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Spinodal decomposition in multicomponent fiuid mixtures:
A molecular dynamics study
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We have investigated the eff'ect of the number p of components on the dynamics of phase separation
in two-dimensional symmetric multicomponent Buids. In contrast to concentrated two-dimensional
binary Quids, where the growth dynamics is controlled by the coupling of the velocity field to the
order parameter, leading to large growth-exponent values, the dynamics in multicomponent Quids

(p = 3, 4) is found to follow a t i growth law, where t is time, which we relate to a long-wavelength
evaporation-condensation process. These findings, which are proposed to be consequences of the
compact domain structure persisting in multicomponent Buids, imply that hydrodynamic modes do
not aff'ect the dynamics of the phase separation in these systems.

PACS number(s): 64.70.Ja, 64.60.Cn, 68.10.—m, 05.70.Ln

I. INTRODUCTION

The dynamics of fnst-order phase transitions, such as
ordering or phase separation of binary mixtures, is a
very interesting and important problem and has conse-
quently received a lot of attention during the past three
decades [1—3]. Whereas the early-time dynamics is well
understood in terms of the Cahn-Hilliard-Cook linear
theory [4—7], the late-time dynamics is a highly nonlinear
and complicated process. The classical theory of Lifshitz
and Slyozov [8), applicable to the phase-separation pro-
cess in very dilute systems, i.e., in systems where the
volume &actions of the two components are very differ-
ent, predicts that the dynamics in the late-stage regime
is characterized by a single time-dependent length scale,
corresponding, for example, to the average droplet size
R(t), which grows in time as t with the growth expo-
nent being n = 1/3. As a result, the system exhibits
a self-similar behavior manifested by the scaling of the
correlation function G(y) = g(r, t) in terms of a dimen-
sionless scaling variable y = r/R(t). The specific value
of the growth exponent in the Lifshitz-Slyozov (LS) the-
ory is a consequence of a long-wavelength evaporation-
condensation process that embodies a conservation law
for the order parameter. In other words, the separa-
tion process is due to the evaporation of material &om
droplets with radii smaller than a certain time-dependent
critical radius and condensation of material onto droplets
with radii larger than the critical radius. Extensions
of the LS analysis showed that the growth exponent is
independent of spatial dimension [9]. Although the LS
analysis can only be perforxned on very dilute systems,
using simple arguments, Huse has been able to general-
ize the theory to the case where the domain structure
is interconnected [10]. Moreover, a considerable amount
of experiments and several types of simulations on. two-
and three-dixnensional systems showed that the growth

exponent in binary alloys is indeed independent of the
system composition and spatial dimension [1]. Recently,
Monte Carlo simulations on simple multistate Potts mod-
els have shown that the growth exponent in phase sepa-
rating alloys is also independent of the number of com-
ponents [11].

Binary fIuids, on the other hand, behave differently.
Several experiments performed on three-dimensional con-
centrated binary Buids have shown that the late-time
growth exponent assumes a value n = 1 [12—15]. Sig-
gia [16] has shown analytically that the velocity field
causes a necking-down instability of the tubular and in-
terconnected domain structure, thereby leading to a large
growth exponent value n = l. At very late times, inertial
effects may become very important, leading to a crossover
to a growth exponent n = 2/3 [17].

In two dimensions, similar linear analyses predict an
advection-controlled dynamics with a growth exponent
n = 1/2 [18], followed by inertia-controlled dynamics
with a growth exponent n = 2/3 [17]. This behavior has
recently been observed in a molecular dynaxnics simula-
tion by Velasco and Toxvaerd [19] and Langevin simula-
tions [20, 21]. When the compositions of the two Suid
components are very different, droplets have compact
spherical shapes. This implies that the mechanism cor-
responding to hydrodynaxnic transport of material along
the interfaces is not effective since it does not contribute
to an increase in the average size of the droplets. There-
fore the dominant growth mechanism at late times is
coalescence resulting &om the Brownian motion of the
droplets. This mechanism leads to growth exponents
n = 1/3 and n = 1/2 in three and two diinensions, re-
spectively. Consequently, in contrast to alloys, the dy-
namics of phase separation in fiuid mixtures depends on
both spatial dixnension and volume fraction.

Our goal in this paper is to investigate the effect of the
number p of components on the dynamics of the phase
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separation in Quid mixtures. For this purpose, we con-
sider symmetric ternary (p = 3) and quaternary (p = 4)
mixtures in two dimensions and simulate them by means
of molecular dynamics. This simulational technique has
an advantage over the time-dependent Ginzburg-I andau
simulations based on model II [22] since in the former ap-
proach the quenches are performed directly into the Quid
phase and thus the hydrodynamic modes arise naturally
from the microscopic interactions between the molecules.
A brief report of some of the results for the p = 3 system
has appeared in Ref. [23].

The present paper is organized as follows. In Sec. II we
present the model and describe the numerical techniques
used in our simulations. In Sec. III we present our results
for the two types of Quid mixtures studied: ternary and
quaternary Quids. Finally, we summarize and discuss our
results in Sec. IV.

II. MODEL AND NUMERICAL METHOD

In our simulation model, we consider N monoatomic
molecules interacting via an extended two-body 12-6
Lennard-Jones potential that was introduced earlier by
Velasco and Toxvaerd [19] and has been used in several
subsequent simulations [23—25]. The Hamiltonian of the
system is given by

R(pj. pm ri . . rm)

N

) ' +4&) [u(n, , n,.;r,, )
'=1 i(j
—u(n' n~" r.)]0(r. —re)

with

dpi = fi —gpi,

where f, = O R—/Or'; is the force acting on molecule i,
and g is a &iction parameter needed to control the tem-
perature. g varies in time with the total excess kinetic
energy according to

(ek&Try)
ldrj ( .p,' 2

dt ( p ] (5)

where g = 2N —2 is the total number of degrees of
freedom 1n a two-dlmenslonal systeIIl of N moIloatoIIllc
molecules [30], and r„is a characteristic thermostat re-
laxation time. Eqs. (3) and (4) are integrated using the
leapfrog algorithm

r;(t+ At) = r;(t) + p, ~

t+At ( At

P

p~ = pa = . . = „—p, where p is the average Quid density
and p = 3 or 4 for the ternary or the quaternary mix-
tures, respectively. Initially, the system is prepared at
very low density (p = 0.01, which is well inside the ho-
mogeneous disordered phase) and then instantaneously
quenched thermally by rescaling all spatial distances in
the system so that the Anal equihbrium state corresponds
to a coexistence between the p Quid phases. Immediately
after the quench, the temperature is kept constant.

For our simulation, we have adopted the Nose-Hoover
technique by which one integrates the Hamilton equa-
tions [26—29]

d&i pi
dt p

and 0(x) is the unit step function, which equals one when
x ) 0 and is zero otherwise. This ensures that the inter-
action potential is truncated and then shifted at r, . As
usual the cutoff distance is given by r = 2.5o. In Eq. (1),
ri is the position of a molecule i, pi is its momentum, p,.
is its mass (we consider the case where all particles have
the same mass p), and r;~ = ]r, —rz

~

is the distance sep-
arating two molecules i and j. The species index ni of
a molecule i assumes the values 1, 2, . . . , p corresponding
to the labeling of the p difI'erent species A, B, . . . , P.

The specific form assumed by the interaction potential
ensures that the force between two molecules of difFerent
species is purely repulsive whereas, for like species, it is
the standard Lennard-Jones potential. This model ex-
hibits both solid and Quid phases within the coexistence
region between the difFerent components. However, in
the present study we shall consider only quenches into
the Quid phase.

The N molecules are confined in a two-dimensional,
square-shaped box of linear size I and subject to peri-
odic boundary conditions. Three- and four-component
mixtures with equal concentrations are considered, i.e.,

Atf;(t)
&[I + —l(t)]

(7)

where Lt is the integration time step.
The motivation for choosing such an algorithm lies in

its time-reversal symmetry that ensures the reversibility
of the microscopic dynamics [29]. The integration time
step was taken to be Lt = 0.005&, where the time scale is
r = Q(po /E). It is very important to note that the inte-
gration time step is much smaller than the mean collision
time, which can be calculated &om the memory function
and the appropriate Mori coefIlcients. For the particular
case of k~T = e and po = 0.8, the mean collision time
is 0.05qw.

Following a quench, the system is relaxed during a time
period of 2000&. The total time span of each run is there-
fore short, e.g. , only a few nanoseconds in the case of
a particle mass corresponding to Kr. In order to en-
sure that this dynaInics reaches the asymptotic late-time
regime, the quench has to be sufIlciently deep since the
speed of the separation process is controlled by the ex-
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cess mixing energy. This may be difEcult to control in
a real experiment, but it is straightforward in our model
simulation to provoke the phase separation to occur on
a short-time scale by simply choosing a pair potential
Eq. (1) with a strong repulsion between unlike particles.
In order to maintain the correct hydrodynamic modes un-
der these extreme conditions it is required that the force
gradient for pairs of unlike species during a time step
is smaller than the force gradient for particle collisions.
This requirement is ful6lled in the present simulation.

The domain growth is probed through three different
measures for the average domain size: The first one is
defined as the inverse of the Grst moment of the structure
factor

) s(q, t)

R, (t) = 2~,',
) qS(q, t)
q=0

(8)

where q is a large wave-number cutofF taken to be 2/o
[the value for q is chosen so that the time-independent
broad peak due to short-range liquid ordering is not in-
cluded in the summation of Eq. (8)]. The second measure
Rz(t) is calculated from the first zero of the real-space
correlation function, which is de6ned as

Due to the fact that the separating domains in two-
dimensional symmetric ternaries, quaternaries, etc. , are
compact, one can further use the domain-size distribu-
tion P(A, t) to extract a third measure Rs(t):

Rt(t) = fP(At)AdA, , (10)

where A is the domain area. Averages are performed
over 20 and 11 runs, with different initial conditions, for
the three-component and the four-component systems,
respectively.

III. RESULTS

We now present the results of our simulations [31].
First we display in Fig. 1 the tixne evolution of the
real-space configurations for the (p = 3)- and (p = 4)-
component systems. Unlike symmetric binary Quids, the
domain structure in Buids containing more than two com-
ponents with equal concentrations is compact, similar to
that in ternary alloys (see Ref. [11]).We notice for beth
values of p that as time lapses, the domains coarsen as
the phase separation progresses. In the present study,
the simulations are not long enough to observe full phase
separation.

In Fig. 2(a), the time evolution of the average do-
main size for the three-component system, as calculated
from the three measures in Eqs. (8)—(10), is displayed
in a double-logarithmic plot. We observe that the three

measures are very consistent with each other and that
the average domain size follows an algebraic growth law
R(t) t", with n = 0.309 using Ri, n = 0.348 using
B2, and n3 ——0.342 using R3. We have estimated the
accuracy of this exponent to be around 5%.

Similarly, in Fig. 2(b) we display the growth data for
the four-component system. As in the three-component
system, the average domain size consistently grows alge-
braically in time with a growth exponent n = 0.333 as
calculated &om Rq, n = 0.354 as calculated &om R2, and
n = 0.353 as calculated &om R3.

The consistency in the values of the growth exponent
and the finding of a value close to n = 1/3 is an in-
dication that the growth mechanism in both the three-
and the four-component Buid mixtures is most probably
the evaporation-condensation process responsible for the
Lifshitz-Slyosov growth in Ostwald ripening [8]. We shall
later argue that other mechanisms are unlikely to be op-
erative.

In phase separation by Ostwald ripening, the total vol-
ume V of the ordering component is constant in time due
to the conservation law. Therefore JV(t) [R(t)]" V
const, where JV(t) is the total number of the growing
droplets, R(t) is the average domain size, and d is the
spatial dimension. Thus the total number of domains di-
minishes in time as t "". We have calculated the time
dependence of the average number of droplets in both the
three- and the four-component systems and found that
JV(t) t ~; cf. Fig. 3, which is consistent with our
predictions.

We now discuss why other mechanisms found in binary
fiuids cannot be operative in symmetric multicomponent
Buids. Due to the compact structure of the growing do-
mains in these systems, the hydrodynamic modes will
try to make the domains more rounded, but this does
not contribute to their coarsening. Moreover, Brownian
diffusion of domains leading to coalescence, as observed
in binary Buids with low volume &actions, cannot be op-
erative in symmetric multicomponent Huids due to the
fact that a given domain in our case is not surrounded
by a single other domain, but rather by a number of dif-
ferent domains corresponding to different species. This
drastically impedes the Brownian motion of the individ-
ual domains in the domain agglomerate and thus limits
the coalescence process. We are aware that coalescence is
still present in symmetric multicomponent Buids, but it
is also present in multicomponent or dilute binary alloys
in which hydrodynamic modes are absent. We therefore
believe that the domains in symmetric multicomponent
Buids are growing due to the long-range evaporation-
condensation process.

The late-time growth is dominated by a single time-
dependent length scale, which scales all other length
scales in the system. An obvious length scale in the sys-
tem is the average domain size or the average distance
between two neighboring domains. As a result, the struc-
ture factor can be written in a scaled form independent
of time:
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FIG. 1. Snapshots of the domain structure as a function of time t formed during the phase-separation process in three-
component (p = 3) and four-component (p = 4) symmetric mixtures. Different colors correspond to different species.
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where x = qB(t) is a scaled wave number. By calculating
the inverse Fourier transform of S(q, t), one can show that
the correlation function also can be written in a scaled
form

&(X) = 0(" t)

where ~ = r/&(t). In Figs. 4(a) and 4(b) the scaled
structure factor in Eq. (10) is shown for the three- and
the four-component systems, respectively. Scaling is ob-
served to set in &om about 200&, signahng that the sys-
tems we are dealing with are well within the asymptotic
scaling regime. From the insets of Fig. 4, we notice that
the structure factor starts to increase again at very large
wave numbers. This increase is in fact part of the short-

range liquid ordering peak, whose position and height
are time independent, and therefore this peak does not
comply with scaling. In Fig. 5 the scaled correlation func-
tions [cf. Eq. (11)]are also found to exhibit an excellent
scaling.

The investigation of the short-wavelength behavior of
the structure factor shows that it follows

~(v t) -v
as demonstrated in the insets of Figs. 4(a) and 4(b). This
behavior is known as Porod's Iaw and is the result of
the scattering &om the thin interfaces that separate the
growing domains. For thin interfaces, one can show that
the Porod exponent is o, = d+ l. In the present case,

2.0

(a) p=3

15 R

1.0—
CD
O

00

0000
0000

GQ
GG

G
G

G

R3

ooooooo

0.0
1.0

2.0

1.5
I

2.0
I

2.5
I

3.0
I

3.5

(b) p=4

4.0

pic 2. Log-log plots vs time & for the
diferent measures of time-dependent length
scale of the phase-separation process in (a)
three-component (p = 3) and (b) four-
component (p = 4) symmetric mixtures.
Ri(t) is obtained from the first moment of
the structure factor; cf. Eq. (3). Rz(t) is the
first zero of the correlation function. Rs(t)
is is the average linear domain size obtained
from the domain-size distribution function;
cf. Eq. (4).

15

~.0—
CC

ED

CD
O

ooooo0

0 GGG G

Cl
G

G
G

R,

R3

05
OOO

OOO
o O

OO

0.0
1.0

I

1.5
I

2.0
I

2.5

log«(«)

I

3.0
I

3.5 40



3678 MOHAMED LARADJI, OLE G. MOURITSEN, AND SQREN TOXVAERD 53

3.5

3.0—

2.5

C)
2.0—

C)

CI
CI

Cl 0
~CI 0CIa

0 0 0 0

FIG. 3. Log-log plot of the average num-
ber JV(t) of droplets as a function of time
for three-component (p = 3) (o) and four-
component (p = 4) ( ) symmetric mixtures.
The slope of the solid line is —2/3.
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we Gnd that o. = 2.84 for the three-component system
and cr = 2.74 for the four-component system. Since the
interfaces (see Fig. 1) are not very rough, the presence
of the vortex defects between three domains of different
species may be responsible for the fact that the value
of the Porod exponent in the case of two-dimensional
multicomponent mixtures is slightly lower than 0; = 3.

IV. SUMMARY AND CONCLUSION

In this paper we have studied in detail the dynamics
of two-dimensional symmetric multicomponent Quid mix-
tures by means of molecular dynamics simulations. We
considered both three-component and four-component
mixtures. Our main result is that the growth expo-
n.ent in both of these systems is n = 1/3, as determined
from several different length-scale measures. We believe
that the specific growth law observed in our simulations
is due to the long-wavelength evaporation-condensation

process [8]. The growth law in these systems is therefore
different from that in two-dimensional symmetric binary
fluids where the growth exponent is given by n = 1/2
for intermediate times crossing over to n = 2/3 at later
times. Nevertheless, these two growth-exponent values
are consequences of the convoluted domain structure in
binary mixtures, whereas in symmetric multicomponent
systems the domains have a compact structure. However,
binary Quids with low volume &actions that do display a
compact domain structure exhibit a domain growth with
an exponent n = 1/2 due to coalescence resulting from
the Brownian motion of the domains. The compact do-
main structure in multicomponent Quids suppresses this
Brownian motion and therefore an n = 1/2 growth ex-
ponent is not observed.

Recently, Chen and Lookman [32] have investigated
the dynamics of phase separation in two-dimensional
symmetric multicomponent Quids and dilute binary Qu-
ids by means of lattice-Boltzmann simulations and found
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results that conBict with ours. In particular, they found,
for both symmetric multicomponent Buids and dilute bi-
nary Quids, an intermediate-time regime during which
domains are convoluted and grow as t ~ followed by a
faster growth regime with an exponent n = 2/5 char-
acterized by a compact domain structure. They asso-
ciate the later regime to the hydrodynamic effects and
explained it in terms of a dimensional analysis due to
Fiirulcawa for dilute binary fluids [17]. But their late-
time growth exponent for the dilute binary Quids is dif-
ferent from n = 1/2, as discussed above. In fact, a recent
Langevin simulation at off-critically quenched Buids by
Wu et al. [20] finds an exponent that is close to 1/2. We
are unable to resolve the discrepancy between our results
and. theirs. Of course, we cannot exclude the possibil-
ity that another growth regime may prevail at very late
times. However, a study of much larger systems at much
longer times is required in order to resolve this question,
which, unfortunately, at the moment is prohibitive due
to insuKcient computer power.

We have also investigated the late-time behavior of the
dynamics and found dynamical scaling in the structure
factor as well as the correlation function for both three-
and four-component mixtures, indicating that our inves-
tigation is safely within an asymptotic late-time regime.
Our conclusion is therefore that the dynamics in Quid
mixtures does not only depend on the spatial dimension
and volume &action but also on the number of compo-
nents and their composition. Hence the phase-separation

dynamics cn Quad mixtures zs more complex and therefore
richer than that in alloys due to the different competing
mechanisms.

As a consequence of the results presented in this pa-
per, several interesting questions arise. For example, how
does a ternary Quid mixture phase separate in the case
where the concentration of one of the components is much
smaller than the two others'? If the concentrations of
the two majority components are comparable, the do-
mains will be interconnected, and the dynamics of these
mixtures may therefore be effectively similar to that of
symmetric binary fluids. Another interesting question
relates to a symmetric multicomponent Quid in three di-
mensions. Due to the higher spatial dimensionality of
this systexn, the domains do not have to be compact but
can be convoluted (P ( d). Hence the domain growth
may be similar to that in dense binary Quids, i.e., lead-
ing to a growth exponent n = 1 at intermediate times
followed by n = 2/3 at very late tiines. Such a study
would therefore be of substantial interest and is there-
fore currently in progress in our laboratory.
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