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We consider a cylindrical fiber composed of main-chain liquid crystal polymer in the chiral
smectic-C phase. Due to steric constraints on the liquid crystal polymer, the smectic layers orient
perpendicular to the fiber axis, the liquid crystal director lies Sat against the 6ber wall, and a
line disclination appears along the fiber axis. Using a Landau —de Gennes expression for the elastic
free energy, we show that the 6ber may undergo a transition from a cylinder to a helix. The
transition is favored by large chirality, large 6ber radius, and low surface tension, but is probably
not experimentally accessible. However, a related transition involving only the disclination should
be observable.

PACS number(s): 61.30.Cz, 61.41.+e, 64.70.Md, 83.70.Jr

I. INTRODUCTION

Liquid crystal molecules typically have rodlike shapes
and exhibit various liquid crystalline phases. In the ne-
Inatic phase the rodlike molecules tend to orient along
a particular direction (described by the unit vector n,
called the director), but there remains full translational
symmetry. At lower temperatures smectic-A (denoted
S~) and smectic-C (denoted S~) phases may appear,
where the molecules are stacked in Bat layers and show
a high degree of orientational ordering, but have no po-
sitional ordering within a given layer. In the smectic-A
phase the director is normal to the layers, while in the
smectic-C phase it tilts slightly &om the layer normal.
The smectic-C geometry is depicted in Fig. I, where 0
denotes the tilt angle (typically 0' to 30') and c is the
component of n parallel to the layers. If the molecules
are noncentrosymmetric, then a chiral smectic-C phase
(denoted S&) may occur, where the director not only tilts
but also tends to rotate about the layer normal as one
moves &om layer to layer, with a typical wave number
(in bulk material) of q' 10 m ~. The S phase is, in

general, ferroelectric, with an electric polarization vector
p orthogonal to both n and c.

A main-chain liquid crystal polymer (LCP) molecule is
composed of a chain of rodlike mesogens connected head-
to-tail by semiHexible spacers. The mesogens can exhibit
the same liquid crystalline phases described above; in the
smectic phases, the semiflexible spacers reside between
neighboring layers.

In a previous paper [1] we studied the morphology of
8& LCP inside a capillary. There we assumed a config-
uration where n lies Hat against the capillary wall, the
smectic layers orient perpendicular to the capillary axis,

C'-

FIG. 1. Relationship between the layer normal z, director
n, polarization vector p, and c.
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and, for suFiciently small chirality, the configuration of
lowest free energy has p(r) radial with a 2m disclination
along the capillary axis. When chirality is increased, the
disclination can shift away &om the capillary axis and
form a helix. The helical disclination is favored if the
chirality and capillary radius are sufBciently large.

Here, as a natural extension of this previous work, we
show that a fiber composed of main chain S& LCP will,
under certain conditions, form a helix. We assume a
configuration similar to that of the capillary: the smectic
layers orient perpendicular to the fiber axis, n lies Hat
against the fiber wall, and a 2' disclination forms along
the fiber axis. Surface tension at the fiber wall tends
to keep it cylindrical, so if surface tensian is suKciently
large the fiber and capillary problems should be identical.
However, if the surface tension is suKciently small, then
the state of lowest &ee energy may involve deformation
of the fiber away &om a simple cylindrical shape. An
obvious and plausible deformation to consider is one in
which the fiber itself becomes helical which is the focus
of this paper.

Note that we assume the fiber material has been chosen
so that the surface tension at the fiber surface is mini-
mized when p is normal to the surface. This is known to
be possible for low-molecular-weight S~ liquid crystals.
Since the energy cost of the disclination grows slowly
(logarithmically) with the radius of the fiber while the
surface energy grows linearly, it is expected that, at least
for large radii (as observed experimentally in a physically
similar situation [2]), the surface energy will dictate the
orientation of p at the Bber surface.

It has been shown that, due to steric constraints [3],
surfaces containing the director of a main chain nematic
liquid crystal are likely to have significantly lower free
surface tension than other surfaces. Similar behavior is
expected for main-chain S~ liquid crystals, so that at
least one direction perpendicular to the order parameter
p (such as n or c) is expected to lie in a low-energy sur-
face. It is conceivable that both directions perpendicular
to p should be expected to lie in a low-energy surface,
which would induce p to be perpendicular to the surface.
These considerations are consistent with our assumption
that p is normal to the fiber surface.

In Sec. II we use a Landau —de Gennes expression for
elastic free energy to determine under what conditions
the equilibrium structure of the fiber is a helix. To sim-
plify matters we assume that the fiber cross section re-
mains circular in the helical state. In Sec. III we argue
that the results of Sec. II do not change qualitatively if
the fiber cross section becomes noncircular in the helical
state. In Sec. IV we compare the twisting transition to
previously published results and briefly discuss the feasi-
bility of experimental observation.

II. TWISTINC TB.ANSITION

Consider a Bber composed of S& LCP, with the smec-
tic layers stacked along the direction of the fiber (z axis).
Assume that the srnectic layers are ideal (flat and uni-
formly spaced) and that the tilt angle 0 (assumed posi-
tive) is spatially invariant. Then the free energy density

at any point within the fiber may be written [4]

K c2 K c2

K c2+", ('~")'
—K4c (c V' x c + q*)(z V' x c),

where the K's are elastic constants with units of force, c
is a unit vector along c, and c = sino is the magnitude of
c. (We neglect electrostatic contributions to the free en-
ergy since these contributions are usually small and ionic
impurities typically screen the polarization charge [5].)
The stability of the S~ structure imposes the constraints
Ki, K2, K3 & 0»d K2K3 & K', and, in» ~e LCP,
one expects Kz Ks and the ratio Kr/Kz to be of the
order of the degree of polymerization [6—10]. If id is the
angle between c and 2, then

c = casu x+ sinu y. (2)

where

(4)
'JJ z

and so forth. Note that the K4c q* term in (1) has been
omitted from (3). This term is proportional to the diver-
gence of p, so it only contributes to the &ee energy at the
fiber surface. We assume this surface energy is substan-
tially independent of small distortions in the field ~ and
lump it together with other surface energies as surface
tension. Also note that, in bulk material, the free energy
[the volume integral of (3)] is minimized by the uniform
rotation u = q*z.

If the fiber material is nonchiral (q* = 0), the fiber
assumes a cylindrical shape and the solution that mini-
mizes the &ee energy is apparent from considerations of
symmetry: the p field is radial, with w = arctan(y/x).
This gives rise to a singularity (2m disclination) along
the cylinder axis, corresponding to a filamentary care of
"melted" material [ll—14]. This melted core has free en-
ergy per unit length F and a circular cross section of
radius po 10 m.

When chirality is introduced the solution may change.
It is plausible that a chiral material may reduce its free
energy if the center of the fiber forms a helix. We
parametrize the helix by its radius a and wave number
q and note that the nonhelical solution corresponds to

Define the vector p = z x c, which is everywhere in the
xy plane and makes an angle id = ~ + z with x. (Using
this definition, the polarization in a chiral S~ is either
parallel or antiparallel to p. In a nonchiral material, p
is simply a more convenient field for our purposes. ) Sub-
stituting (2) into (1) and expressing the result in terms
of the scalar Beld u gives

Kyc 2 K,c2

(COsld (d~ + Slnld lrJV) + ((dz —q )
2

X Q

Ksc 2+ (sinid w —cosa' w„)
2

—K4c ctlg (slnid caI~ —cosid ldy) q
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a = 0. For the sake of simplicity and concreteness we
assume that the melted core remains in the center of the
fiber, that the melted core and fiber both maintain cir-
cular cross sections perpendicular to z, and that E, po,
and the fiber radius B are independent of a and q.

The free energy per unit length in the z direction is

P = P, + 2zRI'gl+ q2a~+ ff X(x, y, o) Chdy, (5)

where I' is the surface tension, A denotes the cross-
sectional area of the fiber excluding the melted core re-
gion, and we evaluate X(z, y, z) at z = 0 for convenience,
since a uniform helical fiber must have E independent of
z. The factor 2vrR+1+ q a2 is the surface area of the
fiber per unit length in the z direction. The free energy
per unit length of the nonhelical configuration is

Eo ——E + 2~BI + T() x, y dxdy,

where Xp(z, y) is the &ee energy density when a = 0.
In principle, for given material constants and fiber ra-

dius and subject to the boundary condition that n lies
flat against the fiber surface, one could determine the
field u and the values of q and a, which minimize the
free energy; nonzero q and a would signal a helical equi-
librium state. To make the calculation tractable, we take
a simpler, approximate approach: we determine exact so-
lutions for ~ at the surface of the fiber and in the vicinity
of the disclination and then interpolate to estimate the
form of u elsewhere. The minimum free energy we calcu-
late based on this approximation will be an upper bound
to the true minimum.

Let r be an arbitrary point within the helical fiber and
consider the vector rg that is parallel to the xy plane and
stretches from the disclination to r. If p is the length of
rq and P the angle it makes with x, then

r(p, P, z) = [a cos(qz) + p cosP] x
+[a sin(qz) + p sing] y + z z .

Equations (7)—(10) imply

sin[u(R, P, z)] = 4 sin(P —qz) cosP

+ sing gl —[4' sin(P —qz)]2,
cos[~(R, P, z)] = —4 sin(P —qz) sing

+ cosP gl —[4 sin(P —qz)]2,

sin[~(p, P, z)] = o p sin(P —qz) cosg

+ sing gl —[Op sin(P —qz)]2,
cos[~(p, P, z)] = —o p sin(P —qz) sing

+ cosp gl —[op sin(p —qz)]z,

(12)

where cr = 4/R. For given R and 0, these equations
completely determine w(p, P, z) in terms of the helix pa-
rameters q and a. We are now in a position to use this
(approximate) form of u to calculate the free energy.

The partial derivatives of u that appear in the &ee en-
ergy density (3) are calculated with respect to the zyz
coordinate system, e.g. , u, is the partial derivative of u
with respect to z, holding x and y constant. Keeping
this in mind and making use of the coordinate transfor-
mations

where 4 = qa cote and both upper or both lower signs
are taken. Equations (11) reduce to the correct non-
helical solution ur(R, P, z) = +P when 4 = 0. In order
for sinu( and cosa to be real for all P we must have ~@~ & 1
or, equivalently, ~q~a ( tan8. This condition has a simple
geometric interpretation: the slope of the fiber wall (the
ratio of the rise in the z direction to the run in the xy
plane) cannot exceed the slope of the director; otherwise
the director could not be parallel to the fiber wall.

Equations (11) are valid at the surface of the fiber

(p = R). At the disclination (p ~ 0) we expect p to
be radial. We seek a general expression for u(p, P, z),
which is defined throughout the interval 0 & p & B and
behaves properly at p = B and as p —+ 0. A plausible
form for this expression can be obtained by inspection of
(11): simply replace @ with @p/R to get

Note that p and P may be viewed as the radial and az-
imuthal coordinates in a coordinate system whose origin
follows the disclination while its axes remain parallel to
x, y, and z. The locus of the surface of the fiber is
r(R, P, z), so the vectors

(8
rp(R, P, z) =

~

r(R, P, z)
~

(8)

r.(»4»z) =
I

—r(»& z)
I

(0
(Dz

are both tangential to the surface of the fiber. The re-
quirement that, at the surface the director is parallel to
the surface can be written

z = a cos(qz) + p cosP,
y = a sin(qz) + p sing,

one finds

(u (z, y, z) =—sin

(uy (z, y, z) = cos 0

P gl —

(harp

sing) 2

qa cosP qo (a + p cosP)
uz z)y)z

P gl —(0 p sing)2

(14)

where

n [r~(R, P, z) x r, (R, P, z)] = 0,

n = sin& sin[~(R, P, z)] x
—sin& cos[~(R, P, z)] y + cosa z . where

K3c2

I3 —K4c I2I3,
2
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Ii ——cos(dp (d (x, y, 0) + sin&up ~„(x,y, 0)
0 2p sing cosP= 2rr slxl

gl —(rrp sing)2

I2 = ~-(p, 4, o)
I3 —sinurp or (x, y, 0) —cosup ur„(2, y, 0)

2(o p sing) —1= —o cos
pal —(ap sing)2

prp (z y) = pr (x y, 0) . The &ee energy density of the
nonhelical configuration [let a —+ 0 in (15)] is

I ), and the Ki term. The condition C )B /2 becomes

K +rR sec2e

K2 tan0 (20)

When this condition is fulfilled the nonhelical solution is
unstable.

The analysis for ~4'~ && 1 tells us when the nonhelical
solution is unstable and indicates that a twisting tran-
sition is indeed possible. But to determine the actual
equilibrium configuration we must minimize LF for ar-
bitrary 4. Keeping only the dominant q*, I', and Kq
terms, we find

where Ip ——1/p.
The difference in Bee energy per unit length between

the helical and nonhelical con6gurations is

AE=F —E0

= 2~RI' gl+ (tan8@)2 —1

+ d dp p T %0

where

irK c242 4
4 2 )

The integrals are calculated in the Appendix. For given
R and p0 and for given material constants, our goal is
to minimize LE with respect to the helix parameters q
and a. We will 6nd it convenient to do the analysis in
terms of the dixnensionless parameters 4' = qa cot0 and
4 = qR, instead of q and a.

First, consider the case when ~4'~ && 1, corresponding
to weak helicity. Expanding AF to lowest nonvanishing
ordel' lil @ gives (see tile Appeildlx)

tan84 '
gl+ (tang@)' = 1+ (22)

2

since, typically, tan 0 (& 1. Numerical exploration of
AF(4) reveals (see Fig. 2) that extrema occur only for
4=0,1, corresponding to either no helicity (a = 0) or
maximum helicity (qa = tan8). Since AE(0) = 0, when
b,E(1) & 0 the fiber will form a maximum-helicity helix.
The &ee energy integrals can be evaluated exactly for
4 = 1 and the condition AF(l) & 0 becomes (see the
Appendix)

ir r'Ki + I'R sec~0)
4rl l K2 tan8 (23)

where g 0.92 is Catalan's constant. When this condi-
tion is fulfilled the helical solution has lower free energy
than the nonhelical solution. The parameter 4 appears

Kc'J
2

+~RI' (tan8 @)',
where the J's are given in the Appendix and we have
taken

4K4B =2 tan0-
3K2 '

4K~ —2K3 —12K4 tan0+ 4RI' sec 0C=
K2

+2 tan 8 ln(R/pp) + 4 tan84*,

and 4* = q'R. Minimizing with respect to 4 gives 4 =
pB and

~K2c2@2 f B21
4 ( 2 y

(19)

For C & B2/2 the nonhelical solution (4 = 0) is a
minimum of the &ee energy, representing a stable or
metastable state. When C & B2/2 the nonhelical so-
lution is unstable and a helix. must form.

Recall that Ki &) K2 Ks )& K4 [see the discussion
below (1)]. To simplify the analysis, take K4 ——0, neglect
terms of order K2 and K3 compared to terms of order Kq,
and assume tan20 ln(R/pp) & 1. Then only three terms
of b,P are significant: the chiral driving term (which
contains q*), the surface tension term (which contains

—5
0

FIG. 2. Free energy (per unit length) versus @ for various
values of chirality. The qualitative features of this plot do not
depend on the values of the various parameters. Chirality
increases as one moves from the top curve a to the bottom
curve e. For curves a and b the equilibrium state is nonhelical
(@ = 0), while for curves c—e the equilibrium state is helical
(@= I). For chirality larger than that corresponding to curve
d the nonhelical state is unstable.
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6(4 —m) tan8qR= 1.64 tane, (24)

only in the expression for 222 (see the Appendix); mini-
mization with respect to C is straightforward and yields

»e of »de«»ty (or less). Note that (28) implies

If we make the approximations sin(gap —P)
and cos(urp —P) 1, then (27) implies

where q has the same sign as q'. This determines the
wave number of the helix. Prom qa = tan0 we find the
radius of the helix

a 7r
0.61 .

6(4 —~)
(25)

Note the similarity between conditions (20) and (23).
If ~q'

~

is so large that both conditions are satisfied, then a
helix is the equilibrium state and the nonhelical solution
is unstable. If ~q*~ is reduced so that condition (23) is
satisfied but (20) is not, then a helix is the equilibrium
state and the nonhelical solution is metastable. If ~q'~

is so small that neither condition is satisfied, then the
nonhelical solution represents equilibrium and a helix
may or may not be metastable (we have not calculated
how small ~q*~ must be in order for the helical solution to
become unstable). Whenever a helix does form, its wave
number and radius are given by (24) and (25). These are
our central results.

B'
~p(R(4), P) = P —(1+cot8qR)—B (29)

~p(p, P) = P —(1 —cot8 qR)
Bl

B2

For a uniform helix

w(p, P, z) = wp(p, P —qz) + qz,

and from this and (13) one can show that

(31)

( . a~.(p, $, 0) = q
~

1 —urp~ —a sinPldp, ——cosp&py
P

at the fiber wall. At the disclination (p -+ 0) we expect
up(p, P) = P. A general expression for ~p(p, P), which
is defined throughout the fiber and behaves properly at
both the disclination and the fiber wall, can be obtained
by inserting the factor p/R in the second term of (29):

III. NONCIRCULAR CROSS SECTION

In the preceding analysis we assumed the melted core
was a helix of radius a and wave number q and that the
locus of the fiber wall was p(P) = R, with p and P referred
to a coordinate system whose origin follows the melted
core. In the limit of small a (or small ~4~) we found that
AE goes as a (or ilj ) and exhibits a twisting transition
[see (19)]. Does this result change qualitatively if a more
general chiral geometry is considered? In particular, does
the chiral driving term K2c2q'u, in (3) ever yield a term
in LE that goes as a for small a? If so, this term would
dominate for suKciently small a and. a helical fiber would
always be favored. In this section we address this issue:
we assume the melted core is still a helix but let the fiber
cross section be noncircular with the locus of the fiber
wall given by

r(P, z) = R(P —qz) p + zz, (26)

where R(P) is an arbitrary function.
At the fiber wall and in the z = 0 plane, (9), (10), and

(26) give

where the variables held constant during partial differ-
entiation are x and y for w„p for spy, and P for u1pz.
Equations (30) and (32) imply

Bll
(u, (p, $, 0) = q(l+ cot8qR) B2

qa cosP

P

(33)

where O(a ) represents terms of order a, i.e., terms con-
taining aR', aR", or (R')

The contribution of the chiral driving term to the &ee
energy is

+CD ~2 dp p~, (p, $, 0), (34)

where we have taken the limit pp + 0. When (32) is
substituted into (34), the integration over p is straight-
forward and one is left with the integration over P. Terms
containing B" can be transformed into terms containing
(R') through integration by parts ["surface terms" van-
ish, since R(P) = R(P+ 2m)], so these terms are of order
a . One is left with

0 = R(P) sin(~p —P) + R'(P) cos((up —P)
+ cot8 qR(g) R'(P),

(27)
E~D K2C q*qa dQR(P) cosP+ O(a ) . (35)

R(P) = Rp+ a f(P), (28)

where Rp is the mean radius and f and its derivatives

where the prime denotes differentiation and ~0 is the
angle between p and the x axis. We are interested
in the behavior for small a, so we assume the fiber is
only slightly —and smoothly —distorted from the nonchi-
ral configuration (i.e. , we take ~(up —

P~ && 1) and let

The integral, after using (28), is of order a, so EcD is
of order a . Thus the contribution of the chiral driving
term to the free energy goes as a for small a, even if the
fiber profile is noncircular.

IV. DISCUSSION

As noted in the Introduction, in a previous paper [1] we
studied a slightly different 8& I CP twisting transition,
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2Ki ln(R/pp)q* R & (36)

namely, the transition of the disclination to a helix when
the material is con6ned inside a capillary tube. With
K4 ——0, this "capillary" twisting transition occurs when

APPENDIX: FREE ENERGY' INTEGRALS

From (15)—(17) the difFerence in free energy per unit
length between the helical and nonhelical configurations
is

and the helical wav'e number and radius are

ln(R/po)
'

Ki c2 K2cLF = Jig+ J22 —K2c q'J2
2 2
K3c2

+ (Js. —Jeo) —K4c J-
2

+2~RI'[gl + (tan8 @)' —1],

(Al)

a 2Ki ln(R/po)
K2(q*R)' ( )

where

The analogous results for the "fiber" twisting transition
are given by (23)—(25). (Note that in [1] we mistakenly
took K3 and K4 to be the large elastic constants in an
S~ LCP, instead of Ki. The analysis in that paper is
correct, but conclusions stemming &om the assumption
of large K4 should be disregarded. Also note that we
de6ned K4 slightly differently in that paper than we do
here: to make the notation consistent replace K4 by K4/c
in [1].)

With Ki )) K2, tan8 « 1, and ln(R/po) 1, a com-
parison of (23) and (36) reveals that the capillary twist-
ing transition (i.e. , helical disclination inside nonhelical
fiber) occurs for smaller q* than does the fiber twisting
transition. Furthermore, no matter what the relation-
ship between Ki and K2, if we use the plausible val-
ues K2 10 N [15], I' 10 Nm [16,17], and
tang 0.1, then (23) implies q* ) 10 e m for the fiber
twisting transition to occur —an unreasonably large value
for g

We conclude that the pure fiber twisting transition is
unlikely to be observable. However, the capillary tran-
sition should be observable. Indeed, (36) implies that,
for any nonzero value of q', the transition must occur
for sufFiciently large R. This can be understood phys-
ically, since, as B grows large, the interior of the fiber
approaches the bulk state, which is chiral, while surface
eH'ects become less and less important. Thus there must
be a twisting transition for sufBciently large B. In a Sc
LCP the ratio Ki/K2 is expected to be proportional to
the polymerization index, so the value of !q*!Rat the
twisting transition should go as the square root of the
polymerization index.

Once the capillary transition occurs and the disclina-
tion is helical, helicity may be induced in the overall Gber
shape. An improved theory of the helical transitions of a
S& LCP fiber would have to take such disclination-fiber
interactions into account.

Joo = d dppI

= 2vr 1n(R/po),

Jig —— d dp pI~

(A2)

3~% 2

+2~ 1 —gl —4'
2

+ ln 1 + 1 —4'2 —ln 2

J2 —— d dp pI2

= p2 tan8 R4' du K(@'u),
0

J22 —— d dp pI2

7t'/2

+8 tan8O du cot u [1 —gl —(4 sinu)2],

J23 —— d dp pI2I3

= 5m tan04 —2' tan04 sin

km44 du u F
!

—,—;2; @ u
)

J33 —— d dp pI3

3~4'= 2vr ln(R/pp)—
2

~i2
—2 du ln 1 —(4' sin u)

0

= ~ tan'8 ln(R/p, ) 4 ' + 27r tan'8 4 '(1 —gl —4 )

, (3@'+ 2(1 —0 ')'~' —2 )+~C'!
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@ = qa cot8, 4 = qR, P integration is over the interval
0 to 2vr, p integration is over the interval 0 to R (or
po to R, when appropriate), K is the complete elliptic
integral of the first kind [18],and I" is the hypergeometric
function [18]. When !@!« 1 the J integrals can be
approximated by keeping terms only up to order 4:
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Jpp = 27I ln(R/pp),

Jgg 2' 4'

J, = g~ tan&BC',
@2)

z.
i

tan 8 in(R/pp) / tan8 4 +
i
e

J2s 37r
~

tan8 + —
~

@
9y

J„=2~ ln(R/p, ) —~@'.

(A3)

where

J2 ——g4g tanOB,

J2z ——vr tan 8 ln(R/pp) + 2vr tan 8
~C2

+4(4 —~) tan8C + 3

J2s vr(5 —vr) tan8 + 0.372 ere,

Jss —2m ln(R/pp) ——+ 2rr ln 2,

When ICl = 1 the J integrals become

Jpp = 27I ln(R/pp),
(7
&4

(A4)

1

du K(u) 0.92
2 0

is Catalan's constant [19].

(A5)
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