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A microrheological model for the consolidation of aggregated colloidal dispersion is presented. Interparticle
forces are responsible for the formation of the fractal-like network of particles chains. Aggregation is supposed
to be weak in that the chains are gradually created and annihilated. In the framework of this model a consti-
tutive equation is proposed which includes linear dependence of the normal stress upon consolidation rate at
low stresses and yieldlike behavior as the stress reaches critical value. Our constitutive equation thus gener-
alizes earlier models based on the compressive yield stress concept by taking into account the deformation in
the low-compression limit (analog to the Newtonian flow in the low-shear limit). The constitutive equation is
employed to calculate numerically concentration profiles of consolidating samples in better agreement with the
experimental data for weakly aggregated alumina dispersions.

PACS number(s): 82.70.—y

I. INTRODUCTION

In recent years a number of works have interpreted the
viscoelastic properties of aggregating colloids in terms of the
mechanics of fractal networks [1-4], assuming that the ag-
gregated structure transmits stress through the chains com-
prising the elastic backbone. While strongly aggregated
chains do not permit the network to flow until the stress
reaches the yield point (shear yield stress), weakly aggre-
gated chains flow even in the low-stress limit, maintaining an
equilibrium between chain creation and annihilation and
yielding a low-shear Newtonian viscosity. In the latter case
the viscoelastic properties of the colloidal network resemble
those of polymeric ones, permitting application of the tran-
sient network models developed for the latter [5].

All the works cited above treat the shear flow realized in
rheological measurements. However, deformation of the net-
work also results from normal stresses, as in a gravitational
field or during filtration. Again, one can distinguish strongly
aggregating systems which do not consolidate until the nor-
mal stress reaches the yield point (compressive yield stress),
from weakly aggregating ones which undergo compression
in the low-stress limit, as characterized by a low-compression
bulk viscosity. Many workers considered the former case
[6—8], but latter has yet to be considered.

In this paper we employ the transient network approach to
estimate the bulk viscosity in the low-compression limit. The
deformation does not perturb the network significantly if the
lifetime of a chain, limited by its thermal breakup, is much
shorter than the time required to break it by compression.
Equivalently, this holds true if the stress does not exceed
some critical value, which we will estimate and still call the
compressive yield stress. Our model assumes deformation at
constant bulk viscosity up to the yield stress.

In Sec. I we employ the microscopical model of the floc-
culated network [5] to estimate the bulk viscosity and yield
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stress. Section III presents our numerical calculations of the
one-dimensional (1D) consolidation along with analytic re-
sults for the small-time limit. As distinct from the analyses in
Sec. 11, these calculations are macroscopic (or phenomeno-
logical) requiring no information about the microstructure.
However, the microscopic analyses becomes useful in Sec.
1V, where we estimate the parameters involved in the consti-
tutive equation to compare the results of our calculations
with the experiments of Bergstrom [9] on consolidation of
alumina dispersions. This demonstrates semiquantitative
agreement with the experiments for values of network pa-
rameters consistent with our model.

II. MICROSCOPIC MODELING: COMPRESSION
OF FRACTAL NETWORK

We assume all particles to exist in chains, which in turn
are combined into a network (see Fig. 1). Assuming the frac-
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FIG. 1. Schematic of consolidating fractal network with multi-
ply connected chains.
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tal properties of the network and identifying the end-to-end
distance of chains, g, with the correlation length of the net-
work, ..., we write (see, e.g., [10])

gla~qeola~¢~ 374, (1)

where ¢ is the volume fraction of solid, d; is the fractal
dimension, a is the particle radius. The number of particles
per chain, N, is related to g via a power law:

Nchw(q/a)dl’ (2)

where d; is the chemical dimension (or chemical length ex-
ponent), which ranges between 1 (straight chains) and ~1.6
(self-avoiding random walk). Some fraction of the chains is
supposed to be elastically active, i.e., able to transmit elastic
forces which give rise to network stress tensor T. Such
chains are modeled as curved elastic rods, which respond to
external load as Hookean springs, transmitting the force f
that increases linearly with elongation, Ag,

q
f=k,Ag —, 3
1 (3

where the force constant [11]
keNkel(q/a)_z_dly (4)

decreases with increasing length and k,; characterizes the
bending elasticity of a unit section of the chain (see below).
Ends of elastically active chains connect to junctions, which
move affinely.

In Cartesian coordinates with the origin at the bottom and
a vertical z axis (see Fig. 1) 1D compression is characterized
by the deformation rate y(z)= —du,/dz, where u is the par-
ticle velocity averaged over the volume much larger then ¢°,
but much smaller than the macroscopic volume. In the con-
text of the network model we write the stress tensor T as

T=n(qf), ()

where n is the number concentration of elastically active
chains and brackets denote volume averaging. Substituting
(3) into (5) we write

Tzzwnquzwnlkeq_zAQ7 (6)

where n; =ng? is the number of active chains per correlation
volume. Since the chains are compressed, Ag is negative. To
estimate its absolute value, we distinguish two mechanisms
of chains’ breakup: fluctuations and rupture under the com-
pressive force. The former limits the lifetime of the chain, 7,
i.e., no chain can live longer than 7 whether it is loaded or
not. The latter limits a chain’s deformation, not permitting
[Ag| to exceed some critical value, Ag,,,. Hence

[Ag|~min{g7¥,Aq - (7)

Up to this point we have not specified the mechanisms of
chain creation and breakup so that Egs. (6) and (7) stand as
general predictions of the network model. Specifying yet un-
defined quantities 7, k,, Ag,,, and n; requires further as-

sumptions, which are considered in detail in [5] with respect
to shear deformation. Here we briefly analyze the main re-
sults.

One of the simplest estimations of 7 proposed by Russel
et al. [12] on the basis of analysis of doublet breakup reads
7~79exp(U./kTg), where U, is the magnitude of the mini-
mum of the potential, y=6mua’/kTy is the characteristic
diffusion time of an isolated particle with wu the fluid viscos-
ity, and kT is the Boltzmann factor. To improve this esti-
mate let us first point out that the lifetime of a chain de-
creases as the number of particles in it increases. If the chain
is modeled by a singly connected train of particles, its life-
time 7 will equal

—d dy/(3—d
7™ Tsingle /NchN Tsingle(q/a) I~ Tsingle¢ 1/ f)9 (8)

where 7, is the characteristic time of a single particle to
break a bond with one of its neighbors. For a singly con-
nected chain it is easy to show that 7, differs from 7, only
by a factor which is rather close to 1. However, in the system
of spherical particles with purely central interactions, which
we consider here, singly connected chains are elastically ac-
tive only when straight, while any contorted chain is inactive
since the particles will adjust freely.

A more realistic model of colloidal chains implies the
chains to be multiply connected, i.e., to consist of a bundle of
singly connected chains (see Fig. 1). The illustrations of mul-
tiply connected chains in 2D are provided by numerical
simulations [13] and experimental data [14]. Such a chain
may be elastically active even if the interaction of particles is
purely central. However, one singly connected point suffices
to deactivate the entire chain due to free rotation of particles
or sections of the chain in this point. Hence, 7. in (8)
should be understood as the characteristic time of such a
deactivation, while N, should be identified with the number
of particles in the chain which can cause such deactivation.
We will assume that N, is still described by Eq. (2). To
estimate 7,.,e We consider one of these particles moving
along the trajectory which permits it to pass over the lowest
potential barrier. This trajectory is achieved if this particle
“rolls” over two of its neighbors to reach a new stable po-
sition. The minimum number of bonds to be broken is z and
the potential barrier is zU,, where U, is the two-particle
bond energy. In [5] the reaction rate theory was employed to
obtain

kT yo
Tsingle ™ W 7o GXP[Z Uc k TB]’ (9)

where 6 is the gap width between aggregated particles.

Two other parameters, k,; and Ag,,,, characterize the
response of the chain to external load. As noted above, k,; in
(4) represents the bending elasticity of a unit section of a
chain. Since we assumed that the elastic response of chains
originates from their multiply connected structure, we iden-
tify k,, with the force constant of a doublet:

ke =koU,.18%, (10)

where kg is dimensionless curvature of the potential well.
For Ag,,, we employ the estimate
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Aqmp~k()_1/25(q/a)l+d1, (11)

which was derived in [5] assuming the chain to break if
stored elastic energy per bond exceeds U, .

Finally, substituting (7)—(11) into (6), we find a simple
constitutive equation:

N aul
—TZZ:mln _7711(¢) a_z,o.y(¢) ’ (12)
where
12, 4 U T
7y~ kg ny e (24 (13)

is the bulk viscosity and

U
oy ~kg’ny —= ¢ (14)

is the compressive yield stress,

y=(3+2d\)/(3—dy), v,=3/(3-dp).

Now the only undefined parameter in (12)-(14) is the
number of active chains per junction, n;. Obviously, n;
should be an increasing function of volume fraction. In the
extreme case ¢—¢,,, where ¢,, is the maximum attainable
volume fraction (below we identify ¢,, to the volume frac-
tion at random close packing of spheres, ¢,,=0.64), the net-
work transforms from the fractal to a compact one, which
can be interpreted as divergence of n (). Assuming the sim-
plest form of this divergence we write

nyv(l—%) , (15)

where « is a parameter to be specified below. Of course, (15)
should be considered as a phenomenological assumption in-
troduced in order to apply the fractal model even beyond its
actual applicability, i.e., at high ¢, as relevant to the latter
stages of consolidation. Note that a similar divergent factor
with k=1 was introduced by Bergstrom [9] yielding o,
< p?/[1—(P/P,,)]. More generally, « and ¢,, can be con-
sidered as adjustable parameters.

III. MACROSCOPIC MODELING: NETWORK
CONSOLIDATION IN GRAVITY FIELD

A. General formulation

The pioneering work on modeling of consolidation was
done by Buscall and White [6] and followed by Auzarais
et al. [7]. Here we modify these works as discussed below.

We start from the general force balance equation

VT+£=0, (16)
where the body force f includes gravity and viscous drag as

Upeg— U

f=Apog| 1+r(p) oo ) (17)
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Ap is the difference in mass density of the solid and liquid
phase, u,,.4 is the medium velocity, and g is the gravity ac-
celeration. The collective friction r(¢) accounts for the effect
of hydrodynamic interactions on the sedimentation velocity,
v(¢), which corresponds to the movement of the infinite
structure through the liquid without consolidation as
r(d)=vo(1— @)/v(p) with vy=2Apga’/9u. Conservation
of mass implies u—u,4=u/(1—¢). For 1D consolidation
(16) and (17) determine the network velocity:

<¢>)( 1 aT“mz) (18)
u,=—v -
‘ Apgd
for substitution into the continuity equation
a d(du
¢+ (¢ Z)ZO. (19)

ot 0z

Substituting constitutive equation (12) into (18) and con-
verting (18) and (19) to dimensionless variables yields

- 1 ¢ S U
U=V(d) 1+$5me 0'2(({’),77.%(4)) ﬁ] , (20)

ip o .
ﬁ—ﬁﬁﬁw, (21)
where
Z=zlhy, T=tv(¢g)/hy, U=—u,/v(edy),

V()=v()/v(by),
S(d)=a,(d)oy(bo)s T $)=n,() 0, (o),

_ 9y(¢0) _ Mu(#o)v (o)
7= Apghy’ = Apghg ’

hy is the height of a sample in which solid phase is distrib-
uted with volume fraction ¢, at time =0 (see Fig. 1). Thus,
the network initially fills the sample, while during the con-
solidation the particles are redistributed so that the boundary
between the network and pure liquid at z=#4 goes down, i.e.,
H=h/h is a decreasing function of 7. Hence, initial condi-
tions are
H(Z,T=0)=¢y, H(T=0)=1, (22)
while boundary conditions specify no flux at the bottom and
zero stress at the top:
U(Zz=0,T)=0, (23a)
o'?U(Z=H,T)_0 23b
7 =0. (23b)
Rewriting (20) separately in the upper (Z>Z_) and lower
(Z<Z,) zones, with Z, the interface between them, yields:

n d

U
572 7P 57 |-

U=V(¢$){ 1+ zZ>Z., (24)
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1+——2(¢)] z<z,. (25)

U=V(¢) b 9z

The latter equation is conveniently rewritten as

¢ ¢

-z =D LU V()] (26)
where

D(d)=cV(¢) ((:)- (27)

Equations (24) and (26) should be solved together with (22)
and (23) and their solutions joined at Z=Z_such that T, , U,
and ¢ are continuous:

U
P - =02(P)|z-2,-0, (28)
Z=2,+0
Ulz=z,+0=Ulz=z.-0, (29)
Hlz=2,+0= lz=2,-0- (30)

We refer to the solution of the general equations (24), (26),
and (28)—(30) as the combined model as opposed to the
pure-Newtonian (o—) and pure-yield (p—) cases.

B. Short-time analysis

An analytic solution exists in 7—0 limit. Setting ¢=¢h, in
(24) we find

U(Z>Z,,T—0)=1+C {exp(Z/\7) +exp[(2—Z)/al},
(31)

and
HZ>Z,,T—0)=¢y+0(T), (32)

where C, is undefined. At Z<Z_ we employ (20) to rewrite
(26) as

¢ ¢ dD(¢) (9 av(e)\ d¢é
o1 PP ozt 5 (az) +(V_ dd ) Z
(33)

where D(¢) is defined in (27). As shown by Howells ef al.
[15] the last two terms in the rhs are negligible as 7—0,
reducing (33) to the unsteady diffusion equation with solu-
tion

HZ<Z,,T—0)=1—2T/D(1)¢+C, \/T( exp(— £%/2)

£
+¢ J . exp(— §2/2)d§) , (34)

U(Z<Z,,T—0)=CyVD(¢o)/2 f; exp(—&22)d¢,  (35)

where ¢=Z/+2TD(¢,) and C, is another yet undefined co-
efficient. Substituting (31), (32), (34) and (35) into (29) and
(30) we find

I—1
~exp(Z, N +expl(2—Z)/n)’
_ £:N2/D( o)
- 2 3 2 » (36)
exp(— £:/2)+ &S o exp(— £°/2)d¢
where
& exp(— £212)d
/= £y exp(—§°2)d¢ 37

exp(— £2/2) + £.f 5 exp(— £12)d¢’

Now we make use of (28) to find Z, as a solution of the

following equation:

(1—1)\/; tanh 1;_:6

Hence the two-zone solution presented above develops at the
bottom only at

=g0. (38)

1
\/;7- tanh —=>o. (39)

Vn

In the high-viscosity limit, 7—, pure-yield flow is realized,
in which case (39) reduces to the yield condition o<1 stated
by Buscall ef al. [6]. At lower viscosity yield flow has to
compete with viscous flow. If o becomes higher than the lhs
of (39), the viscous flow completely dominates. As 7 de-
creases the lhs of (39) decreases, thus reducing the range of
o in which yield flow develops [note that (39) reduces to
Jn>0o at —0].

If (39) is not satisfied, U is given by (31), which takes the
form :

exp[Z/\n]+exp[ (2 —Z)/\/7)

U(Z,T—0)=1—
( ) 1+exp[2/\/7]

, (40)

while ¢ is found through time integration of (21) with (40)

SZT—0)=1+ L ZPLE~ 2)\n]- eXp[Z/\/—]

N 1+exp[2/\/7]

(41)

As expected, the maximum value of the viscous stress,
n($)du,/dz, indeed remains lower than o as long as the
inequality opposite to (39) is satisfied.

In conclusion of our short-time analysis, let us represent
the initial rate of change of the sediment height:

UOE U(Z_’LT—')O)= 1 _Ufsed( 77)a (42)

where
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1 1 2 1/
Sy =min]| —, U7

1 1 +exp(2/\/;) '
\/; tanh —=
V7

Recall that in pure yield case 7—o with o<1 [i.e., if (39) is
satisfied] (42) reduces to f,q=1, as first obtained by Buscall
et al. [6].

C. Numerical procedures

The basis of our calculations is the well known Runge-
Kutta shooting method (RKSM). Let us first consider limit-
ing cases to which one-zone solutions apply.

The pure Newtonian case is realized if

oU
2 IAP) <03 () (44)

is satisfied at every Z and 7. In this case Z, is set to zero and
(24) is integrated with (23) via RKSM to determine U at
given T. This also gives us dH/dT as —U(Z=H). With
these we calculate ¢ through (21), which is subsequently
used in the next step, T+ AT, etc.

The pure yield case corresponds to the limit 7—oe. In this
case the problem is easy to solve since §(Z, <Z<H,T)=¢,
and U,=U(Z_,T) is related to Z_ through direct integration
of (18) from Z, to H with ¢=¢,, T,,(Z=H)=0, and
T,(Z=Z,)=—o0,(¢=¢). This gives a closure as
U.=1+[n/(H—Z,)]. Starting from the known short-time
solution (34) and (35) (which are easily seen to hold true for
pure yield as well) we calculate ¢ and U at T through RKSM
with d¢/dT estimated as [H(Z,T)— ¢(Z,T—AT)]/AT. This
algorithm is described in detail by Howells et al. [15].

Our general algorithm is shown schematically in Table I.
As noted above, the two-zone consolidation flow develops if
(39) is satisfied. In this case our algorithm calculates ¢ and
U in both zones as shown in Table II. This procedure com-
bines an algorithm of Howells et al. [15] for the lower zone
with the RKSM algorithm for calculating U [¢ is subse-
quently found from (21)] in the upper zone. The latter is
similar to the one for the Newtonian case, but with floating
lower bound Z, which is found from joining these two solu-
tions.

Now let us discuss in some detail our algorithm for the
two-zone solution (Table II). The basic idea is that at every
time step we iteratively adjust the bottom, ¢,=¢(Z=0,T),
and interface (between viscous and yield zones),
b, =d(Z=Z_,,T), concentrations to satisfy boundary condi-
tions (23) and (28-30). This is accomplished by guessing,
¢ and @ for ¢, and ¢, , respectively, and subsequently
shooting via the RKSM algorithm. We start with a guess,

¥, for the interface concentration. For the given ¢* we
employ the iterative procedure to determine the bottom con-
centration (dashed-line block in Table II). At the Nth itera-
tion the procedure starts by making a guess, ¢}(N), and
calculating ¢ and U in both zones satisfying boundary con-
ditions (28) and (29), but instead of (30) we satisfy the con-
dition ¢[;-7 o=@} . The condition (23b) is also impos-
sible to satisfy unless we properly chose ¢} . Thus, we keep
on shooting trying to adjust ¢/ iteratively to minimize the

TABLE 1.

General algorithm

Is (39) satisfied?

Start from small-time solution
(31),(32), (34), (35)

Assuming one-zone Newtonian solution,
find U(Z,T+AT) through RKSM-integration
of (24) with (23)

[

yes Is (44) satisfied?—l—i"——1

Calculate
¢(Z, T+AT)
through (21)

Calculate
¢(Z, T+AT) and U(Z, T+AT)

through combined two-zone algorithm

(see Table 2)

yesl no

Is ¢(0,T+AT) < ¢ ?

end

T= T+ AT
H(T+AT)= H(T) - U(H, T+AT)AT

absolute value of the lhs of (23b). The procedure is com-
pleted when subsequent iterations yield ¢} within the toler-
ance interval. After that we check whether our choice of
¢ was close enough to the value dL*=pl;-7 10 yielded

TABLE II.

Combined two-zone procedure

| Make the first guess, ¢2=¢(Z_,T), for ¢c=¢(Zc,T+AT{4
T

L

’ Make the first guess, ¢ (N=1)=¢(0,T), for ¢bE¢(O,T+AT)|

{

Calculate ¢(Z,T+AT), U(Z,T+AT) at ZsZ_ (low zone)

through RKSM-integration of (21),(26) with boundary conditions
(23.1) and ¢(0,T+AT)=¢y(N) from 2=0 to Z,
where ¢_(T+AT)=¢; determines Z_
U
Calculate U(Z,T+AT) at H>Z>Z_ (upper zone)
through RKSM-integration of (24) starting with (28) at 2=Z,
up to Z=H, so that VAL(N]E|8U(Z=H.T]/82| is found

1

Calculate ¢(Z,T+AT) at Z>Z. (upper zone) through (21)

{

For the next iteration choose ¢f(N+1) so that
VAL (N+1)<VAL(N)

—L N=N+1 }—-i{ Is |gg (N+1)-¢y (N) |<TOLL ?
yesl
$2°=p(Z,+0, T+AT)

-———Iadjust P |<i~| Is |¢s -¢u | <TOLL ? ]
yesl

Complete

—
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by shooting. We iteratively adjust ¢} until ¢* converges to
$r*.

At each step our algorithm checks whether (44) is satis-
fied, i.e., that the solution can be obtained in the pure New-
tonian form. If this is impossible, the two-zone solution is
obtained as described above. However, as the flow slows
down, the two-zone flow always undergoes a transition to the
pure-Newtonian pattern with ¢ tending asymptotically to
&,, - In practice one has to stop calculations at some point,
say as ¢, reaches ¢q.

IV. RESULTS
A. General calculations

To perform the calculations we need to specify the func-
tion v(¢), which enters into our equations. To this end we
employ a modified Brinkman equation

_ (2—-3¢)?
v(é)=Cuv, 36141338347

(45)

where C accounts for the fact that the particles are arranged
in chains. In such an arrangement even in the limit ¢—0, v
is higher that v, due to screening of the hydrodynamic resis-
tance, i.e., C>1 being an increasing function of the coordi-
nation number. The actual value of C is not essential as long
as we present our results in dimensionless form, since it only
rescales the real time values. To fit the experimental data in
the next subsection we consider C an adjustable parameter.

The exponents in the constitutive equation (12) were de-
fined as

y=5, v,=3, k=1 (46)
Note that the first two are in accordance with our fractal
model at d;=2 and d,=1. The last one sets the divergence in
7, and o, and is identical to the one used by Bergstrom [9].

A pure yield solution (7—) is shown in Fig. 2. In this
case the concentration profile tends asymptotically to equi-

librium, ¢(Z, T)—>¢eq(Z), such that

d%(g) dIn gy _
T7ae dz

at Z<Z, (yield consolidation),

$eq=1

at H<Z<Z_. (no consolidation).

As o decreases, consolidation spreads deeper into the
sample.

For finite 7 the profile develops as demonstrated in Fig. 3
with zones coexisting until the lower one disappears at
T=T,. After that Newtonian consolidation proceeds up to
close packing (asymptotically) as opposed to the pure yield
solution, see Fig. 4. For fixed # the yield zone quickly wid-
ens as o is decreased, see Fig. 5, but always disappears at
T=T,., making the late-stage consolidation insensitive to o.

H,Z,

1.00 t f

0.80 T T

0.60 T : .

0.40 1

Sssiaszzuzesiiaey

0.20 1

0.00 f f
0.00 0.50 1.00 1.50

T

FIG. 2. Dimensionless heights of consolidating sample, H (up-
per curves), and the lower zone, Z_ (lower curves), plotted vs di-
mensionless time T for pure yield model at 0=0.015 (solid) and
0=0.0015 (dashed), ¢,=0.15.

B. Comparison with the experiments

Now we will compare our calculations with the experi-
mental data of Bergstrom [9]. We set

a=02 pum, Ap=3100 kg/m3, u=2.6 mPas,
he=02 m, ¢u=0.15,
U.,=11kTz, 6=5 nm, ko~ 100, 47)

which corresponds to his dispersion of alumina particles sta-
bilized by the adsorbed layer of oleic acid.

H,Z,

1.00

0.80 1
0.60 7
0.40 7

0.20 17 /

FIG. 3. Same as in Fig. 2 for two-zone calculations (solid
curves) at 0=0.003 for pure yield model =0 (---), and combined
model at 7=0.0015 (—-—-— ) and %7=0.000 45 (—).
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by

0.5

0.4 1

0.3 7

0.2 1

0.1 7 T

0.0 t + +
0.0 0.5 1.0 1.5 2.0
T

FIG. 4. Dimensionless bottom volume fraction is plotted vs 7" at
0=0.003 for pure yield model 7= (dashed curve), and combined
model at 7=0.0015(1) and 7=0.000 45(2).

Let us first consider pure yield calculations. With (47) we
find from (14) o,(¢y)~10 Pa, i.e., o=1.6X10"7. Fitting the
experimental data with the only adjustable parameter, C, we
find the best agreement at C=1.5. The results are presented
in Fig. 6. One can see that this approach quantitatively de-
scribes the main features of the consolidation process, but
fails in two predictions: (i) that consolidation occurs only
at the bottom of the sample, rather than throughout the
sample; (ii) that the process stops with the equilibrium pro-
file, ¢.q(Z), rather than proceeding further up to ¢—d,,,
although very slowly.

In Fig. 7 we compare the calculations for the pure New-
tonian model with the same experimental data. One can see

H,Z,

1.00 -+ |
0.80 + +
0.60 + \) T
0.40 T = 1

1
|
!
I
0201 / i T
|
!
i
|

0.00 t
0.00 0.50 1.00 1.50

T

FIG. 5. Same as in Fig. 3 at fixed #=0.000 45 for 0=0.003
(solid) and 0=0.0015 (dashed).

h(cm)
20 t + ; : +
5 days
a a
a
-3
15T A T
16 days f " -
a pure yield
3 o & calculations
p O
la O
aaq
10T E 3 T
172 days A 8
=}
3 A
+ +
4 & s
5 T AA +€- T
a +
++‘?.
fa
0 ; —
0.0 0.1 0.5 0.6

FIG. 6. Concentration profile in consolidating sample at differ-
ent moments of time. Calculations for pure yield model (=) at
0=0.0015, =3, C=1.5.

that now the consolidation occurs throughout the sample,
rather than only at the bottom, and the concentration profile
in the latest stages of consolidation is very close to the ex-
perimental one. However, the calculation underestimates the
volume fraction at the bottom, which can be attributed to the
fact that the yield zone emerges there. In our calculations we
set 7=4.5X107*, which corresponds to calculations with
(13) and (47) at z=2.05 [bulk viscosity in the initial sample
is 7,(y)=4.3%10° u].

The results of the two-zone (combined) calculations are
presented in Fig. 8, which turn out to agree better with the

h(cm)
20 ‘ A "
5 days
-9 a a
-
jo -
151 2 “pure Newtonian” T
16 days R calculations
5 a

FIG. 7. Same as in Fig. 6 for pure Newtonian model (o=) at
7=0.000 45, y=5, C=1.5.
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FIG. 8. Same as in Figs. 6 and 7 for the two-zone (combined)
calculations with the same parameters.

experiments than one-zone calculations considered above.
This is also demonstrated in Fig. 9, where we have plotted
the profiles calculated via all three algorithm in one plot. One
can see that the two-zone calculations predict faster rate of
consolidation everywhere in the sample than any of the one-
zone algorithms.

V. CONCLUSIONS

We have presented a microrheological model for consoli-
dation of aggregated dispersions under gravity. The model
assumes a transient fractal network to be responsible for nor-
mal stresses providing a constitutive equation with constant
bulk viscosity at low stresses and yieldlike behavior as the
stress reaches critical value. Thus, our model generalizes an

h(cm)
20 — + } + t
15 1 T
FrooTes experimental
= Dc /
g
10 T g T
a
a
a combined
—
"pure yield" 2
5 - E N
2
a
“pure Newtonian” "T" a
) " ' P Nlo
0.0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 9. Curves from Figs. 6—8 at t=16 days are plotted to-
gether.

earlier one based on the compressive yield stress alone by
accounting for deformation at lower stresses, which domi-
nates at the latest stages of consolidation and permits the
volume concentration to approach close packing asymptoti-
cally. We employed our constitutive equation to calculate
numerically the consolidation of a particular fractal network
and found better agreement with the experimental data for
weakly aggregated alumina dispersions than with the com-
pressive yield stress model.
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