this subsection may be summarized as

follows.

(a) As in case (i), a power-law relationship is observed
between 6 with each of the parameters S, m, b„. A least-
squares fit of the data obtained in this section leads to

- ~ 0 96g0.64 —0.81S3.5
P

(b) The tip radius is a decreasing function of S, b„,
and m, .

(c) The Peclet number is found to be an increasing
function of S and m. However, its value decreases with
b„.

(d) The selection parameter 0 decreases somewhat
with S, although the calculated values depend weakly
on S. Its value is larger for smaller m and larger b„.

C. Case (iii): Dendrites with b~ g 0 and b„g 0

In this section, we study dendrites with anisotropic
surface tension and interface kinetics [case (iii)]. As
will become apparent later, the relative strengths of the
anisotropies alter the functional dependence of the Peclet
number on m. We first discuss cases where b~ = b„, fol-
lowed by cases in which b~ g b'„.

1. b~ = b„ g 0

The variations of the growth velocity with supercooling
are studied for b~ = b„= 0.03 and 0.04, respectively,
and three values of m = 0.05, 0.075, 0.1. The results are
shown in Figs. 11(a) and 12(a).

The following observations may be made from the
plots.

(a) Among the three values of m studied, for each fixed
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FIG. 10. Log-log plots of the
tip velocity v and the tip radius
p as a function of b„. The other
parametes are fixed: S = 0.8,
m = 01, and b~ = 0. The
straight lines through the val-
ues of the computed data points
are least-squares fits.
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anisotropy, m = 0.3. gives the largest value of v, followed
by m = 0.075 and then m = 0.05.

(b) Anisotropy of b~ = b„= 0.04 leads to larger 6 than
anisotropy of b&

——b„= 0.03 for a fixed S.
(c) The relationship between log v and log S is linear.

The parameters &om least squares 6ts are given in Ta-
ble IV. There is about a 10% variation in the exponent
of S when m decreases from 0.1 to 0.05 for each fixed
value of b~ = b„.

Shown in Figs. 11(b) and 12(b) are the calculated val-
ues of the tip radius as a function of S for various val-
ues of b~ and m. Interestingly, when the strengths of
anisotropies are the same, the value of P decreases with
S for lower values of S but increases with S for higher
values of S. This "swing" behavior seems to be a "mix-
ture" of those in cases (i) and (ii). Roughly speaking,
the values of p do not change significantly with S. We
notice that the swing behaviors are not sensitive to the
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m = 0.05. log-log scales are
used in (a) and (b).

02

0
0.6 0.7 0.8 0.9 1.2

0
0.6 0.7 0.8 0.9 1.2



3770 SHUN-LIEN WANG AND ROBERT F. SEKERKA 53

TABLE IV. Least-squares fit of the growth velocity e as a
function of supercooling S, loge = a+ blog S.

TABLE V. Calculated tip velocity v and tip radius p and
the corresponding Peclet number P for various values of m.

b~
0.03
0.03
0.03

0.04
0.04
0.04

b„
0.03
0.03
0.03

0.04
0.04
0.04

m
0.1
0.075
0.05

0.1
0.075
0.05

-1.56
-1.69
-1.87

-1.50
-1.62
-1.80

6
2.93
2.69
2.65

2.79
2.64
2.52

0.03 0.03
0.03 0.03
0.03 0.03
0.03 0.03

0.03 0.03
0.03 0.03
0.03 0.03
0.03 0.03

S
0.8
0.8
0.8
0.8

0.9
0.9
0.9
0.9

m
0.025
0.05
0.075
0.1

0.025
0.05
0.075
0.1

V

0.0039
0.0075
0.0111
0.0144

0.0052
0.0105
0.0156
0.0206

P
167

84
59
46

179
88
59
45

P
0.326
0.315
0.327
0.331

0.465
0.462
0.460
0.463

fact that we used a hyperbola to calculate the tip radius.
Calculation of the tip radius by fitting the interface to a
parabola (see Sec. III) also display the swing trend. An
increase of p is associated with decreasing m and increas-
ing anisotropy.

The Peclet number P and the selection parameter u
corresponding to the calculated values of v and p in
Figs. 11(a), 11(b), Fig. 12(a), and 12(b) are shown in
Figs. 11(c), 11(d), Fig. 12(c), 12(d). From the plots, we
can make the following observations.

(a) Since v increases as S whereas p has a weak func-
tional dependence on S, P is an increasing function and
cr is a decreasing function of S.

(b) For the same anisotropy and supercooling, the
value of P is almost identical for the three values of m
studied. Computations repeated with finer resolution,
i.e. , e = hz = 1/800, also show the same behaviors.

(c) Smaller anisotropy leads to a larger value of P.
(d) The selection parameter cr = 2/(vPs) = v/(2P )

has the same functional dependence on m as e, that is,
the value of u increases with increasing m.

(e) The value of o increases with anisotropy in the
range 0.03 & b~ & 0.04.

Observation (b) suggests that P might be independent
of m. To test this suspicion, we performed two computa-
tions with m = 0.025, S = 0.8 and m = 0.025, S = 0.9.
The results are presented in Table V, along with the re-
sults for other values of m studied previously. The value
of' P is seen to be insensitive to m with an even stronger
interface kinetic effect (m = 0.025). A least-squares fit
leads to 8 m, and p m for S = 0.8 and

0.61 —0.96S2.7
y

(20)

(b) The value of p is weakly dependent on S with a
swing trend between cases (i) and (ii). Its value decreases
with m and h~.

(c) P is insensitive to m for fixed S and anisotropy.
(d) o decreases with S but increases with m and

anisotropy.

2. h~gh„+0
Behaviors of dendrites with h~ g h~ g 0 are studied in

this subsection. For ease of presentation, we subdivide
these into two categories: (i) h~ ) b„and (ii) b~ ( h„.

First, we discuss the calculated operating state of den-
drites with h~ = 0.04 and b„= 0.02 (h~ ) h~). The
calculated values of 8 as a function of S for three values
of m are shown in Fig. 14(a). Again, linear behaviors
are evident in the log-log plot. The parameters of least-

v m and p m for S=09.
The calculated values of 6 and p as a function of

8& ——b„ for m = 0.1 and S = 0.8 are shown in Fig. 13.
An increase of the anisotropy increases the velocity and
decreases the tip radius. Linear relationships are obvious
on the log-log plots that yield v h ', and p h

Consequezitly, P h i s~ and o h '

A brief summary of this subsection is as follows.

(a) As in previous cases, v is found to have power-law
relationships with S, m, and b~. A best fit gives
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I'lG. 13. Log-log plots of the
calculated tip velocity 8 and
tip radius p as a function of
b~ = b„. The other parameters
at S = 0.8 and m = 0.1. The
straight lines through the val-

ues of the computed data points
are least-squares 6ts.
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TABLE VI. Least-squares fit of the growth velocity v as a
function of supercooling S, log v = a+ blog S.

b„
0.04
0.04
0.04
0.03
0.03
0.03

b„
0.02
0.02
0.02
0.04
0.04
0.04

m
0.1
0.075
0.05
0.1
0.075
0.05

-1.54
-1.68
-1.86
-1.53
-1.66
-1.83

b

2.75
2.61
2.47
2.96
2.77
2.64

The variation of p with S for three values of m is shown
in Fig. 14(b). No power-law relationship could be dis-
cerned &om the log-log plot. For a fixed m, the value of
p increases somewhat with S. We note that the increas-
ing rate for the curve of v versus S for m = 0.1 is less
than that for b~ = 0.04 and b„= 0, plotted in Fig. 5.
Also recall that the variation of v with S displayed a

squares Gts are tabulated in Table VI. The exponents of
S vary by about 10% as the value of m changes from 0.1
to 0.05. Note that, for the same m, the exponents of S
are almost equal to those with b~ = b„= 0.04, as listed
in Table V.

For a Axed S, a larger v is obtained with m = 0.1,
followed by m = G.075 and then m = 0.05. We note
that, for each m and S, the calculated value of v shown
in this plot is smaller than that in Fig. 12(a), where b~ =
b~ = 0.04. To study further whether the value of v is
increased by an increase in anisotropy, we proceed to
examine 6 for difFerent values of b~ and b„ for S = 0.8
and m = 0.1. As shown in Fig. 15(a), for a fixed b~, U

increases as b~ increases from 0 to 0.04 and, for a fixed
b„, 6 is increased when b~ increases from 0.03 to 0.04.
Therefore, 6 is increased by an increase in either b~ or

swing behavior for b~ = b„= 0.04, shown in Fig. 12.
Therefore, with b~ = 0.04, the functional dependence of
p on S is seen to be inQuenced by the value of b@ ranging
&om 0 to 0.02 to 0.04.

For a Axed S, p decreases with m. For each S and m,
the calculated value of p is smaller than that for b~ =
b„= 0.04. For m = 0.1 and S = 0.8, the value of p
decreases either with b„and fixed b~, or as b~ changes
&orn 0.03 to 0.04 and various fixed values of b~.

As both v and p increase with S, P is increased and
0 is decreased with increasing S, as shown in Figs. 14(c)
and 14(d). For smaller values of S (0.7 ( S & 0.9), the
value of P is almost identical for the values of m studied.
For larger values of S, for instance for S = 1.1, the value
of P decreases as m increases from 0.05 to 0.1, similar
to case (i). The value of cr is increased with m. As
shown in Figs. 15(c) and 15(d), an increase in b„ in the
range 0 & b„& 0.04 brings about a decrease in P and
an increase in o for S = 0.8, m = 0.1, and b~ = 0.03 or
0.04.

Finally, we discuss the results for b~ = 0.03 and
b„= 0.04 (b~ ( b„). The variation of 8 with S for
various values of m shown in Fig. 16. From Fig. 16(a),
it is evident that logv is linearly dependent on log S.
The parameters for least-squares Gts are tabulated in Ta-
ble VI. There is a 10% variation in the exponent of S
as m decreases &om 0.1 to G.05. Again, for fixed S, the
value of v increases with m. It is instructive to compare
the plot with Fig. 12(a), which is for h~ = b„= 0.04.
We see that, for fixed S and m, the calculated values
of v are smaller for b~ = 0.03 and b'„= 0.04 than for
h~ = b„= 0.04. In other words, with the presence of
interface kinetic anisotropy b~ = 0.04, an increase in b~
&om 0.03 to 0.04 causes an increase in v.

The calculated values of p as a function of S are shown
in Fig. 16(b). Unlike the increasing trend for b~ = 0.04
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FIG. 14. Calculated values
of the tip velocity v, tip radius
p, and corresponding P and o.

as a function of supercooling S
for b~ = 0.04 and b„= 0.02.
Diamonds are for m = 0.1,
crosses for m = 0.075, and
squares for m = 0.05. Log-log
scales are adopted in (a) and
(b).
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and b„= 0.02 (b~ & b„), p was seen to decrease with S
for 0.7 & S & 0.9 and change rather slowly with S for
higher values of S. This behavior is similar to the swing
behavior observed in Sec. IVC1, where b~ = b&. Note
that for each fixed S and m, the calculated values of p
are smaller than those in Fig. 14(b).

Since v increases with S whereas p depends weakly on
S, P is increased and o. is decreased with S. For smaller
values of S (0.7 ( S ( 0.9), P is found to be almost
identical for the values of m studied. For larger values of

S, however, P is somewhat decreased with m, as shown
in Fig. 16. This trend is opposite to that for dendrites
with b~ = 0.04 and b„= 0.02 (b~ ) 8„). On the other
hand, the values of 0 are increased with m, as in case (i)
and as in cases with b~ = 0.04 and b„= 0.02 (b~ ) b„).

The observations in this subsection are summarized
below.

(a) As in the previous cases, v increases with m and
a power-law relationship exists between v and S. For
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FIG. 16. Calculated values
of the tip velocity v and tip ra-
dius p as a function of super-
cooling S for b~ = 0.03 and
b„= 0.04. Diamonds are for
m = 0.1, crosses for m = 0.075,
and squares for m = 0.05.
Log log scales-are used in (a)
and (b).
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(b) The value of P increases with S for dendrites with
b~ ) b'„. For dendrites with b~ ( 8„, p again displays
the swing behavior, observed for dendrites with b~ ) b„.
For a fixed S and a fixed anisotropy, p decreases with
m. For S = 0.8 and m = 0.1, P decreases either with b„
ranging from 0 to 0.04 and a fixed value of b~, or with b~
increasing from 0.03 to 0.04 and a fixed value of b~.

(c) P increases with S and decreases with increasing
anisotropy. Among the three values of m studied, P was
almost identical for 0.7 & S & 0.9. For 1.0 & S & 1.1, P
decreases somewhat with m for dendrites with b~ & b„
and increases for dendrites with b~ ( b„. The former is
similar to case (i) and the latter to case (ii).

(d) 0 decreases with S, m, and anisotropy.

V. DISCUSSION
0. 008
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FIG. 17. Estimated values of v as a function of S. The full
line is for b~ = 0.03 and b„= 0 [case (i)]; the dashed line
for b~ = 0 and b„= 0.03 [case (ii)j, and the dotted line for
b~ = b„= 0.03 [case (iii)). The value of m is 0.1 in (a) and
0.05 in (b).

various values of m, the exponent of S does not change
substantially with each fixed anisotropy. As in previous
cases, a least-squares fit of the data obtained in this sub-
section, along with those in Sec. IVC1 (b'~ = b„), leads
to

Much work on dendritic growth, both analytic and nu-
merical, has been devoted to the determination of the
selection parameter o, based on WKB analysis, in which
the Peclet number P has been considered as a parame-
ter determined according to the Ivantsov relation. This
Ivantsov relation pertains to a parabola that represents
the asymptotic shape of a branchless needle crystal far
kom the tip. The operating state is then calculated by
combining o and P. In other words, this P, which relates
to p, the tip radius of the asymptotic parabola, is deter-
mined solely by the supercooling while the anisotropies
of surface tension and interface kinetics are shown to play
crucial roles in determining o.

In contrast, we obtained the growth velocity and actual
tip radius of dendrites explicitly as functions of S, m, b~,
and b„. The reliability of these results is bolstered by the
fact that the computed tip temperatures are observed to
be in very good agreement with the asymptotic result

—1
9 ID/(@TED) + ([1—156» cos(48)] + p+z (4p)l)

(22)

which is derived f'rom Eq. (72) in [47] without lineariz-
ing Q(u). Instead, we use Q(u) = u/(1+ u), which fol-
lows from Eq. (39) in [47] for constant l. This nonlin-
ear equation is in agreement with the nonlinear Gibbs-
Thomson equation derived by Gurtin [61] in the absence
of anisotropies and kinetics.

Our numerical data have shown that the func-
tional dependence of P on m is strongly inQuenced by
anisotropies. In case (i), where b~ g 0 and b„= 0, P is
seen to decrease with m; in case (ii), where b~ = 0 and
b„g 0, P increases with m. When b~ = b„, P is al-
most independent of m. At large supercoolings S & 1, P
decreases slightly with m for b~ & b„g 0 and increases

I

slightly for b„) b~ P 0. As P is found to increase with S
in each case, it decreases with either b~ or b„. Therefore,
the value of P is not only dependent on S, but also on
m and the anisotropies b~ and b„.

The calculated values of v were found to increase as
power laws of S, m, and anisotropies. The exponents
of either S, m, b~, or b~ are slightly dependent on the
values of the other three parameters. In particular, the
exponent of S decreases monotonically with m decreasing
from 0.1 to 0.05. Combining all the calculated results in
each case, the velocity obtained by least-squares its has
the form
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3 55b0.78m 1.08S2.6

8 —
~ 0 96'~'4m'"S"

P
4b0.41bo.19mo.97S2.7m

0.03 & b, & 0.05,
b~=0,
0.03 & b, & 0.04,

b„=0,
0.05 & b„& 0.075,
0.01 & b & 0.04,

0.7& S & 1.1
0.8 & S & 1.1
0.7 & S & 1.1,

with the value of m ranging &om 0.05 to 0.1. These
summary results are useful to compare overall trends but
are not, of course, an accurate substitute for the specific
results presented earlier.

The exponent of S in case (ii) is larger by approxi-
mately 1 than in case (i) and the exponent in case (iii) is
about equal to that in case (i). It was noted in [62],
in which the boundary layer model was studied with
sixfold sinusoidal anisotropy at the interface, that, for
0.2 ( S ( 0.6, 8 S in case (i) while 8 S in case
(ii). Therefore, a rough difFerence in the exponent of ap-
proximately 3 is evident. When both anisotropies were
taken into account simultaneously, these authors did not
find a power-law relationship.

Based on nonlocal solvability theory, Brener [7] ob-
tained analytically the growth rate as a function of Peclet
number at the limit of 1ow Peclet number and small
anisotropy. He found that 8 P~~s for case (i) and
8 P ~~2 for case (ii). Since at lower Peclet number
P = S according to the Ivantsov relation, this would
mean that 8 S r and p S r in case (i) and 8 S~~

and p S in case (ii). Thus the difFerence in the expo-
nents (= ll) of S is rather large. Brener concluded that,
when both anisotropies are considered simultaneously, an
increase in either anisotropy results in an increase in v.
However, he did not provide an explicit functional de-
pendence of v on P. It is worth stressing the fact that
the ranges of S over which conclusions were made in the
studies cited above do not overlap at all with ours.

We note that, although the exponent of m is slightly
difFerent in each of cases (i), (ii), and (iii), its value is
approximately one, i.e., v oc m. Thus, in terms of dimen-
sional quantities, we have v = 8(K/do), i.e.,

mK
V OC

PLO
C

independent of the strength of surface tension p and ther-
mal diffusivity, although it depends on the anisotropy of
the surface tension through b~. Apparently, such den-
drites behave as "kinetic dendrites" with p~ being the
significant length.

We emphasize the fact that the ranges of b~ and b„
in the three cases we studied do not overlap. To com-
pare quantitatively the growth velocity of dendrites in
the three cases, we examine the possibility that extrapo-
lation of v is possible for the values of parameters S, m,
b~, and b~ outside the range used in our computations. In
Fig. 17(a) we plot the estimated values of 8 as a function
of S with the same strength of anisotropy (8~ = 0.03 and
b~ = 0.03) and interface kinetics (m = 0.1) in all three
cases. Apparently, the value of v associated with both
anisotropies [case (3)] is shifted to be larger than that
with either anisotropy [cases (i) and (ii)]. At lower val-
ues of S, 8 in case (iii) is closer to that in case (i) whereas
at larger values of S, 8 is closer to that in case (ii).

r
Thus, in systems with the same strength of surface ten-
sion and interface kinetics, the surface tension anisotropy
dominates the growth of the dendrite at small supercool-
ings, whereas at large supercoolings the interface kinetic
anisotropy becomes more dominant. Similar conclusions
were drawn in the two studies cited earlier [7,62]. With
stronger interface kinetics (smaller value of m = 0.05),
the domination of the kinetic anisotropy is more signif-
icant, as shown in Fig. 17(b). Note that the "turning
point, " S, at which the value of U in case (ii) equals that
in case (i) with the same strength of anisotropy may be
given by

b0.2 —0.3
C

i.e., S, increases with m and b~.
We proceed to make another extrapolation of v for

m = 0.025 and h~ = b„= 0.03 in case (iii). By using the
material parameters for nickel listed in [53], dimensional
velocities in the range of 40—80 m/sec are obtained for
supercooling temperatures between 240 and 320 K. Note
that the chosen value of m = 0.025 corresponds to a ki-
netic coefficient p = 140 cm/sec, which is the same value
derived from a collision-limited growth model [63]. The
values of our estimated growth velocity are found to fall
in the range of experimental values measured by Will-
necker et al. [22]. Unfortunately, a more detailed com-
parison with the experimental data is not quite practical
as the anisotropy of surface tension and interface kinet-
ics of nickel is still not available. On the other hand, for
an anisotropy three times larger or smaller, the growth
velocity is estimated to increase or decrease by 2. There-
fore, the extrapolation of our two-dimensional numeri-
cal results for m = 0.025, 0.01 & b~ = b„& 0.09, and
0.6 & S & 0.8 give growth velocities of nickel dendrites of
the same order as three dimensional experimental data.

The functional dependence of p on S is different in
each case: p is found to increase with S in case (i), de-
crease in case (ii), and to behave as a mixture of these
previous two cases in case (iii). Therefore, the surface
tension anisotropy and the interface kinetic anisotropy
seem to play different roles in determining the tip radius,
contrary to their role in determining tip velocity. We did
not observe a power-law relationship between p and S in
cases (i) and (iii). In case (ii) a rough power-law behavior
is observed; a crude approximation gives p S . As
mentioned earlier, in the limit of small Peclet number,
p S5~s for case (i) and p S for case (ii) would
be obtained by Brener [7]. Thus he would expect that p
increases with S for case (i) and decreases with S in case
(ii), similar to our results. However, his rate of increase
or decrease is very different &om ours.

The value of o decreases with S in cases (i) and (iii).
In case (ii) its value is hardly changed with S, although a
decreasing trend may be detected. Thus a. is a decreasing
function of S in models that include the interface kinet-
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ics effect (nonzero value of m) and either anisotropy of
surface tension and interface kinetics. Recently, Sekerka
[12] made an optimal stability conjecture that allows in-
terface kinetics to be considered in the determination of
the dendritic operating states. His model leads to the
prediction that o is a decreasing function of supercool-
ing, consistent with the behavior of our numerical data.
Note that the treatment of either anisotropy is neglected
in his model.

Another comparison can be made with Brener's anal-
ysis. As Brener predicted that v P ~s for case (i) and
v P ~ for case (ii), the relations o P ~~r s for case
(i) and cr Pr~z for case (ii) can be deduced. In other
words, since P S for the range of small S he studied,
o. decreases with S in case (i) and increases strongly (as
S7) in case (ii). The latter is in contradiction to our re-
sults. The difference arises because he predicted a much
stronger dependence of the tip radius on supercooling

than ours, as we discussed previously.
We also observed that o. increases with either

anisotropy. The value of o was seen to increase with
m in case (i) and case (iii) and to decrease with m in
case (ii). Apparently, the functional dependence of o on
m is greatly inQuenced by either anisotropy.
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