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Fractal model of consolidation of weakly aggregated colloidal dispersions
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A microrheological model for the consolidation of aggregated colloidal dispersion is presented. Interparticle

forces are responsible for the formation of the fractal-like network of particles chains. Aggregation is supposed

to be weak in that the chains are gradually created and annihilated. In the framework of this model a consti-

tutive equation is proposed which includes linear dependence of the normal stress upon consolidation rate at

low stresses and yieldlike behavior as the stress reaches critical value. Our constitutive equation thus gener-

alizes earlier models based on the compressive yield stress concept by taking into account the deformation in

the low-compression limit (analog to the Newtonian liow in the low-shear limit). The constitutive equation is

employed to calculate numerically concentration profiles of consolidating samples in better agreement with the

experimental data for weakly aggregated alumina dispersions.

PACS number(s): 82.70.—y

I. INTRODUCTION

In recent years a number of works have interpreted the

viscoelastic properties of aggregating colloids in terms of the
mechanics of fractal networks [1—4], assuming that the ag-

gregated structure transmits stress through the chains com-

prising the elastic backbone. While strongly aggregated
chains do not permit the network to fiow until the stress
reaches the yield point (shear yield stress), weakly aggre-

gated chains Aow even in the low-stress limit, maintaining an

equilibrium between chain creation and annihilation and

yielding a low-shear Newtonian viscosity. In the latter case
the viscoelastic properties of the colloidal network resemble
those of polymeric ones, permitting application of the tran-

sient network models developed for the latter [5].
All the works cited above treat the shear flow realized in

rheological measurements. However, deformation of the net-

work also results from normal stresses, as in a gravitational
field or doring filtration. Again, one can distinguish strongly
aggregating systems which do not consolidate until the nor-
mal stress reaches the yield point (compressive yield stress),
from weakly aggregating ones which undergo compression
in the low-stress limit, as characterized by a lo~-compression
bulk viscosity. Many workers considered the former case
[6—8], but latter has yet to be considered.

In this paper we employ the transient network approach to
estimate the bulk viscosity in the low-compression limit. The
deformation does not perturb the network significantly if the
lifetime of a chain, limited by its thermal breakup, is much
shorter than the time required to break it by compression.
Equivalently, this holds true if the stress does not exceed
some critical value, which we will estimate and still call the
compressive yield stress. Our model assumes deformation at
constant bulk viscosity up to the yield stress.

In Sec. II we employ the microscopical model of the Aoc-
culated network [5] to estimate the bulk viscosity and yield

stress. Section III presents our numerical calculations of the
one-dimensional (1D) consolidation along with analytic re-
sults for the small-time limit. As distinct from the analyses in
Sec. II, these calculations are macroscopic (or phenomeno-
logical) requiring no information about the microstructure.
However, the microscopic analyses becomes useful in Sec.
IV, where we estimate the parameters involved in the consti-
tutive equation to compare the results of our calculations
with the experiments of Bergstrom [9] on consolidation of
alumina dispersions. This demonstrates semiquantitative
agreement with the experiments for values of network pa-
rameters consistent with our model.

II. MICROSCOPIC MODELING: COMPRESSION
OF FRACTAL NETWORK

We assume all particles to exist in chains, which in turn
are combined into a network (see Fig. 1).Assuming the frac-
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FIG. 1. Schematic of consolidating fractal network with multi-

ply connected chains.
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tal properties of the network and identifying the end-to-end
distance of chains, q, with the correlation length of the net-
work, q,.„,we write (see, e.g. , [10])

q/a —q„,/a —P

where @ is the volume fraction of solid, d& is the fractal
dimension, a is the particle radius. The number of particles
per chain, N, h, is related to q via a power law:

N,h- (q/a)"', (2)

where d, is the chemical dimension (or chemical length ex-
ponent), which ranges between 1 (straight chains) and =1.6
(self-avoiding random walk). Some fraction of the chains is
supposed to be elastically active, i.e., able to transmit elastic
forces which give rise to network stress tensor T. Such
chains are modeled as curved elastic rods, which respond to
external load as Hookean springs, transmitting the force f
that increases linearly with elongation, Aq,

f=k, Aq —, (3)

where the force constant [11]

k, -k„(q/a) (4)

where n is the number concentration of elastically active
chains and brackets denote volume averaging. Substituting
(3) into (5) we write

T.,-nq, f,-nik, q Aq,

where n
&

——nq is the number of active chains per correlation3

volume. Since the chains are compressed, Aq is negative. To
estimate its absolute value, we distinguish two mechanisms
of chains' breakup: fluctuations and rupture under the com-
pressive force. The former limits the lifetime of the chain, ~,
i.e., no chain can live longer than ~ whether it is loaded or
not. The latter limits a chain s deformation, not permitting
lAql to exceed some critical value, Aq,„.Hence

ql mintqry, ~q pk. (7)

decreases with increasing length and k„characterizes the
bending elasticity of a unit section of the chain (see below).
Ends of elastically active chains connect to junctions, which
move affinely.

In Cartesian coordinates with the origin at the bottom and
a vertical z axis (see Fig. 1) 1D compression is characterized
by the deformation rate y(z) —= —du, /dz, where u is the par-
ticle velocity averaged over the volume much larger then q,
but much smaller than the macroscopic volume. In the con-
text of the network model we write the stress tensor T as

sumptions, which are considered in detail in [5] with respect
to shear deformation. Here we briefly analyze the main re-
sults.

One of the simplest estimations of ~ proposed by Russel
et al. [12] on the basis of analysis of doublet breakup reads
7 7 p exp( U, /k T~), where U, is the magnitude of the mini-
mum of the potential, ~o=6vrp, a IkT~ is the characteristic
diffusion time of an isolated particle with p, the fiuid viscos-
ity, and kT~ is the Boltzmann factor. To improve this esti-
mate let us first point out that the lifetime of a chain de-
creases as the number of particles in it increases. If the chain
is modeled by a singly connected train of particles, its life-
time ~ will equal

single Noh single('q a ) +single@ ~ (8)

where ~„„g], is the characteristic time of a single particle to
break a bond with one of its neighbors. For a singly con-
nected chain it is easy to show that ~„„&,differs from ~o only
by a factor which is rather close to 1. However, in the system
of spherical particles with purely central interactions, which
we consider here, singly connected chains are elastically ac-
tive only when straight, while any contorted chain is inactive
since the particles will adjust freely.

A more realistic model of colloidal chains implies the
chains to be multiply connected, i.e., to consist of a bundle of
singly connected chains (see Fig. 1).The illustrations of mul-

tiply connected chains in 2D are provided by numerical
simulations [13] and experimental data [14]. Such a chain
may be elastically active even if the interaction of particles is
purely central. However, one singly connected point suffices
to deactivate the entire chain due to free rotation of particles
or sections of the chain in this point. Hence, r„„„in (8)
should be understood as the characteristic time of such a
deactivation, while N, h should be identified with the number
of particles in the chain which can cause such deactivation.
We will assume that N,„ is still described by Eq. (2). To
estimate 7;;„g&, we consider one of these particles moving
along the trajectory which permits it to pass over the lowest
potential barrier. This trajectory is achieved if this particle
"rolls" over two of its neighbors to reach a new stable po-
sition. The minimum number of bonds to be broken is z and
the potential barrier is zU, , where U, is the two-particle
bond energy. In [5] the reaction rate theory was employed to
obtain

kT~6
7 s &ie i~2 7 o exp[z U, /kTti],

ko U, a

where 6 is the gap width between aggregated particles.
Two other parameters, k, &

and Aq, „z, characterize the
response of the chain to external load. As noted above, k, ] in
(4) represents the bending elasticity of a unit section of a
chain. Since we assumed that the elastic response of chains
originates from their multiply connected structure, we iden-
tify k„with the force constant of a doublet:

Up to this point we have not specified the mechanisms of
chain creation and breakup so that Eqs. (6) and (7) stand as
general predictions of the network model. Specifying yet un-
defined quantities ~, k, , 5q,„„,and n, requires further as-

k. i=koU (10)

where ko is dimensionless curvature of the potential well.
For Aq, „„we employ the estimate
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Aq p-kp" 8'(q/a)'+ ',

BMZ—T„=min —r/, (@),o~(@)az y (12)

which was derived in [5] assuming the chain to break if
stored elastic energy per bond exceeds U, .

Finally, substituting (7)—(11) into (6), we find a simple
constitutive equation:

Ap is the difference in mass density of the solid and liquid
phase, u, d is the medium velocity, and g is the gravity ac-
celeration. The collective friction r(@) accounts for the effect
of hydrodynamic interactions on the sedimentation velocity,
v(P), which corresponds to the movement of the infinite
structure through the liquid without consolidation as
r(P) = vp(1 —P)/v(@) with vp—=2b.pga /9/J. . . Conservation
of mass implies u —u,d=u/(1 —@). For 1D consolidation
(16) and (17) determine the network velocity:

where ( aT„/az~
v(P)~ 1 (18)

r/ pk —"2n
,

—e'v 'kryo'0 1 (13) for substitution into the continuity equation

is the bulk viscosity and 8$ 8(gu, )+ =0.
Bt 0rz

1/2o. -kp n, 2a 6 (14) Substituting constitutive equation (12) into (18) and con-
verting (18) and (19) to dimensionless variables yields

is the compressive yield stress,

y—= (3+2d, )/(3 —d/), yy
——3/(3 —df).

1 8 BU
U= V(@) 1+ — min crt, (@),r/M~(P) (20)

Now the only undefined parameter in (12)—(14) is the
number of active chains per junction, n1. Obviously, n1
should be an increasing function of volume fraction. In the
extreme case P~P, where @ is the maximum attainable
volume fraction (below we identify @ to the volume frac-
tion at random close packing of spheres, @ =0.64), the net-
work transforms from the fractal to a compact one, which
can be interpreted as divergence of n, (@).Assuming the sim-

plest form of this divergence we write

(
fl 11

where t~ is a parameter to be specified below. Of course, (15)
should be considered as a phenomenological assumption in-
troduced in order to apply the fractal model even beyond its
actual applicability, i.e., at high @, as relevant to the latter
stages of consolidation. Note that a similar divergent factor
with K=1 was introduced by Bergstrom [9] yielding o.

~
~ P ~/[1 —(Pl/ )].More generally, t~ and P can be con-
sidered as adjustable parameters.

(21)

where

Z= z/h p, T—=—tv ( Pp)/hp, U: u, /v ( Pp),

V(P) —=v(P)/v(Pp),

g(@)—=oy(P)/o Y(gp), M(P) = t/, (P)!y,(@p),

~,(4p) V.(4p) v(4p)0= 4pgh0
'

Apgh0

h0 is the height of a sample in which solid phase is distrib-
uted with volume fraction Pp at time t =0 (see Fig. 1). Thus,
the network initially fills the sample, while during the con-
solidation the particles are redistributed so that the boundary
between the network and pure liquid at z=h goes down, i.e.,
H—=h/h0 is a decreasing function of T. Hence, initial condi-
tions are

III. MACROSCOPIC MODELING: NETWORK
CONSOLIDATION IN GRAVITY FIELD

@(Z,T= 0) = Pp, H(T= 0) = 1, (22)

A. General formulation
while boundary conditions specify no Aux at the bottom and
zero stress at the top:

The pioneering work on modeling of consolidation was
done by Buscall and White [6] and followed by Auzarais
et al. [7].Here we modify these works as discussed below.

We start from the general force balance equation

U(Z=O, T) =0,

BU(z= H, T)
BZ

(23a)

(23b)
VT+ f=0, (16)

where the body force f includes gravity and viscous drag as
Rewriting (20) separately in the upper (Z)Z, ) and lower

(Z(z, ) zones, with Z, the interface between them, yields:

u, —u~
f=~t Pg 1+r(4)

V0
(17)

8 BU
U=V($) 1+ — M(@), ZoZ„ (24)
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a 8
U= V(4) 1+— &(4') ~

P Bz

The latter equation is conveniently rewritten as

~Z
=

D(@)
[U —V(P)],

(25)

(26)

where g= Z—l $2TD(go) and Cz is another yet undefined co-
efficient. Substituting (31), (32), (34) and (35) into (29) and

(30) we find

C1=
exp(Z, /+t/) + exp[(2 —Z, )/+rg]

where

dX(@)
D(4) —=~V(4) (27)

where

4, 42/D(4o)

exp( —(',/2)+ (,fo' exp( —g /2)dg
(36)

Equations (24) and (26) should be solved together with (22)
and (23) and their solutions joined at Z= Z, such that T„,U,
and P are continuous:

Ccf ' exp( —6'/2) d 6

exp( —(,/2)+ g, fo' exp( —g /2)dg
(37)

BU

Z=Z, +0
(28)

Now we make use of (28) to find Z, as a solution of the
following equation:

UIz=z, +0= UIz=z, -o (29)

(3o)

Z
(1—I) +ri tanh = o.

r/
(38)

B. Short-time analysis

An analytic solution exists in T~O limit. Setting /= $0 in

(24) we find

U(z) Z, , T~o) = 1+C, (exp(ZI +y) + exp[(2 Z)l +c—r]j,
(31)

and

y(ZoZ„T o) = y, +0(T), (32)

where C, is undefined. At Z(Z, we employ (20) to rewrite
(26) as

dD(e) i~a~' t dV(e)~ ~e
aT= (~) aZ

' dy, aZ, +, ' ~ dy aZ
(33)

We refer to the solution of the general equations (24), (26),
and (28)—(30) as the combined model as opposed to the
pure Newton-ian (tr +~) and—pure yield (~-co) cases.

Hence the two-zone solution presented above develops at the
bottom only at

1
+rg tanh )cr.

rl
(39)

exp[Z/ v r/]+ exp[(2 —Z) I +rg]
U(Z, T-+0) = 1—

1+exp[2/ y]
(4o)

while P is found through time integration of (21) with (40)

In the high-viscosity limit, y—+~, pure-yield flow is realized,
in which case (39) reduces to the yield condition cr(1 stated

by Buscall et al. [6]. At lower viscosity yield fiow has to
compete with viscous Aow. If cr becomes higher than the lhs
of (39), the viscous flow completely dominates. As y de-
creases the lhs of (39) decreases, thus reducing the range of
o. in which yield fiow develops [note that (39) reduces to

+rg) o at r/ +0]. —
If (39) is not satisfied, U is given by (31), which takes the

form

where D(P) is defined in (27). As shown by Howells et al.
[15] the last two terms in the rhs are negligible as T~O,
reducing (33) to the unsteady diffusion equation with solu-
tion

T exp[(2 —Z) Iv r/] —exp[ZI +g]
y(ZT o) =1+

1+exp[2l y]
(41)

+ ( exp( —g /2)dg,
Jo

U(Z(Z, , T~O) = C2/D(@o)I2 exp( —g /2)dg,
00

(35)
where

Uo=—U(Z~1,T~O) =1—of„d(g),

As expected, the maximum value of the viscous stress,
r/(p)Bu, /Bz, indeed remains lower than tr as long as the
inequality opposite to (39) is satisfied.

In conclusion of our short-time analysis, let us represent
the initial rate of change of the sediment height:
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1 1 2 exp(1/v r/)
f„q( r/) =—min

1 & 1 + exp(2/+r/)
r/ tanh

(43)
TABLE I.

General algorithm

Is (39) satisfied? no

Recall that in pure yield case rg—+~ with cr(1 [i.e., if (39) is
satisfied] (42) reduces to f„d= 1, as first obtained by Buscall
et al. [6].

yes

Start from small-time solution
(31), (32), (34), (35)

C. Numerical procedures

The basis of our calculations is the well known Runge-
Kutta shooting method (RKSM). Let us first consider limit-
ing cases to which one-zone solutions apply.

The pure ¹~tonian case is realized if yes Is (44) satisfied? no

Assuming one-zone Newtonian solution,
find U(Z, T+hT) through RKSM-integration

of (24) wi th (23)

oU
V~~(4) ~Z~~&(@) (44)

Calculate

y(Z, T+ZT)

through (21)

Calculate

P(Z, T+hT) and U(Z, T+h, T)

through combined two-zone algorithm
(see Table 2)

Is p(0 T+BT) & p „d ?

yes no

T= T+ hT
Stop

H(T+AT)= H(T) — U(H, T+hT)BT

absolute value of the lhs of (23b). The procedure is com-
pleted when subsequent iterations yield P„within the toler-
ance interval. After that we check whether our choice of
@,* was close enough to the value P,**—= Plz z +o yielded

TABLE II.

Combined two-zone procedure

Make the first guess, P,=P(Z , T), for P, -=P(Z , T+hT)

Calculate g(Z, T+DT), U(Z, T+hT) at Z~Z (low zone)
through RKSM-integration of (21), (26) with boundary conditions

(23. 1) and P(O, T+ET)=gb(N) from Z=O to Z, ,

where P, (T+AT)=P" determines Z,

Calculate U(Z, T+dT) at. H&Z&Z, (upper zone)

through RKSM-integration of (24) starting with (28) at Z=Z,

up to Z=H, so that VAL(N)=lBU(Z=H, T)/BZl is found

Calculate $(Z, T+hT) at Z&Zc (upper zone) through (21)

For the next iteration choose Pb(N+1) so that
VAL(N+1)&VAL(N)

Is lpb(N+1)-pb(N)i&TOLL ?N=N+1

yes

c =Q(Zc+O~T+6T

Is
I fc &c I

&TOLL 7

yesi

Complete

adjust

is satisfied at every Z and T. In this case Z, is set to zero and
(24) is integrated with (23) via RKSM to determine U at
given T. This also gives us dH/dT as —U(Z=H) With.
these we calculate P through (21), which is subsequently
used in the next step, T+ AT, etc.

The pure yield case corresponds to the limit y—+oo. In this
case the problem is easy to solve since @(Z,~Z~H, T) = Po
and U, = U(Z, , T) is related to Z, through direct integration
of (18) from Z, to H with @=go, T„(Z=H) =0, and
T„(Z=Z,.) = —oy(@= Po). This gives a closure as
U, = 1+ [r/I(H Z,.)]. Starting —from the known short-time
solution (34) and (35) (which are easily seen to hold true for
pure yield as well) we calculate @and U at T through RKSM
with 8@1STestimated as [P(Z, T) —@(Z,T AT)]/AT. This—
algorithm is described in detail by Howells et al. [15].

Our general algorithm is shown schematically in Table I.
As noted above, the two-zone consolidation How develops if
(39) is satisfied. In this case our algorithm calculates @ and
U in both zones as shown in Table II. This procedure com-
bines an algorithm of Howells et al. [15] for the lower zone
with the RKSM algorithm for calculating U [P is subse-
quently found from (21)] in the upper zone. The latter is
similar to the one for the Newtonian case, but with floating
lower bound Z, which is found from joining these two solu-
tions.

Now let us discuss in some detail our algorithm for the
two-zone solution (Table II). The basic idea is that at every
time step we iteratively adjust the bottom, pb @(Z=O,——T),
and interface (between viscous and yield zones),
@,= P(Z= Z, , T), concentrations to satisfy boundary condi-
tions (23) and (28 —30). This is accomplished by guessing,

and @,* for @b and P, , respectively, and subsequently
shooting via the RKSM algorithm. We start with a guess,
P,*, for the interface concentration. For the given @,* we
employ the iterative procedure to determine the bottom con-
centration (dashed-line block in Table II). At the Nth itera-
tion the procedure starts by making a guess, @z (N), and
calculating @ and U in both zones satisfying boundary con-
ditions (28) and (29), but instead of (30) we satisfy the con-
dition @lz z o= P, . The condition (23b) is also impos-

C

sible to satisfy unless we properly chose @& . Thus, we keep
on shooting trying to adjust @b~ iteratively to minimize the
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by shooting. We iteratively adjust P& until P,* converges to

At each step our algorithm checks whether (44) is satis-
fied, i.e., that the solution can be obtained in the pure New-
tonian form. If this is impossible, the two-zone solution is
obtained as described above. However, as the flow slows
down, the two-zone Aow always undergoes a transition to the
pure-Newtonian pattern with tt tending asymptotically to

. In practice one has to stop calculations at some point,
say as @b reaches @,„d.

H, Z,

1.00

0.80-

0.60—

0.40—

IV. RESULTS

A. General calculations

To perform the calculations we need to specify the func-
tion U(P), which enters into our equations. To this end we
employ a modified Brinkman equation

0.20 -:

0.00
0.00 0.50 1.00 1.50

(2 —3 P)' 3/+4+3(8$ —3@')'"' (45)

where C accounts for the fact that the particles are arranged
in chains. In such an arrangement even in the limit @~0, v

is higher that v o due to screening of the hydrodynamic resis-
tance, i.e., C~1 being an increasing function of the coordi-
nation number. The actual value of C is not essential as long
as we present our results in dimensionless form, since it only
rescales the real time values. To fit the experimental data in
the next subsection we consider C an adjustable parameter.

The exponents in the constitutive equation (12) were de-
fined as

FIG. 2. Dimensionless heights of consolidating sample, 0 (up-

per curves), and the lower zone, Z, (lower curves), plotted vs di-

mensionless time T for pure yield model at o.=0.015 (solid) and

o——0.0015 (dashed), go=0. 15.

B. Comparison with the experiments

Now we will compare our calculations with the experi-
mental data of Bergstrom [9].We set

a=02 pm, Ap=3100 kg/m, p, =26 mPa s,

ho=0.2 m, go=0. 15

+Y=3, K= 1. (46) U, = 11k', 8'= 5 nm, ko —100, (47)

Note that the first two are in accordance with our fractal
model at df =2 and d, = 1. The last one sets the divergence in

rg, and o. and is identical to the one used by Bergstrom [9j.
A pure yield solution (g~~) is shown in Fig. 2. In this

case the concentration profile tends asymptotically to equi-
librium, @(Z,T) +@, (Z), such t—hat

dg(P) d ln @q
d@ dZ

which corresponds to his dispersion of alumina particles sta-
bilized by the adsorbed layer of oleic acid.

1.00

0.80—

0.60-

at Z(Z, (yield consolidation),
0.40-

P,q
= 1 at H ~Z &Z, (no consolidation) .

As cr decreases, consolidation spreads deeper into the
sample.

For finite y the profile develops as demonstrated in Fig. 3
with zones coexisting until the lower one disappears at
T= T, . After that Newtonian consolidation proceeds up to
close packing (asymptotically) as opposed to the pure yield
solution, see Fig. 4. For fixed y the yield zone quickly wid-
ens as o. is decreased, see Fig. 5, but always disappears at
T= T, , making the late-stage consolidation insensitive to cr.

0.00 '

0.00 0.50 1.00 1.50

FIG. 3. Same as in Fig. 2 for two-zone calculations (solid
curves) at o——0.003 for pure yield model g=~ (-—), and combined
model at rj=0.0015 (—.—.—) and y=0.000 45 (—).
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5 days

0.5—

0.4—

d15--
16 days

d

EB 0

10--
3 72 days

"pure yield"
calculations

0.2—

0.0 "
0.0 0.5 1.5 2.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 4. Dimensionless bottom volume fraction is plotted vs T at
o——0.003 for pure yield model rg=~ (dashed curve), and combined
model at rj=0.0015(1) and y=0.00045(2).

Let us first consider pure yield calculations. With {47)we
find from (14) tr, (@o)-10Pa, i.e., o.=1.6&&10 . Fitting the
experimental data with the only adjustable parameter, C, we
find the best agreement at C=1.5. The results are presented
in Fig. 6, One can see that this approach quantitatively de-
scribes the main features of the consolidation process, but
fails in two predictions: (i) that consolidation occurs only
at the bottom of the sample, rather than throughout the
sample; {ii) that the process stops with the equilibrium pro-
fil, @,„(Z), rather than proceeding further up to P-~P
although very slowly.

In Fig. 7 we compare the calculations for the pure New-
tonian model with the same experimental data. One can see

FIG. 6. Concentration profile in consolidating sample at differ-
ent moments of time. Calculations for pure yield model (rg=~) at
a——0.0015, y, =3, C=1.5.

that now the consolidation occurs throughout the sample,
rather than only at the bottom, and the concentration profile
in the latest stages of consolidation is very close to the ex-
perimental one. However, the calculation underestimates the
volume fraction at the bottom, which can be attributed to the
fact that the yield zone emerges there. In our calculations we
set xg=4.5X10, which corresponds to calculations with
(13) and (47) at z =2.05 [bulk viscosity in the initial sample
is rg(Po) =4.3X IO p,].

The results of the two-zone (combined) calculations are
presented in I"ig. 8, which turn out to agree better with the

h(cm)

1.00

20 i

5 days

t t t t I
1 I I t I I I I

0.80—
"pure Newtonian"

calcutatIons

0.60—

0.40—

0.20—

.r

/

372 days

5—

0.00
0.00 0.50 1.00 1.50 0.1 0.5 0.6

FIG. 5. Same as in Fig. 3 at fixed xg=0.00045 for or=0.003
(solid) and o——0.0015 (dashed).

FIG. 7. Same as in Fig. 6 for pure Newtonian model (cr=~) at
g=0.000 45, y=5, C=1.5.
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FIG. 8. Same as in Figs. 6 and 7 for the two-zone (combined)
calculations with the same parameters.

experiments than one-zone calculations considered above.
This is also demonstrated in Fig. 9, where we have plotted
the profiles calculated via all three algorithm in one plot. One
can see that the two-zone calculations predict faster rate of
consolidation everywhere in the sample than any of the one-
zone algorithms.

V. CONCLUSIONS

We have presented a microrheological model for consoli-
dation of aggregated dispersions under gravity. The model
assumes a transient fractal network to be responsible for nor-
mal stresses providing a constitutive equation with constant
bulk viscosity at low stresses and yieldlike behavior as the
stress reaches critical value. Thus, our model generalizes an

FIG. 9. Curves from Figs. 6—8 at t=16 days are plotted to-
gether.

earlier one based on the compressive yield stress alone by
accounting for deformation at lower stresses, which domi-
nates at the latest stages of consolidation and permits the
volume concentration to approach close packing asymptoti-
cally. We employed our constitutive equation to calculate
numerically the consolidation of a particular fractal network
and found better agreement with the experimental data for
weakly aggregated alumina dispersions than with the com-
pressive yield stress model.
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