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%e study rigidity percolation for random central-force networks on the bond- and site-diluted generic
triangular lattice. Here, each site location is randomly displaced from the perfect lattice, removing any special
symmetries. Using the pebble game algorithm, the total number of Aoppy modes are counted exactly, and
exhibit a cusp singularity in the second derivative at the transition from a rigid to a floppy structure. The
critical thresholds for bond and site dilution are found to be 0.66020~0.0003 and 0.69755~ 0.0003, respec-
tively. The network is decomposed into unique rigid clusters, and we apply the usual percolation scaling theory.
From finite size scaling, we find that the generic rigidity percolation transition is second order, but in a different
universality class from connectivity percolation, with the exponents cr = —0.48 ~ 0.05, P = 0.175~ 0.02, and
v=1.21~0.06. The fractal dimension of the spanning rigid clusters and the spanning stressed regions at the
critical threshold are found to be df = 1.86~0.02 and diaz= 1.80~0.03, respectively.

PACS number(s): 05.70.Fh, 61.43.Bn, 46.30.Cn

I. INTRODUCTIC)N

The simple yet powerful concepts of percolation theory
have found their way into many different areas of research
[1,2], including communications, biology, physics, geophys-
ics, and a host of engineering disciplines. Two important
applications that commonly come to mind are those of fluid
How through porous media and the dc conductivity in a
metal-insulator composite. The one essential property com-
mon to all percolation-type problems is that of a connected
pathway. Some properties of interest, such as quid How or
electrical current, can be traced across various paths within
the system. We will apply percolation theory to random elas-
tic central-force networks to gain insight on the geometrical
aspects of elasticity where the property of interest is rigidity.

The elastic properties of random networks of Hooke
springs has been studied over the past 12 years [3—13]. One
of the most interesting findings has been that effective me-
dium theory describes the behavior of the elastic constants
and the number of floppy modes remarkably well [14,15],
except very close to the phase transition from a rigid to a
Poppy structure. The success of effective medium theory has
allowed complex situations, such as the elastic behavior of
3d glasses like Ge~As~Se & ~ to be characterized. In particu-
lar, some properties of glasses track the mean coordination
[3,16] (r)=4x+ 3y+ 2(1 —x —y) = 2+ 2x+y, where the
Ge atoms are all fourfold coordinated, the As atoms are all
threefold coordinated, and the Se atoms are all twofold co-
ordinated.

Unfortunately, attempts to study the critical behavior in
central-force networks have not been very satisfactory and
the question of the universality class of the rigidity transition
[7,8, 10,12,13] has remained unresolved. This question is fun-
damental in understanding the nature of the rigidity transi-
tion, and may have important implications as to how the
character of the glass transition is affected by the mean co-
ordination, as has been discussed recently via fragile and
strong glass formers [17]. We show here how substantial
progress can be made in understanding the geometrical na-

ture of generic rigidity percolation [18].
There are two important differences between rigidity and

connectivity percolation. The first difference is that rigidity
percolation is a vector (not a scalar) problem, and secondly,
there is an inherent long range aspect to rigidity percolation.
For example, Fig. 1(a) shows four distinct rigid clusters con-
sisting of two rigid bodies attached together by two rods
connecting at pivot joints. Now the placement of one addi-
tional rod, as shown in Fig. 1(b), locks the previous four
clusters into a single rigid cluster [19].This nonlocal char-
acter allows a single rod (or bond) on one end of the network

(a)

FIG. 1. The shaded regions represent 2d rigid bodies. The
(closed, open) circles denote pivot joints that are members of (one,
more than one) rigid body. (a) A floppy piece of network with four
distinct rigid clusters. (b) Three generic cross links between two
rigid bodies make the whole structure rigid. If the bonds were par-
allel, the structure would not be rigid to shear [19].(c) Three non
collinear connected rods connecting across a rigid body is generic
and contains one internal floppy mode. If they were collinear (along
the dotted line), then there would be two inftnitesimal (not finite)

floppy motions, and under a horizontal compression buckling would
occur.
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to affect the rigidity all across the network from one side to
the other.

Using concepts from graph theory, we set up generic net-
works where the connectivity or topology is uniquely defined
but the bond lengths and bond angles are arbitrary. A generic
network does not contain any geometric singularities [9] that
occur when certain geometries lead to null projections of
reaction forces. Null projections are caused by special sym-
metries, such as the presence of parallel bonds or connected
collinear bonds. Rather than these atypical cases their ge-
neric counterparts will be present as shown in Figs. 1(b) and
1(c).This ensures that all infinitesimal fioppy motions carry
over to finite motions [9,20].

All previous studies on rigidity percolation have been on
regular (nongeneric) lattices, which as we now know [18]
have inadvertently delayed a proper understanding of the ri-
gidity transition. In nongeneric (referred to as atypical) net-
works many geometrical singularities occur that lead to non-
linear effects. For example, a diodelike problem frequently
occurs in atypical networks where a string of collinear bonds
can only be extended with a cost in energy but can be com-
pressed with no cost in energy due to buckling [e.g. , Fig.
1(c)].The diode effect complicates studies because it leads to
the breakdown of linear elasticity theory, which must be re-
versible. A simple way to view a generic network is to take a
regular lattice structure and randomly displace each site lo-
cation by a small amount. This introduces local distortions
throughout the lattice and is in itself a good physical model
for amorphous and glassy materials. All prior studies that
inevitably involve the nonlinear effects arising from geo-
metrical singularities [4—14] should be considered as a sepa-
rate problem.

By considering generic networks, the diode effect and the
problematic geometric singularities are completely elimi-
nated. Therefore, the problem of rigidity percolation on ge-
neric networks leads to many conceptual advantages because
all geometrical properties are robust, not depending on a
multitude of special cases. Moreover, real glasses are mod-
eled better by generic networks rather than regular atypical
networks because of local distortions. In two dimensions,
there exist efficient, exact, combinatorial algorithms allow-
ing for the possibility of an in-depth study of rigidity perco-
lation.

In Sec. It, we briefly review some previous results on
rigidity percolation, highlighting both the successes and the
unresolved problems. We then give a short description of the
pebble game algorithm in Sec. III, which allows the static or
geometric properties of rigidity percolation in 2d generic
networks to be addressed directly. Here we will discuss three
basic applications, which include calculating the exact num-
ber of Aoppy modes, identifying all rigid clusters, and deter-
mining the overconstrained regions. We present results ob-
tained using this approach in Sec. IV for the bond and site
diluted generic triangular lattice. Finally, we will conclude in
Sec. V with a discussion on what we have achieved in this
work, and what directions still remain for further study.

II. PREVIOUS RESULTS

The rigidity of a network glass is related to how amenable
the glass is to continuous deformations that require very little

cost in energy. A small energy cost will always arise from
weak forces that are present in addition to the hard covalent
forces that involve bond lengths and bond angles. These
small energies can be ignored because the degree to which
the network is deformable is well quantified by just the num-
ber of fioppy modes [3] within the system. A mental picture
of Aoppy and rigid regions within the network has led to the
idea of rigidity percolation [3,4]. An interesting model to
consider is one with only central forces because its properties
are most different from connectivity percolation, which can
be recovered if all pivot joints are welded fixed [21,22].

Much understanding of the general phenomena of central-
force rigidity percolation can be obtained by studying a ran-
dom network of Hooke springs. To be specific, we begin by
considering a network of Hooke springs characterized by the
potential

where the sum is over all bonds (ij ) connecting sites i and

j in the network. A bond connecting sites i and j is present if
n; j= 1 with probability p and absent if n;.=0 with probabil-
ity 1 —p. The spring constants (u; j and the equilibriumlJ
bond lengths il;,) are positive real numbers but are left ar-

bitrary. In addition, the site locations are also left arbitrary as
the network is generic. Note that rigidity is a static concept,
involving virtual displacements, so that while it is convenient
to use harmonic potentials as done in Eq. (1) any set of pair
potentials would give the same results for the geometric as-
pects of rigidity that is of interest here.

A collection of sites form a rigid cluster when no relative
motion within that cluster can be achieved without a cost in
energy. Conversely, the floppy modes correspond to finite
motions of the sample that do not cost energy. Therefore, the
geometrical properties and the number of Aoppy modes can
be determined by an equivalent bar and joint structure [9].
Note that a d-dimensional system always has at least
d(d+1)/2 fioppy modes due to d global translations and

(d —1)d/2 global rotations.
The number of Aoppy modes in d dimensions is given by

the total number of degrees of freedom for W sites minus the
number of independent constraints. A redundant bond can
only add additional reinforcement and/or cause internal
stress in an existing rigid body. A key quantity is the number
of Aoppy modes F in the network, or normalized per degree
of freedom, f=F/dN. By defining the number of redundant
bonds per degree of freedom as n„,we can write quite gen-
erally

dN [(1/2)Nzp —dNn „] —pf —=1— +n„,
p

where p* = 2d/z and z is the lattice coordination. Neglecting
the redundant bonds, as first done by Maxwell [23], we find
that f is linear in the bond concentration p and goes to zero
at the Maxwell approximation p* for the threshold. The
Maxwell approximation gives a very good account of the
location of the phase transition and the number of Aoppy
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modes, but it ultimately fails since the number of indepen-
dent constraints is not just the total number of bonds, as
some bonds are dependent.

Simple Maxwell constraint counting has been applied to
3d network glasses [3,11,15] with covalent bonding. Taking
into account the constraints from bond stretching and bond
bending forces, the number of Aoppy modes per degree of
freedom is found to be

(3)

where (r) is the average coordination number. Note that for
purposes of counting the number of floppy modes and deter-
mining the rigid clusters, angular forces may be incorporated
as next-neighbor central forces. Of course the quantity f can-
not be negative, nor can it be zero at the rigidity threshold
due to the presence of many small floppy inclusions. In the
rigid phase, the approach of f toward zero as the mean co-
ordination number increases will resemble a Lifshitz tail
[24].

Short of the Maxwell constraint counting method, other
ways that have been used for calculating the number of
floppy modes exactly include rank determination of the dy-
namical matrix [3], relaxation methods [5,7], transfer matrix
methods [6,22], Gaussian elimination [12], and the equation
of motion technique [15].Hence, many numerical methods
have been explored.

Here we focus on the geometrical aspects of rigidity per-
colation, which have not been directly addressed before to
our knowledge. Previous studies have used costly relaxation-
type methods [which use O(N ) fioating point operations] so
that networks containing N=10 sites already present a dif-
ficult numerical challenge. Relaxation methods are well
suited for calculating elastic constants, but not for character-
izing the geometric structure. This is because numerically
one cannot identify which bond has exactly zero stress or if a
bond accidentally has zero stress. However, until now, this
was the only approach available in determining the stress
carrying backbone.

Many basic questions have remained open regarding the
nature of the rigidity transition in spite of many years of
research by many groups. %e mention a few points regarding
the triangular lattice. Hansen and Roux [7] and later sup-
ported by Arbabi and Sahimi [12] have indicated that the
fractal dimension of the stress carrying backbone is about
DO=1.63, which is very close to the current carrying back-
bone in connectivity percolation. Furthermore, the elastic
moduli critical exponent (also denoted by f), or more pre-
cisely the ratio fir=2.95, was obtained for the random
bond-dilution problem. Curiously, this value is the same as
the full bond-bending model (all angular forces are present),
which has an identical geometry to connectivity percolation.
These two results gave strong evidence that the geometrical
properties of central-force rigidity percolation are identical
to connectivity percolation.

At first, the idea that the two types of percolation prob-
lems could share the same universality class is surprising
since the vector and scalar character have different symmetry
properties and because rigidity is a highly nonlocal phenom-
enon much different from connectivity. However, Hansen
and Roux [7] have argued that the reason this is possible is

because at large length scales, the central forces are able to
yield effective angular forces via lever arms. Thus, the
central-force problem may renormalize into the full bond-
bending model. Knackstedt and Sahimi [10]have suggested
using a real space renormalization group calculation; the
geometrical properties of site and bond rigidity percolation
share the same universality class as far as geometry is con-
cerned. However, the elastic moduli exponents were shown
not to be the same. This has been confirmed by simulation
[12] as well; namely, it has been found that fIv=1.12 for
random site dilution. If the idea of /ever arms is correct, it
should apply equally to random site dilution.

To make matters worse, other researchers [5,8] have ob-
tained contradicting numerical results from those quoted
above. One reason for all the uncertainty is the fact that only
small systems were studied. This is an especially bad situa-
tion because rigidity is an inherently long range phenom-
enon, thus causing strong finite size corrections [7,12,25]
that must be accounted for. Recently, it has been suggested
[13]within mean field and a simple triangularization scheme
that the rigidity transition is first order. More recently it has
been shown [26] that on various Bethe lattices the rigidity
transition is first order. Clearly, progress can be made if exact
calculations on large system sizes become possible.

III. THE PEBBLE GAME ALGORITHM

A discussion of the pebble game algorithm in detail is out
of the scope of this paper [27], but a brief description is
given here. %e have been able to study networks containing
more than 10 sites, using an integer algorithm that gives
exact and unique answers to the geometric properties of ge-
neric rigidity percolation. Because of the nonlocal character-
istic of rigidity percolation [e.g., Figs. 1(a) and 1(b)]
burning-type algorithms [2,28] commonly used in connectiv-
ity percolation are useless. This implies that the entire struc-
ture needs to be specified [29] (stored in memory) since the
rigidity of a given region may depend on bonds far away.

A very efficient combinatorial algorithm, as suggested by
Hendrickson [20], has been implemented to (i) calculate the
number of fioppy modes, (ii) locate over-constrained regions,
and (iii) identify all rigid clusters for 2d generic bar-joint
networks. The crux of the algorithm is based on a theorem by
Laman [30] from graph theory.

Theorem: A generic network in two dimensions with N
sites and 8 bonds (defining a graph) does not have a redun-
dant bond if no subset of the network containing n sites and
b bonds (defining a subgraph) violates b~2n —3.

By simple constraint counting it can be seen that there
must be a redundant bond when Laman's condition is vio-
lated. This necessary part generalizes to all dimensions such
that if b)dn —d(d+1)/2 there is a redundant bond for
n d. ~For n(d it follows that if b)n(n —1)/2 there is a
redundant bond. Note that n = 1 is an excluded case in La-
man's theorem since two sites are required for a bond to be
present. The essence of Laman's theorem is that in two di-
mensions finding b~2n —3 is the only way redundant bonds
can arise. This sufficient part does not generalize to higher
dimensions [20].

The basic structure of the algorithm is to apply Laman's
theorem recursively by building the network up one bond at
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a time. Only the topology of the network is specified, not the

geometry. Because of the recursion, only the subgraphs that
contain the newly added bond need to be checked. If each of
these subgraphs satisfies the Laman condition, b~2n —3,
then the last bond placed is independent; otherwise it is re-
dundant. By counting the number of redundant bonds, the
exact number of Aoppy modes is determined.

Searching over the subgraphs is accomplished by con-
structing a pebble game. Each site in the network has two
pebbles tethered to it. A pebble is either free when it is on a
site or anchored when it is covering a bond. A free pebble
represents a single motion that a site can undertake. Consider
a single site having two free pebbles, representing two trans-
lations. If two additional free pebbles can be found at a dif-
ferent site, then the distance between this pair of sites is not
fixed. Placing a bond between this pair of sites will constrain
their distance of separation. To record this constraint, one of
the four free pebbles is anchored to the bond. Once the bond
is covered, only three free pebbles can be shared between
that pair of sites. After a bond is determined to be indepen-
dent, it will always remain independent and covered.

We begin with a network of N isolated sites each having
two free pebbles. The system will always have 2N pebbles;
initially two free pebbles per site. We place one bond at a
time in the network connecting pairs of sites. The topological
placement of either the sites or bonds will depend on the
model under study such as the site- or bond-diluted generic
triangular lattice as done here. The independent bonds must
be covered by a pebble; therefore, before a bond can be
covered it must be tested for independence. For each bond
placed in the network, four pebbles (two on each site at the
ends of the bond) must be free for the bond to be indepen-
dent. When a bond is determined to be independent, any one
of the four pebbles can be anchored to that bond. In general,
all four pebbles across an added bond will not be free be-
cause they are already anchored to other bonds. These an-
chored pebbles may possibly become free at the expense of
anchoring a neighboring free pebble while keeping a particu-
lar independent bond covered. In other words, pebbles may
be shuffled around the network provided all independent
bonds remain covered.

It is always possible to free up three pebbles across a
bond, since they correspond to its rigid body motion. When a
fourth pebble across a bond cannot be found, then that bond
is redundant and it is not covered. In Fig. 2 an example of
how pebbles are shuNed is shown schematically on a small
generic structure. Two distinct pebbles are associated with
each site for which each pebble can either be used to cover a
bond or is free to cover a bond. The two pebbles closest to a
given site as drawn schematically in Fig. 2 are the pebbles
that are tethered to that site. Thus a pebble may either be on
a site (free pebble) or on a bond (anchored pebble) but it
always remains tethered to a given site regardless of how the
pebbles are shuffled. Note that a bond may be covered by a
pebble from either of its end sites. Therefore, free pebbles
can be moved across the network by exchanging the site
from which a pebble is used to cover a bond.

Overconstrained regions are recorded each time a depen-
dent bond is found. These regions correspond to the set of
bonds that were searched in trying to free the fourth pebble
but failed. These regions, called Laman subgraphs, violate

OO
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FIG. 2. A demonstration of the pebble game on a generic net-
work. Independent (redundant) bonds are shown with solid (dashed)
lines that are (are not) covered by a pebble. Large (filled, open)
circles denote (anchored, free) pebbles on (bonds, sites). The two
closest pebbles to a given site are tethered to that site. Small (filled,
open) circles denote sites belonging to (one, more than one) rigid
cluster. Overconstrained bonds are shown with heavy dark lines.
Shaded regions denote 2d rigid bodies. (a) Five free pebbles indi-

cate five Aoppy modes until a new bond is added and tested for
independence. A fourth free pebble is found via the path traced by
arrows. (b) The added bond is independent and thus covered. There
are now six rigid clusters and four floppy modes.

the condition b~2n —3. An added bond onto a Laman sub-
graph will be redundant.

We identify all the rigid clusters after the network is com-
pletely built. First, we identify isolated sites. Then the rigid-
ity of all other sites is tested with respect to a reference bond.
If a test bond between either one of the pair of sites forming
the reference bond and the site in question is found to be
dependent (independent) then that site is (is not) rigid with
respect to the reference bond. The test bond is actually never
added to the network. Since a bond can only belong to one
cluster (unlike sites), all the bonds within a rigid cluster are
ascribed to a particular reference bond. A systematic search
is made to map out all rigid clusters.

We show in Fig. 2(b) the end result of the pebble game
applied to a simple structure. Many aspects of rigidity are
displayed. The following can be seen: (I) The exact number
of Aoppy modes is determined by the number of free pebbles
remaining. A depletion or excess of pebbles to cover a set of
bonds distinguishes the overconstrained regions from the
floppy regions, unlike the approximate global counting of
Maxwell. (2) This network is uniquely decomposed into a set
of six distinct rigid clusters, although the clusters are not
disconnected. (3) The free pebble along the bottom edge can-
not be shuffled over to the rigid body at the top, which al-
ready has three free pebbles. This free pebble is shared
among three bars and two triangles. Generally, free pebbles
get trapped in floppy regions consisting of many rigid clus-
ters giving rise to complex collective Iloppy motion. (4) The
number of redundant bonds is unique, whereas their loca-
tions are not unique since this depends on the order of plac-
ing the bonds. Nevertheless, each redundant bond belongs to
a unique overconstrained region (Laman subgraph). For ex-
ample, there are 19 overconstrained bonds in the rigid cluster
at the top of the structure in Fig. 2(b), while having only two
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FIG. 4. All shaded areas represent a 2d rigid region. We show
the topology for (a) the lowest order diagram on a triangular net-
work to have a dependent bond (dashed line). All 12 bonds are
overconstrained. (b) The lowest order diagram for a floppy inclu-
sion corresponds to a dangling bond. (c) An isolated site is counted
as a Aoppy inclusion and contributes two Aoppy modes at the next
lowest order.

FIG. 3. The topology of a typical cutout region from a bond-
diluted generic network at p=0.6603. A particular realization
would have local distortions (not shown) similar to Fig. 2. The
heavy dark lines correspond to overconstrained regions. The open
circles correspond to sites that are acting as pivots between two or
more rigid bodies.

redundant bonds. (5) A rigid cluster will generally have sub-
regions that are overconstrained. If any bond that is overcon-
strained is removed, the rigidity of the network is unchanged.

An upper bound on the performance of the above algo-
rithm [20] has been shown to scale according to the square in
the number of sites in the system. In the implementation of
the pebble game near the threshold, the CPU time scales
roughly as -N', where N is the number of sites. Away
from the threshold, the system size dependence is linear in¹We find that the pebble game runs about twice as fast for
site dilution than bond dilution at their respective thresholds.
Near full concentration, the performance for both the site-
and bond-diluted lattices converge to the same time depen-
dence. The difference in performance time is mainly due to a
smaller effective system size for a site-diluted lattice
(N= qL instead of L, where q is the site concentration and
L is the linear system size). On average it takes =1.4 CPU
minutes on a Dec-alpha work station to find the percolating
rigid cluster for a 1150X1150 bond-diluted system at its
critical threshold.

A section of a large network on the bond-diluted generic
triangular lattice at p„„is shown in Fig. 3 after the pebble
game was applied. Here we see a typical topology and asso-
ciated geometry of the set of rigid clusters in this section of
network. Observe that nearly all individual rigid clusters
form connected paths via pivots, which are free joints shared
by two or more rigid bodies. It can be seen that Aoppy re-
gions form where the pivot sites cluster. Notice that within
this section of the network, there is a spanning rigid cluster
where rigidity forms a connected path from top to bottom
and left to right. There are also clusters of overconstrained
regions in the network that are not percolating in this section.
Contrast these overconstrained regions in this figure to a
typical stressed backbone shown in Fig. 1 found by Hansen
and Roux (1989) [7]. Two important differences underlying
the structural characteristics are that we have used generic
(not atypical) networks and periodic boundary conditions in

both directions (no applied rigid bus bars).

IV. NEW RESULTS FOR BOND AND SITE PERCOLATION

In this section, we present some new results for central-
force generic rigidity percolation on both the bond- and site-
diluted triangular net. We begin by working out a better es-
timate for the bond and site rigidity threshold. The Maxwell
counting prediction for the site rigidity threshold gives
q*=2/3, which is the same as p*=2/3 for bond dilution.
This comes about because the number of sites in a site-
diluted system is only qL and the number of bonds is

q zL /2. When the number of Aoppy modes is normalized
per degree of freedom, the final result for f can be expressed
in the same way as the left-most side of Eq. (2) with p
replaced by q. To get a more accurate estimate for the rigid-
ity threshold, the presence of redundant bonds and Aoppy
inclusions must be accounted for.

In a low concentration expansion the first diagram to con-
tribute redundant bonds is shown in Fig. 4(a), where only 11
of the 12 bonds are independent. This diagram leads to a
correction for the number of floppy modes as n

„

= (1/2) p' + O(p' ) and n„=(1/2) q + O(q' ) for bond
and site dilution, respectively. In a high concentration expan-
sion, the first two dominant contributing diagrams are shown
in Figs. 4(b) and 4(c) corresponding to dangling ends and
isolated sites. These two diagrams lead to f= 3 (1 —p)—2(1 —p) + O((1 —p) ) and f= 3(1—q) —5(1—q)
+ 2(1 —q) +O((1 —q) ) for bond and site dilution, respec-
tively.

It is these types of corrections that will shift the transition
from the Maxwell threshold of 2/3 and be responsible for a
non-mean-field-like critical behavior. We equate the number
of Aoppy modes from the truncated low and high concentra-
tion expansions. For bond and site dilution we estimate the
thresholds to be 0.6622 and 0.6877, respectively. Thus we
find a small downward shift for bond dilution, and a some-
what larger upward shift for site dilution. The pebble game
reveals that the rigidity thresholds shift about 50% more than
the above estimates to p„„=0.66020~0.0003 and q„„
=0.69755~0.0003 for bond and site dilution, respectively.
The site-diluted threshold is also in good agreement with that
obtained by Moukarzel and Duxbury P 1].

It is interesting to note a couple of relationships between
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floppy modes and the geometry of rigidity percolation. There
is a general sum rule for f in terms of the rigid clusters in
two dimensions that can be written as

0.04

1"
f(p) = I —

2 g n, ( p) ( 2s —3), (4)
0.03

where n, is the number of rigid clusters with s sites per
lattice site. Unlike connectivity percolation X, ,sn, (p) ~1
because sites are shared at pivots [e.g. , Figs. 2 and 3]. If we
restrict ourselves to random bond dilution, the first derivative
of the floppy modes can be expressed in terms of the number
of overconstrained bonds Nz as

z I &o'ft'1(p) = —— 1 — for bond dilution,
4 ( Nti)

(5)

where Nz is the total number of bonds and z is the lattice
coordination. This result can be derived by considering all
possible outcomes of randomly removing one bond from the
network. Observe that the removal of an over-constrained
bond does not change the number of floppy modes whereas
all other bonds increase the number of floppy modes by one.

The behavior of the number of floppy modes can be stud-
ied with great precision for bond dilution by making use of
Eqs. (4) and (5). Although there is no simple formula for the
second derivative, ft 1, in terms of a geometrical quantity, it
can be calculated easily with arbitrary accuracy. We only
need to consider the change in the number of overcon-
strained bonds in the network due to the random placement
of one additional bond. If all possible bond placements are
considered, then ft 1 can be calculated exactly for any given
network. However, we have found that it is sufficient to per-
form a Monte Carlo sampling of about 5%%uo of those bonds for
a given network.

For site dilution, there is no simple expression for the first
derivative of the number of floppy modes in terms of a geo-
metrical quantity. This is because when a single site is re-
moved, more than one bond is generally removed locally,
and these bonds influence the network in a correlated way.
However, we have calculated ft'i in the site-dilution case
using Monte Carlo sampling by monitoring the change in the
number of floppy modes caused by the random placement of
one additional site. Furthermore, we also performed a Monte
Carlo sampling of the random placement of pairs of sites in
the network to calculate ft i. This latter calculation turned
out to be prohibitive in calculation time for large systems.

We find that the basic characteristics of the number of
fIoppy modes were similar for bond and site dilution. Since
we obtained very accurate results for the bond-dilution case,
we present these results by showing f, ft'1, and ft 1 in Figs.
5, 6, and 7, respectively. The results obtained for ft i from
our Monte Carlo sampling were found to be more accurate
than a direct numerical differentiation of ft'i. An additional
benefit in calculating ft 1 directly is that the results are inde-

pendent of those for f ' .
A sharp peak in Fig. 7 appears without any signs of a

discontinuity. The peak most resembles a simple cusp. As
can be seen in Figs. 5, 6, and 7 there is virtually no differ-
ence between the data for linear system sizes L=680, 960,
and 1150. Only very slight system size dependence has been

CU
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0.01

0.00
0.65 0.66 0.67
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FIG. 5. Simulation results for the fraction of floppy modes,

f= FI2N, for a bond-diluted generic network compared to the Max-
well prediction. All error bars are smaller than the symbols. Note
that the nongeneric threshold [12] is at 0.641.

f"'(p) =~+ I = I p p„.I
«—r p-p„.. (6)

By integrating Eq. (6) twice, both ft'i and f (being indepen
dently calculated data sets) were fitted simultaneously. Other
than integration constants, no additional parameters repre-
senting analytical background terms were used in the fitting
forms for f ' and f. From the simultaneous fit off, f ', andf, we found an exponent of cr= —0.48~0.05 and a tran-
sition threshold of 0.6603~0.0003. The resulting three fits

-0.3

-0.5

-0.7

-0.9

-1.3
0.65 0.66 0.67

bond concentration p

FIG. 6. The first derivative of the fraction of floppy modes for a
bond-diluted generic network as calculated exactly from Eq. (5). All

error bars are smaller than the symbols.

observed. The trend is for smaller systems to show a cusplike
singularity in ft 1 as well, but with the peak slightly shifted
to the left with a smaller amplitude.

The Maxwell prediction for f is included in Fig. 5 for
comparison. On this scale, the failure of the mean field esti-
mate is evident. Nevertheless, on a scale over the range
(O~p~ 1) it is clear that the rigidity transition is extremely
sharp and quite near the mean field threshold of 2/3. Since it
is possible to obtain accurate results near the transition, both
the threshold and cusp exponent can be found. The cusp
singularity in ft 1 was fitted to the functional form
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FIG. 7. The second derivative of the fraction of floppy modes
for a bond-diluted generic network as calculated from Monte Carlo
sampling. The fitting results for the cusp yields

p„„=0.6603~0.0003 and an exponent of 0.48~0.05. Typical er-
ror bars are shown that reflect both the statistical errors in the
Monte Carlo sampling and the ensemble averaging.

FIG. 8. The probability for a bond-diluted generic network to
percolate rigidity, PA(p, L), is plotted for periodic (free) boundary
conditions for various system sizes with solid (dashed) line seg-
ments drawn between data points. Only four different sizes and
several typical error bars are shown for clarity. The vertical solid
line indicates our extrapolated threshold.

have also been plotted in Figs. 5, 6, and 7. The fitting was
over the bond concentration range shown in the figures.

The behavior of the second derivative suggests that the
number of Aoppy modes is analogous for rigidity and con-
nectivity percolation. In the case of connectivity percolation,
the number of Aoppy modes is simply equal to the total
number of clusters, which corresponds to the free energy
[32]. It would be nice if a similar result holds for rigidity
percolation. We find that the second derivative of the total
number of clusters changes sign across the transition, thus
violating convexity requirements. In view of Eq. (4) and that
typically clusters are not disconnected, we suggest that the
number of floppy modes generalizes as an appropriate free
energy. Therefore, we have treated the exponent n in Eq. (6)
in the usual context of a "heat capacity" critical exponent.
More work needs to be done to see how a free energy can be
defined for rigidity percolation.

We now turn to an analysis of the rigid cluster statistics,
presenting results for bond dilution with free and periodic
boundary conditions and site dilution with periodic boundary
conditions. Since the free boundary condition data were gen-
erated mainly to check boundary effects, it was not exten-
sively collected in comparison. Finite size scaling techniques
from percolation theory [2,33] are applied assuming only a
single relevant length scale exists.

We also look at the geometrical properties of the overcon-
strained regions motivated by our discussions with Duxbury
[31].The overconstrained regions are not necessary to sus-
tain rigidity. An isostatic framework [9], for example, has
just the right positioning of bonds to form a rigid cluster
without a redundant constraint. However, when external
forces are applied to a rigid isostatic framework, using rigid
bus bars for example, overconstrained regions will be in-
duced across it, which forms a percolating stressed region.
Within a random environment there will be redundant bonds
scattered throughout the network. Here the redundant bonds
are essentially acting as external forces on an underlying
isostatic framework. Physically, the resulting overcon-

PA(P) I NHV+ 2, (NH+Nv)]tNR (7)

Here NHz is the number of realizations that had a spanning
rigid cluster across the system both horizontally and verti-
cally, whereas NH and Nz correspond to the number of real-
izations that had a spanning rigid cluster only horizontally or
only vertically, respectively. Other combinations of NHz,
NH, and Nz were also considered following the techniques
of Yonezawa, Sakamoto, and Hori [33].We see that the prob-

strained regions characterize internal stress caused by bond
mismatch. Thus, the overconstrained regions propagate stress
(without externally applied forces), and are most closely
analogous to the current carrying backbone in connectivity
percolation. We find that monitoring the probability for a
network of linear size L to contain either a spanning rigid
cluster or spanning stressed backbone, leads to the same cor-
relation length exponent v and critical threshold.

We have looked at a series of linear system sizes ranging
from L=25 to 1150 in increments such that the next largest
size is roughly a factor of Q2 larger. Our networks contain
N=L (qL ) sites for bond (site) dilution. We typically con-
sider about 40—50 different bond (or site) concentrations per
system size. A predetermined number of bonds (or sites) are
randomly placed into the system in order to have an exact
concentration. For linear system sizes of L=(25, 35, 50, 70)
we have generated NR= 10 000 independent realizations per
concentration. For sizes L={100,120, 170, 240, 340, 480,
680, 960j we have generated at least N„XL= 10 number
of realizations per concentration and often as much as 8
times that much. The large number of realizations were re-
quired to obtain accurate results for the probability for the
system to percolate at a fixed concentration.

In Fig. 8 we plot the probability for the system to perco-
late, P„(p),for bond dilution with free and periodic bound-
ary conditions. At each fixed bond concentration, we gener-
ated NR independent realizations and calculate
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ability to percolate in Fig. 8 is quite a skewed function to
either side of the threshold. For large system sizes, it is ex-
pected that a fixed point will appear where all the curves
cross at p„„.We do see this fixed point settling down for
system sizes L~ 100 (more so with periodic boundary con-
ditions). The crossing point, P„(p„„),is at approximately
0.85 and 0.15 for periodic and free boundary conditions, re-
spectively, which indicates strong dependence on the bound-
ary condition.

Various moments can be calculated from the probability
density, (d/dp)P„(p), for the system to percolate. The cor-
relation length exponent v can then be determined accurately
[2,33] from the finite size scaling of the mean width 5„,
where

-0.8

-1.0
CD
O

-1.2
&I

CDo -1.4

-1.6
0.0 0.2 0.4 0.6

1/log„(L)
0.8

The advantage of tracking the mean width is that it does not
depend on a priori knowledge ofp„„.The critical thresh-
old is then extrapolated using the first moment and the value
of v ascertained. We have calculated the moments according
to

01
(p")=I —n x" 'P„(x)dx

Jo

by performing an integration by parts. The moments were
insensitive to the method of interpolating Pz, which in-
cluded joining pairs of data points by line segments, a spline
fit, and fitting to suitable smooth functional forms.

The above discussion about the probability to percolate
and its moments equally applies to the site dilution case.
Since we expect the static critical exponents to be the same
for bond and site dilution, as supported by a simple renor-
malization group calculation [10], we perform an extrapola-
tion for v for five different data sets as shown in Fig. 9. One
data set corresponds to the percolation of rigidity for bond
dilution with free boundary conditions, and the other four
data sets correspond to the percolation of both rigidity and
stress for bond and site dilution with periodic boundary con-
ditions. Each extrapolated curve in the figure shows the re-
sult from five simultaneous fits of the data to the form

»glo[~A(L)]
Iogio(L)

1 1=y = [a+ log, o( 1+b/L') ]
log)o L p

(10)

where the desired exponent v and the effective correction to
the scaling exponent, c, were restricted to be the same fitting
parameter for each data set. Note that if b=0 in Eq. (10),
then one recovers a simple power law dependence with a
constant amplitude given by 10". We find that v= 1.21 and
c=0.6 gives the best fit. We also fixed c = 1 so that the finite
size correction term would be 1/L, which has appeared in
previous extrapolations [25] for dynamical exponents. The
1/L correction allowed us to fit all our data nearly as well.
Fixing different fitting parameters while accepting only rela-
tively good simultaneous fits, as well as taking into account
results from individual fits for each data set separately, has
led us to our error estimate. We find the estimate
v= 1.21~0.06.

We show in Fig. 10 the extrapolation of the critical thresh-

FIG. 9. An extrapolation for the exponent p [as
I/log&o(L) ~0] given by the inverse of the negative of the y inter-

cept. An accurate estimate is made with five data sets simulta-

neously fitted to Eq. (10). Error bars are approximately the size of
the symbols. The solid (dashed) lines denote the extrapolated best
fit (with v=1.21 and c=0.59) for A„(L)corresponding to span-

ning rigid (stressed) regions. The error bar at the extrapolated best
value takes into account other comparatively good extrapolations.
Note that the fluctuations in finding a network to percolate rigidity
and stress are nearly the same.

old for bond dilution using three different data sets for both
free and periodic boundary conditions. These results are ob-
tained from the distributions PI, Pz, and PU corresponding
to the intersection, average, and union of the horizontal and
vertical spanning clusters [33],respectively. We have defined

P„in Eq. (7) in terms of NH, Nv, NHv, and NR. Similarly,
it follows that PI= (NHv+ NB+ N v)/NR and
P U= NH&/Nz . Each extrapolated curve shown in Fig. 10 is
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FIG. 10, The extrapolation of the rigidity threshold for bond
dilution as L "'—+0. The different symbols represent data from
three separate calculations using the distributions PI, P„,and

PU defined in the text. The symbol sizes reflect typical error bars.
The dashed and solid lines show the best-fit curves to the data with

free and periodic boundary conditions, respectively. Here we have
fixed v=1.21 and show the results from simultaneously fitting all

six data sets to the form given by Eq. (11) where we findp„„=0.6602 and c=0.733. The error bar at the extrapolated value
takes into account other comparatively good extrapolations.
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FIG. 11. The probability for a site-diluted system with periodic
boundaries to percolate rigidity, PA(q, L), is plotted against the
scaled axis z=(q q, ,„)L"—with q„„=0.69755 and v=1.21. We
note that when using the same value of the threshold, the best data
collapse is obtained with a v of 1.25, and that a good data collapse
can be found with v in the range between 1.22 and 1.28. Error bars
are shown for system size L=960. Generally the error bars are the

biggest when P&=0.5 for any size L, and increase as L increases
because fewer realizations are generated. Also see Fig. 8, which has
the same trend.

the result of a simultaneous fit over the six data sets to the
form

y =p„„+(a+ b/L') L

where the desired threshold p„„wasrestricted to be the
same fitting parameter for each data set. Note that the fitting
parameters (a, b, c) are different from those in Eq. (10). The
exponent v may be taken as 1.21 from the extrapolation in
Fig. 9.

The procedure of our extrapolation is the same as that
explained for estimating I . Our error bars were determined
based on fixing various parameters in Eq. (11) (such as
c = 1) as well as changing v, while accepting only relatively
good fits. We find p„„=0.66020~0.0003, which is in ex-
cellent agreement with that obtained from the cusp singular-

ity in f( )(p} as shown in Fig. 7. Similarly, for site dilution
we find q„,= 0.69755~ 0.0003.

Finite size corrections were strongest for bond dilution in
Fig. 9 for periodic boundaries and in Fig. 10 for free bound-
aries. For site dilution (with periodic boundaries) corrections
to scaling were found to be weak in both of these extrapola-
tions. Therefore, we plot the scaled probability to percolate
rigidity in Fig. 11 for site dilution. The data collapse is rea-
sonably good over the entire range of sizes from L=25 to
960, suggesting only weak finite size corrections appear in
site dilution. A better data collapse is possible with a p of
1.24 as extrapolated with a 1/L correction to finite size scal-
ing, which we believe should be present as a surface correc-
tion. Unfortunately, finding the best data collapse cannot as-
sure us of having more accurate exponents since we are not
strictly in the scaling regime.

At the critical threshold, a mass scaling analysis of the
spanning rigid and stressed backbone allows the fractal di-
mension d& and the backbone dimension d~~ to be found.

FIG. 12. The extrapolation of the fractal dimension and back-
bone dimension. The average number of bonds in a spanning cluster

(b) is determined at the rigidity threshold for both bond and site
dilution. The spanning rigid and stressed regions lead to d& and

d~~, respectively. Only three typical error bars are shown on each
data set for clarity.

Note that previous workers [5,7, 12] have estimated the back-
bone dimension d„ii (denoted in Sec. II as Do) to be 1.64.
Considering both the bond- and site-dilution cases with pe-
riodic boundary conditions, we generated N~=5000 addi-
tional realizations for each system size from L=25 to 960
and N&= 2500 realizations for L= 1150. The average num-
ber of bonds (mass) in a spanning cluster, normalized by
3L, will scale as L & . From this we can determine p
since d&=d —plv. Likewise, for the stressed backbone, its
average number of bonds normalized by 3L scales as
Ldgg 2

The bond- and site-dilution data are fitted simultaneously
to the mathematical form given in Eq. (10) while following
the same fitting procedure used to extrapolate v. We show in

Fig. 12 the resulting extrapolations. Finite size corrections
are clearly seen in the bond-dilution case. We find that
d&= 1.86~0.02 and dz&= 1.80~0.03. Taking v= 1.21 an
estimate for p as 0.169~0.03 is obtained.

An order parameter can be defined as the probability for a
bond to belong to the incipient infinite rigid cluster. If the
rigidity transition is second order, then the order parameter
should scale (for bond dilution) according to

(12)

where the scaling function must have the form @(z)—z~ for
g)0 in the critical region. Likewise, a similar expression
holds for site dilution. In Fig. 13 we plot the appropriately
scaled data for bond and site dilution with periodic boundary
conditions. The two sets of data collapse onto two respective
curves very well, giving us the scaling function P(z} for
each case. The data collapse for the bond and site data are
very good using the exponents v=1.21 and P=0.175 and
the respective thresholds p„=0.66020 and

q„„=0.69755. There are no signs of a discontinuity in

@(z) near z=0 to suggest a first order transition.
The p exponent is directly found from the scaling func-

tion in Fig. 14 by taking base 10 logarithms of @(z}and z.
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FIG. 13. The probability for a bond to be on the incipient infi-

nite rigid cluster, P, is scaled by a factor of L~ ' for linear system
sizes ranging from L=100 to L=960. We plot the scaled data,
representing the scaling function P(z), for both a bond- and site-
diluted system with periodic boundaries using the top right and
bottom left axes, respectively. In this plot, we used v=1.21,
P=0.175, q„„=0.69755, and p„„=0.66020.
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FIG. 14. Taking the data in Fig. 13, we plot the log, o of the
scaling function P(z) vs the log&o of the scaling variable z (for
z~0) in order to estimate the P exponent from the slope of an
expected straight line. We show a least squares fit (fitting over the

top =50% of the data points shown) that is extended through all the
data points for the bond and site dilution data separately. The slopes
are found to be 0.179 and 0.171 for the bond and site data, respec-
tively.

Fitting only the largest few system sizes over a large range in

z yields a p of 0.195 and 0.170 for bond and site dilution,
respectively. Some finite size effects can be eliminated by
fitting the data over a restricted range (larger z) while includ-

ing all system sizes from L= 100 to L=960. As shown in
Fig. 14, the better estimates of 0.179 and 0.171 are obtained
for bond and site dilution, respectively. All four of these

estimates for p from the scaling function are consistent with
the independent estimate of 0.169~0.03 found above. Note
that the site data in Fig. 14 are probably more accurate since
the site data have had weaker corrections to finite size scal-
ing on all the quantities studied. We take as our final estimate
p= 0.175~0.02 where the error bars are set by considering
fits over various ranges and different system sizes.

V. MSCUSSION

We have calculated the second derivative of the number
of fioppy modes, ft l, very accurately for bond dilution. The
cusp singularity in ft l(p) occurs at the rigidity threshold
with a cusp exponent of n= —0.48~0.05 as obtained by
fitting Eq. (6) to the data in Fig. 7. From the completely
independent extrapolation using the probability for a bond
(and site) diluted network to percolate, we found
v = 1.21 ~ 0.06. Assuming that the hyperscaling relation
u= 2 —d v is valid, an exponent of v= 1.21 suggests that the
n exponent should be —0.42, which is in numerical agree-
ment with our cusp exponent. This agreement supports our
suggestion that f is the appropriate free energy density.
Therefore we consider that the cusp in ft l characterizes the
"heat capacity" critical exponent.

Previous best estimates [7,12] for p„„andq„„onthe
regular (nongeneric) triangular network are 0.641~0.001
and 0.713~0.002 for bond and site dilution, respectively.
The thresholds for the generic triangular lattice are found to
be p„„=0.66020~0.0003 and q„„=0.69755~0.0003 for
bond and site dilution, respectively. Clearly there are differ-
ences between the generic and atypical networks. Whether
the critical behavior is modified is not our immediate con-
cern, but rather our aim is to fully understand the generic
case. Later it should be possible to understand the differences
arising from atypical configurations containing parallel
bonds, etc. Our focus will remain on generic networks since
they prove easier to handle, and more importantly, they are
relevant to a wide range of problems in materials science,
such as amorphous materials and glasses.

We have presented extensive simulation results on
central-force rigidity percolation. This has been made pos-
sible by introducing the concept of generic networks. Recent
work by Obukhov [13]involving mean field approximations
suggest that the rigidity transition is first order. It has also
been shown [31] that on Bethe lattices the rigidity transition
is first order. As is always the case when extrapolating simu-
lation data, we cannot foresee unexpected trends. Thus we
cannot rule out that the transition is weakly first order or
even that somehow bond and site rigidity percolation are in
different universality classes. However, by making the plau-
sible assumption that the static nature of the rigidity transi-
tion is the same for site and bond dilution (as supported by
our data) we are led to a very consistent picture. Namely, that
the rigidity transition is second order and is in a different
universality class to connectivity percolation. We surmriarize
our results for the static critical exponents in Table I.

In conclusion, we obtained the static critical exponents by
using the usual cluster moment definitions [2] except for the

specific heat exponent n, which was estimated from ft l as
shown in Fig. 7. The usual definition in connectivity perco-
lation that the total number of clusters correspond to the free
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TABLE I. Summary of the static exponents for rigidity percolation, as estimated from the bond- and
site-diluted generic triangular lattice. A comparison is made to connectivity percolation.

Percolation

Connectivity

Rigidity

—0.667
—0.48 ~ 0.05

0.138
0.175~ 0.02

1.333
1.21 ~ 0.06

df

1.896
1.86~ 0.02

1.62
1.80~ 0.03

energy [32] is not suitable because convexity requirements
break down. In this respect more work is needed to find an
appropriate model Hamiltonian that maps to rigidity perco-
lation. This would also give more insight into how other
physical properties relate to the rigid clusters.

More generally, we have shown how the concept of a
generic graph, as introduced by Laman [30] and amplified by
Hendrickson [20] can greatly simplify problems concerned
with the percolation of rigidity. The surprise is that networks
that lack any symmetry (generic models) are easier to deal
with. This concept leads to a common p„„for all generic
bond-diluted triangular networks and to a common q„„for
all generic site-diluted triangular networks. Furthermore,
both models share the same static critical exponents n, P,
y, v, etc. It remains to be seen if the exponent f that de-
scribes the elastic response is also the same for bond- and
site-diluted generic networks. To explore this question, relax-
ation methods can be used. This too can be done more effi-
ciently on generic networks [31] than has been done on
atypical networks because the pebble game can be used to
identify the stress carrying part of the network before relax-
ing the network.

While the pebble game used in this paper is only appli-
cable in 2d, we are currently extending the rules for the
pebble game to 3d, where the Laman condition is necessary
but no longer sufficient [20,30,34]. We believe that progress
can be made provided we restrict ourselves to a specific to-
pology where it is possible to enumerate those cases where
sufficiency in the Laman condition fails. This is an important
step in extending this powerful technique to real covalent
glasses. In the meantime, it is important to more fully under-
stand the 2d case where immediate progress can be made.
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