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Static properties of confined colloidal suspensions
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The static structure of aqueous suspensions of polystyrene spheres, con6ned between two parallel
glass plates, is measured by means of digital video microscopy. The concentration of colloidal
particles is varied in a wide range within the liquid phase. The effective interparticle pair potential
between the colloidal particles in this geometry is obtained from the measured static properties
of the system via the two-dimensional version of the Ornstein-Zernike equation. The effective pair
potential obtained in this way is found to be of short range with a well defined attractive component,
features that are qualitatively reproduced in the whole range of concentrations studied.
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The study of nonhomogeneous colloidal Quids is an
area of intense research due to its scientific and techno-
logical relevance. In particular, the structural properties,
static and dynamic, of colloidal suspensions in the pres-
ence of external fields or in the presence of restricting
boundaries is an exciting Geld of research. This is in part
due to the development of experimental techniques, such
as digital video microscopy (DVM) [1], which allows the
direct visual observation and quantification of the phe-
nomena occurring in suspensions of particles with sizes in
the range from tenths to a few micrometers [2—5]. Since
the structural and other relevant properties of these sys-
tems depend strongly on the nature of the interactions
between macroparticles, one important step towards a
complete microscopic understanding of those properties
is the characterization of the effective interactions be-
tween particles and between particles and the boundaries.
For instance, in the case of three-dimensional homoge-
neous colloidal suspensions, submicrometer size charge-
stabilized polystyrene spheres in water or sterically sta-
bilized silica particles in organic solvents have served as
a model of systems with different interparticle pair po-
tentials. For these systems, extensive and careful exper-
imental studies of their static structural properties have
been performed over the past two decades [6,7]. The
experimental results are accuratelly described theoreti-
cally [6—8] and by computer simulation methods [8,9] by
assuming a hard-sphere pair potential for the sterically
stabilized particles. For the charged particles, where the
repulsive interactions are dominant at low ionic strength,
the pair potential is assumed to be given essentially by
the repulsive term of the well known Derjaguin-Landau-
Verwey-Overbeek [10] (DLVO) pair potential, i.e., by the
second term of the expression

constant, Q is the efFective particle's charge, and z = ro
is the screening constant, with K being the inverse of the
Debye screening length.

It is now desirable to develop a microscopic under-
standing of the structural properties of colloidal systems
in confined geometries and of the effective interaction be-
tween particles, as they are now understood in the case
of homogeneous three-dimensional suspensions. This re-
quires extensive and careful experimental studies and
the development of appropriate theoretical and computer
simulation approaches to describe the quantities of inter-
est. Steps in this direction have been reported in the
literature. Thus, by using also aqueous suspensions of
polystyrene spheres as the experimental model system,
the structure of a colloidal suspension near a Hat sur-
face has been determined with the DVM technique [2].
The same technique has also been employed to measure
the "two-dimensional" radial distribution function of di-
lute suspensions of polystyrene spheres confined between
two parallel glass plates in such a way that the colloidal
particles are restricted to move in an effectively two-
dimensional space [4]. Similar cases have also been stud-
ied theoretically and by computer simulation methods.
For instance, the structure of a suspension of interacting
colloidal particles in the presence of a repulsive (or attrac-
tive) flat wall or confined between two of them has been
calculated theoretically using the Ornstein-Zernike equa-
tion adapted to consider these inhomogeneous systems
[11—14] and by means of computer simulation [13,14]. On
the other hand, concerning the determination of the effec-
tive pair potential between particles in restricted geome-
tries, interesting experimental methods have been pro-
posed [4,5]; they are discussed below.

Here we report measurements of the static structure,
using the DVM technique, of suspensions of colloidal par-
ticles confined between two parallel walls for a broad
range of particle concentrations. We discuss also a gen-
eral method to determine the effective interparticle pair
potential, based on the two-dimensional version of the
Ornstein-Zernike (OZ) equation. The system studied
consists of fl.uorescent sulphonate polystyrene spheres of
diameter o' = 0.5 pm, monodisperse to within 3% (Duke
Scientific), suspended in deionized water and confined
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between two parallel glass plates. The sample cell, sim-
ilar to that used by Crocker and Grier [5], is made of
a clean glass slide and a cover slip glued together with
an epoxy resin (Epo-Tek 302). The two glass plates are
pressed against each other and then the epoxy resin is
dropped around two edges of the cover slip. The other
two edges are connected to three-dimensional reservoirs
containing a mixed bed of ion exchange resin (Serdolit
MB, from Serva). The reservoirs are filled with the col-
loidal suspension, which is then introduced into the space
between the plates by capillarity. Although this method
of constructing the cell does not allow us to control very
accurately the distance d between the plates, it allows
us to produce cells with a separation d less than 1 pm
(= 1.50), thus restricting the spheres to move only in
a plane. The sample is allowed to equilibrate for sev-
eral days at a constant temperature of 23 'C (in contact
with a circulating bath). The sample is then observed
through a fluorescence microscope (Zeiss axioskop), us-
ing a 100x oil immersion objective (numerical aperture of
1.3). The inotion of the fluorescent particles is recorded
by a charge coupled device video camera (Hitachi KP-
161, which is attached to the microscope and connected
to a video recorder, Hi8 Sony EV-100). The images are
then digitalized, using a frame graber with a resolution
of 640 x 480 pixel (data translation), every 3 sec for the
calculation of the static properties.

The position of the particles is determined &om the
digitalized images and the two-dimensional radial distri-
bution function is calculated by means of standard proce-
dures [15]. In Fig. 1 we plot g(r) for various values of the
reduced concentration n* = no, where n = N/S is the
average concentration of particles observed in one kame
of area 9 = 640 x 480 pixe12 = 425002 (0 = 8.5 pixels)
and N is the number of particles per kame. In order to
get good statistics for g(r) several frames were analyzed;
about 700 for the dilute suspensions (N = 200) and
about 50 for the most concentrated sample (N = 2000).
Neither variation on g(r) nor aggregation between par
ticles was observed after several days (1—2 weeks). In
Fig. 1(a) the radial distribution functions of five dilute
samples are shown. One can observe in this figure that
g(r) presents the same characteristic features for the dif-
ferent systems: a well defined erst peak, essentially at
the same position, with no particular trend of its height
as n* is varied. This indicates that the static structure is
basically independent of n* in this concentration regime.
This is consistent with the results reported by Kepler
and Fraden [4], who measured g(r) in dilute suspensions
of polystyrene spheres of diameter 0 = 1.27 pm (with
the same technique, DVM, and geometry), in a range of
concentrations similar to the systems in Fig. 1(a). Other
interesting features observed in this figure are some ef-
fects of the dimensionality of the system on its static
structure. The apparent unphysical result g(r) ) 0 for
r ( o, for the samples with n* = 0.03, 0.065, and 0.066,
is due to that efFect. For these samples the distance d
between the inner surfaces of the plates ranges between
30 and 60, while for the samples with n* = 0.023 and
0.057, where the contact value g(c7) = 0, d —1.5o. The
variation in the height and in the width of the first peak
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FIG. 1. Radial distribution function g(r) of quasi-two-
dimensional colloidal suspensions (a) in the dilute regime of
concentrations and (b) in the concentrated regime but still in
the liquid phase.

of g(r) is another effect of the system's dimensionality.
For more concentrated samples, the system's structure
increases due to the higher total coupling between parti-
cles. This can be observed in Fig. 1(b), where we plot the
radial distribution function corresponding to four con-
centrated samples (but still far Rom the order-disorder
transition). We observe in this figure that the height of
the first peak of g(r) increases, and its position shifts to-
wards lower values, as n' is increased. We also observe
the development of a minimum and a secondary peak of
g(r). This behavior of the radial distribution function
with n of our quasi-two-dimensional system is similar
to the behavior of g(r) for three-dimensional systems.

The interaction between particles in a restricted ge-
ometry, as is the case studied here, is modified to some
extent by the presence of the confining boundaries. The
characterization of the effective direct interactions be-
tween the colloidal particles is then one of the issues that
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should be addressed in order to get a more fundamental
understanding of the system. The pair potential between
polystyrene spheres in water, con6ned in precisely the
same geometry considered in this work, has been stud-
ied using also the DVM technique. Crocker and Grier
[5] measured the interaction between isolated pairs of
polystyrene spheres of diameter 0.65 pm in distilled. water
with the glass plates separated a distance d = 5o. Their
results suggest a repulsive interaction between particles,
in agreement with the repulsive term of the DLVO pair
potential, but with a higher screening constant than ex-
pected &om the contribution of the counterions alone.
This extra screening of the interaction between particles
is due to the small ions dissociated &om the glass sur-.
faces, whose contribution becomes more important as the
sample's volume is reduced, i.e., as d decreases. On the
other hand, Kepler and Fraden [4] proposed a different
method to determine the effective pair potential &om the
measured radial distribution function in dilute suspen-
sions of polystyrene spheres, just referred to above. In
their samples d —1.5o —5o . They obtain an effective pair
potential by an iteration method, based on the Brown-
ian dynamics algorithm, to calculate g(r) for a modified
Lennard-Jones pair potential, by using as the initial in-
put for u(r) the pair potential obtained from the mea-
sured g(r) through the low concentration approximation
[16,17], i.e. ,

Then this equation can be transformed back to the real
space to get the "experimental" direct correlation func-
tion c(r/0). The effective pair potential may now be
obtained using a closure relation such as the hypernet-
ted chain (HNC) approximation, the mean spherical ap-
proxiination (MSA), or the Percus-Yevick (PY) approx-
imation, which are difFerent ways to approximate c(r) in
terms of u(r) and g(r) [16], i.e. ,

c(r) = —Pu(r) + h(r) —lng(r) (HNC),

c(r) = —Pu(r), r ) cr (MSA), (6)

c(r) is the direct correlation function. Although Eq. (3)
does not relate one to one the radial distribution func-
tion with the pair potential, one might attempt to invert
the procedure to get u(r) from the experimetal values for

g(r). Thus, by taking the Fourier-Bessel (FB) transform
[18,19] of Eq. (3), we obtain an expression for C(k(r), the
FB transform of c(r/cr), in terms of the FB transform of
the measured total correlation function, i.e.,

H(ko)C ko. 1+n'H(ko. )
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together with an appropriate closure relation. In Eq. (3),
h(r) = g(r) —1 is the total correlation function and

where P = I/k~T, with k~ the Boltzmann constant and
T the absolute temperature. In this way, they find an
attractive pair potential, with a deeper minimum than
that expected &om the attractive part of the DLVO ex-
pression. Both results suggest that the presence of the
glass plates not only affects the structural properties
of the system, as a result of restricting one dimension,
but it might also modify the particle-particle interaction
[compared with Eq. (1), which is valid for homogeneous
three-dimensional systems] by inducing additional effects
(distortion of the spherical ionic cloud around the col-
loidal particles, additional van der Waals forces, etc.)
that might depend on the particle concentration and on
the system's dimensionality (d/cr) Therefore, . a more
general method to determine the effective pair poten-
tial should be developed to consider a broader range of
concentrations, including the high concentration regime
where those additional effects may be stronger. Here we

investigate an alternative procedure that allows for the
determination of the efFective u(r) in systems with arbi-
trary concentration within the liquid phase.

For two-dimensional systems, the radial distribution
function can be calculated, if the pair potential is known,
using the two-dimensional version of the Ornstein-
Zernike equation [16],

In Fig. 2(a) we plot Pu(r) for the most dilute sample
(n* = 0.023), calculated using Eq. (3) and these three
closure relations. Thus we see that the three closure re-
lations lead to very similar results for the pair potential
and that they reproduce very well the main features of
the pair potential [closed circles in Fig. 2(a)] obtained
directly &om the measured radial distribution function
and the low concentration approximation Eq. (2). This
equation is exact for very dilute systems, i.e. , in the con-
centration regiine where g(r) is independent of the con-
centration, which is the case of the samples considered
in Fig. 1(a). Similar results are obtained for the other
dilute samples in that figure. Thus we see that for the
dilute systems studied here, both Eqs. (3) and (2) lead
to an attractive pair potential between the colloidal par-
ticles in the confining geometry considered here. These
results are in qualitative and quantitative agreement with
the pair potential reported in Ref. [4]. For higher con-
centrations, where Eq. (2) is no longer valid, we expect
that the OZ equation, together with a closure relation,
should provide a pair potential containing at least the
main physical features of the actual effective interactions
between the colloidal particles. In Fig. 2(b) we show the
results for Pu(r), corresponding to the most concentrated
sample studied in this work (n' = 0.48). We see that in
this case the three closure relations also lead to pair po-
tentials with the same physical characteristics, although
with some quantitative differences between them, and
that they are qualitatively similar to the pair potential
of the dilute system presented in Fig. 2(a). It is in fact
the case for all the samples studied in this work. This
can be seen in Fig. 2(c) where we show the pair potentials
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polystyrene spheres, restricted to move in an efFectively
two-dimensional space by confining the suspension be-
tween two parallel glass plates. We measured the radial
distribution function of the colloidal particles, for a wide
range of particle concentration, by means of digital video
microscopy. Our results show that the local static struc-
ture of the system increases for higher concentrations.
This is expected since the total coupling between parti-
cles increases for more concentrated samples. Another
interesting feature of our results is the effect of the sys-
tem s dimensionality on its static structure (see Fig. 1).
With respect to the other issue discussed here, the de-
termination of the effective pair potential between the
colloidal particles, we analyzed a general method based
on the Ornstein-Zernike equation, using the measured
static structure as input. The pair potential derived in
this way exhibits a well defined attractive component,
in the whole range of concentrations considered in this
work, with a much deeper minimun than predicted by
Eq. (1). A fit to this equation of the efFective u(r), ob-
tained from Eq. (2) for the dilute samples in Fig. 1(a),
or the MSA u(r) results for the more concentrated sam-
ples, leads to a value for the constant A at least one order
of magnitude larger than the Hamaker constant expected
between two polystyrene plates in water [10] and a Debye

screening length not larger than 0.05 pm (a small frac-
tion of the particle's diameter). The fitting to Eq. (1)
was carried out by fixing the value of the effective charge
Q to obtain the values of K and A. . Q was varied (de-
creased) for more than one order of magnitude, starting
from its tritratable value of about 5 x 10 e, while the
value of A (K) was found to increase (decrease) less than
a factor of 2. Our results of a much larger value for A
than expected is in agreement with the results reported
in Ref. [4], while our results for v are smaller than those
reported in Refs. [4,5]. Thus the results in Fig. 2 suggest
that the confining walls not only restrict the particles
motion to a plane but they might modify their interac-
tions with respect to the homogeneous three-dimensional
case [Eq. (1)]. This calls for the exact derivation of the
pair potential between colloidal particles in confined ge-
ometries, in a way similar to how the DLVO expression
was obtained.
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