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Scale invariance and dynamical correlations in growth models
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Dynamical scaling behavior of the kinetic roughening phenomena in (1+1)- and (2+1)-
dimensional models of molecular beam epitaxy (MBE) is studied using kinetic Monte Carlo simu-
lations mostly within the solid-on-solid lattice gas approximation. We relate the simulation results
of our finite temperature stochastic Monte Carlo algorithm, which employs local-configuration-
dependent thermally activated Arrhenius diffusion, to those obtained from simpler manifestly
nonequilibrium dynamical growth models involving instantaneous relaxation. The extracted criti-
cal exponents for kinetic roughening are found to be temperature dependent due to finite size and
crossover effects, and in particular, the growth (P) and roughness (o.) exponents decrease with in-

creasing temperature as diffusion noise becomes stronger relative to the deposition noise. We find
strong evidence for anomalous dynamic scaling, with global and local scaling behaviors being sub-
stantially difFerent in 1+ 1 dimensions. Remarkably, the anomalous roughness exponent n' (= o.
in the usual dynamic scaling situation) defining the spatial scaling in the height-height correlation
function is found to be approximately a temperature-independent constant (= 0.6—0.7 in 1+1 dimen-
sions) in all our models, including the Arrhenius-activated diff'usion model. An associated significant
result is the marked up-down (h m —h) asymmetry in our simulated grow'th morphologies, clearly
indicating the presence of nonlinear microscopically irreversible processes dominating local growth
features. We study in some detail the recently suggested connection between height Quctuations in
1VlBE growth models and intermittent Quctuations in Buid turbulence by numerically calculating the
multiafBne dynamic scaling behavior of higher moments of the height correlation functions and by
obtaining the stretched exponential behavior of the step-height distribution functions in our growth
models. We critically analyze our growth rules to comment on possible coarse-grained continuum
descriptions that could qualitatively account for our MBE simulation results.

PACS number(s): 05.40.+j, 81.15.Hi, 82.20.Mj

I. INTRODUCTION

In molecular beam epitaxy (MBE) growth an atomic
Qux impinges upon a substrate which is held at a fairly
high temperature (500—1000 K). The dynamically grow-
ing interface, where we restrict ourselves to idealized ho-
moepitaxial MBE growth on fIat singular surfaces along
a speci6c crystallographic orientation of high symme-
try, roughens kinetically due to the shot noise inher-
ent in the incident beam. The basic physics of MBE
growth involves a competition between deposition and
difFusion —the noise due to diffusion being conserved and
the deposition noise being nonconserved. Atomic dif-
fusion smoothens the growth &ont, minimizing kinetic
roughness, whereas deposition noise in most situations
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generates interface roughness. The typical length scale
over which diffusion produces smooth growth, the diffu-
sion length, increases exponentially with increasing tem-
perature (and decreases with increasing deposition rate)
and at high temperatures and/or low deposition rates
it is common to produce good-quality smooth thin films
of very large areas with little kinetic roughness. This
is the epitaxial layer-by-layer growth regime, which is
of particular interest in materials science, and which has
been extensively studied [1] using atomistic kinetic Monte
Carlo simulations involving activated Arrhenius diffusion
of surface atoms. The primary goal of these MBE growth
simulations [1] has been to describe the smooth layer-by-
layer epitaxial growth regime (possessing minimal kinetic
roughness), and as such most of this earlier work was de-
voted to obtaining maximal information about the qual-
ity of the surface from observations of intensity oscilla-
tions from the specular beam in a refIected high energy
electron diffraction (RHEED) experiment. Simulations
were performed in the layer-by-layer growth regime to
obtain various RHEED patterns by varying the input
parameters such as substrate temperature, diffusion and
evaporation rates, etc.

Based on these detailed simulational studies, a mini-
mal kinetic Monte Carlo model [1,2] for studying MBE
growth has emerged. This model has been shown to
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be capable of producing reasonably accurate quantita-
tive information about real MBE growth in the layer-
by-layer growth regime. In this article, we use this
minimal kinetic Monte Carlo model, involving local
configuration-dependent-activated Arrhenius diffusion of
surface atoms, to study MBE growth in the kinetically
rough (as against epitaxial layer-by-layer) growth regime
where deposition noise dominates diffusion noise. Here,
adatom diffusion is ineffective in producing smooth Alms
and permits the interface to roughen kinetically as the
Glm grows due to the shot noise fluctuations in the inci-
dent beam. The signature of kinetic roughening impos-
ing upon the layer-by-layer growth regime is an observed
damping of the specular RHEED intensity oscillations.
The region beyond the damped RHEED oscillations and
the layer-by-layer growth regime, where the interface be-
comes rough and the surface is of poor quality from an
experimental standpoint, has not been addressed in sim-
ulations until recently. Recent studies of idealized kineti-
cally rough MBE growth models [2—5] have indicated that
interface growth processes in general, and. MBE in par-
ticular, can be viewed as examples of dynamical critical
phenomena.

A question then naturally arises: What is the dynam-
ical universality class of MBE growth? In spite of much
work on this subject an unambiguous and widely ac-
cepted answer to this question has remained elusive. Our
goal in this paper is to study in great detail the minimal
kinetic Monte Carlo MBE growth model in an idealized
situation in both one (which we shall denote as d' = 1
substrate dimensions, or d = 1 + 1 total spatial dimen-
sions) and two (d' = 2 or d = 2+ 1 dimensions) substrate
dimensions, and compare our numerical results to vari-
ous proposed dynamical universality classes [3—22]. The
idealizations we make (except where stated otherwise)
are the solid-on-solid (SOS) approximation whereby no
bulk vacancy or surface overhang is allowed to form dur-
ing growth, neglect of desorption or evaporation from
the growth front, ignoring any difFusion barrier (the so-
called "Schwoebel barrier") near step edges and any "hot-
atom" or knockout effects [21] at the growth front. Sur-
prisingly, these idealizations, instead of simplifying the
identification of MBE growth universality, actually com-
plicate matters and. make the search for MBE growth
universality more diKcult and controversial. In particu-
lar, the "conserved" nature of our minimal model (i.e. ,

no desorption, no vacancies or overhangs) rules out the
generic nonlinear Kardar-Parisi-Zhang (KPZ) universal-
ity [20] which is now established [22] to be the asymp-
totic MBE growth universality class if one includes bal-
listic deposition and diffusion in the model (instead of
the SOS model which we employ in the minimal madel),
which allows for overhangs and vacancies. Crossover ef-
fects in the ballistic model, however, show clear signs
[19,22] of various SOS universality classes being studied
in this paper. Inclusion of desorption or hot-atom effects
is accepted by consensus to give rise to nonlinear KPZ or
the linear Edwards-Wilkinson [18] behavior (EW) (i.e. ,
the free-field KPZ without the nonlinearity). It is there-
fore somewhat surprising that the minimal MBE growth
model [1—5] ioithout the additional complications of va-

cancy and overhang formation, desorption, etc. , is not yet
completely understood from a kinetic roughening view-
point whereas the more complicated situation is reason-
ably well understood, at least asymptotically, to be de-
scribed [22] by the generic second-order KPZ growth uni-
versality. It is also becoming clear that the presence of a
step-edge barrier within the SOS approximation leads to
coarsening and pattern formation (with large "bumps" or
"pyramids" on the surface) during growth [23,24]. Ex-
cept in a few situations to be described below (where
we show some ballistic deposition MBE simulation re-
sults for the sake of comparison with the minimal MBE
model), we do not much discuss the roles of vacancies,
overhangs, and desorption, assuming all of them to be
negligible in our ideal SOS-MBE process which is taken
to be well described by the minimal kinetic Monte Carlo
growth model [1—5,25]. We largely neglect the Schwoebel
diffusion barrier effect in this paper, taking the viewpoint
that the situation without the step-edge barrier compli-
cations needs to be completely understood.

A number of simple, manifestly nonequilibrium mod-
els have been introduced [3,7—9,13,17] to represent MBE
growth (to zeroth order) under far from equilibrium con-
ditions. In these nonequilibrium dynamical growth mod-
els, deposited particles relax instantaneously after depo-
sition according to some local microscopic rules. In real
MBE growth (as well as in our minimal model) all the
particles are allowed to move continuously after depo-
sition, but depending upon the substrate temperature,
growth rate, and individual atomic mobility, they may
not equilibrate locally if the incident fIux of atoms is rel-
atively high and atomic diffusion is low. Understanding
this low temperature and/or high deposition rate kinetic
roughening regime is the motivation for the nonequilib-
rium dynamical models. (Complete equilibration of the
growing surface configuration is obviously approached in
the limit of zero growth rate and long growth times. )
One of the motivations for introducing the "toy" mod-
els is eliminating conserved diffusion noise &om growth
simulations. We describe these various MBE-motivated
nonequilibrium growth models later (Sec. III) in this pa-
per, and one of our goals here is to relate the minimal
MBE growth results to these dynamical models.

Quantitatively, dynamic scaling means that the grow-
ing surface exhibits generic scale invariance in both space
and time. The assumption of a scale invariant surface im-
plies a rescaling of the height h(x, t) above the substrate
upon a simultaneous rescaling of the coordinate x ~ bx
and the time t —+ b t according to

h(x, t) - 6
—

h(bx, b t).

From this scaling form it is clear that when n g 1 the
directions parallel and perpendicular to the substrate are
fundamentally distinct because they do not rescale in
equivalent fashions. Such an anisotropy, however, seems
well suited to the growth problem in general because
the incident beam (assumed to be normal to the sub-
strate) defines a special direction. When n ( 1, one
calls such anisotropically scaling surfaces self-aKne. Ob-
viously then, if o; = 1 the height h, and the lateral coordi-
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nate x behave similarly and one recovers isotropic scaling
of the surface height fluctuations. Based on this isotropy
one may consider the growing interface to be a "surface
fractal" [26] for n = 1, where everywhere h varies linearly
with position (usually in a piecewise fashion). We em-
phasize that unlike diffusion-limited aggregation (DLA),
for example, neither the surface nor the entire aggregate
for minimal SOS-MBE growth can be considered a self-
similar &actal when n = 1 since the bulk crystal contains
no defects and is patently non-fractal.

The idea that growing interfaces exhibit generic dy-
namical scaling has held up well in nearly all models
studied to date. The pair of dynamical exponents a
and z and the associated exponent P = n/z by which
one characterizes surfaces (i.e., its dynamical universal-
ity class), however, can vary based on the set of allowed
microscopic processes. Knowing n and z for our mini-
mal MBE model and comparing them to those obtained
for the various nonequilibrium dynamical growth mod-
els should give us considerable insight into the dynamic
scaling behavior and generic scale invariance aspects of
MBE growth. One significant problem in this respect is
the fact that the various simple nonequilibrium dynami-
cal "toy" models which have been introduced in the con-
text of MBE growth have themselves remained contro-
versial and "unsolved" with respect to their asymptotic
values of critical exponents n and z [10—16]. Thus, in
addition to studying the minimal MBE growth model in-
volving temperature-dependent-activated diffusion of all
atoms at the growth &ont, we have carried out and re-
port here detailed numerical simulations of a subset of the
nonequilibrium dynamical models as well. A direct com-
parison of the minimal MBE model results with those of
the nonequilibrium dynamical models tells us the extent
to which specific "toy" models catch the MBE dynamic
scaling behavior.

Ultimately, however, one wishes to relate the simu-
lated critical exponents (n, z, etc. ) of our minimal MBE
growth model to those derived theoretically for a coarse-
grained continuum difFerential equation (e.g. , EW, KPZ
equations) for the height fluctuations. There is no rig-
orous proof that this can be done in all situations, but
if n and z exist, there is good reason to believe that
a long-wavelength continuum coarse-grained differential
equation description should apply asymptotically. In
the MBE growth problem, the search for the continuum
equation has been severely hampered by crossover effects,
and, in our opinion, a large number of recent experimen-
tal results claiming agreement with one or the other exist-
ing continuum equation in the literature has added to this
confusion. We will, throughout this article, make connec-
tions between our numerical results and the exponents
obtained analytically for various continuum MBE growth
equations. We warn the reader, however, that in spite of
our rather extensive simulations a complete picture for
the asymptotic universality class of the minimal MBE
model, even in d = 1+1 dimensions, does not emerge. It
should also be emphasized that the search for the univer-
sality class of MBE growth (and for the associated MBE
growth equation) is not just an academic exercise. If
MBE growth universality is such that n = 0 (as it would

be in d' = 2 for the EW universality class), then real
MBE growth is smooth (more precisely, only logarithmi-
cally rough) as a matter of principle. On the other hand,
if n g 0 in MBE growth, then the smooth layer-by-layer
growth regime is only a finite size transient, and asymp-
totically MBE growth is always kinetically rough. Thus
understanding the MBE dynamical universality class is
of some technological importance in determining opti-
mum conditions for the growth of smooth high-quality
thin films.

One gains physical insight into interface growth dy-
namics by comparing the scaling exponents with those
predicted analytically &om the asymptotic properties
of various stochastic differential equations believed to
describe the long-wavelength characteristics of various
growth processes [3,5—9,18,20,27]. The goal is to use
the continuum equations to predict scaling behavior, and
hence provide a statistical picture of the time develop-
ment of surface morphology. The statistical properties
of interface height fluctuations are manifestations of the
specific dynamic scaling behavior of the problem. Global
roughness of a surface is measured by its width, or root-
mean-square fluctuation about the average height; local
roughness can be quantified by computing the height-
height correlations in space and time (see Sec. II). Sur-
prisingly, it has become increasingly clear recently that
the local and global dynamic scaling behaviors are dis-
tinctly different (at least in d' = 1) for the class of
surface-diffusion-driven nonequilibrium dynamical mod-
els which were introduced in the context of understanding
MBE growth. This "anomalous scaling" behavior is not
predicted by the simplest dynamic scaling ansatz [17]and
will be explored in some detail in this article.

Our goal is to develop an understanding of dynami-
cal correlations in the interface kinetic roughness of the
growing thin film, and as such we pay particular atten-
tion to the dynamical height-height correlation function
and its higher moments. In some situations we also
directly compute the structure factor, which is related
to the Fourier transform of the height-height correlation
function. The interface width, which is the root-mean-
square height fluctuation averaged across the whole sub-
strate, measures the global kinetic roughening properties,
and is simply related to the "diagonal" component of the
height-height correlation function which probes the de-
tails of local roughening. We find that MBE growth in
d = 1 + 1 follows anomalous dynamic scaling with the
dynamical critical exponents for local roughening as de-
termined by the height-height correlation function being
decisively different f'rom those determined &om the global
scaling of the interface width. Our MBE growth results
in d = 2+ 1 also exhibit anomalous dynamic scaling, but
the necessarily smaller size of these simulations prevent
us Rom making a decisive conclusion for d' = 2.

The rest of this paper is organized as follows. In
Sec. II we discuss the fourth-order conserved continuum
growth equation which has been introduced as a possible
coarse-grained. large-scale description for MBE growth.
In Sec. III we describe the various growth models studied
in this paper. In Sec. IV we present and discuss our nu-
merical results, and we conclude in Sec. V. Unless other-
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wise stated all our numerical simulation results, both for
the temperature-dependent-activated hopping stochastic
MBE models and the instantaneous-relaxation nonequi-
librium dynamical growth models, are SOS results for
d = 1 + 1 growth. We present some limited d = 2 + 1
growth results and a few representative MBE ballistic
deposition results as well.

II. THROB.Y

Bh/Ot = v2V' h + A2
i
V'h] + g(x, t), (2.1)

which has been much discussed in the literature. [We
write our growth equations for the dynamical height fluc-
tuation h(x, t) subtracting out the uniform growth term
due to the average incident flux; all coordinates h, and
w are treated as dimensionless quantities after normal-
izing by the physical lattice constants in either direc-
tion. ] The noise g throughout this paper is a spatio-
temporal noise, g = g~ + gD, where noise has the corre-
lators {q~(x,t)gp(x', t')) = 2N~b" (x. —x')b(t —t') and

{gD{»,t)qri {x',t')) = 2ND %'28" (» ——x.')h(t —t') By.
definition the noise has zero mean so that (gp-(», t))
(go(x, t)) = 0. In this description, q~ and qadi are the
random Gaussian white noise arising from the fluctu-
ations i.n the e~ternal deposition flux and in the hop-
ping diffusion, respectively. The coeKcients N~ and ND
are the respective strengths of the unconserved deposi-
tion noise g~ and the conserved diffusion noise go. The
asymptotic critical exponents are determined by the non-
conserved part of the noise q~, while qD is asymptotically
irrelevant in the presence of nonzero g~ in the renormal-
ization group sense. We emphasize, however, that for
length scales T & /, where l is the diffusion length [28],
'go may 1ntroducc CI'ossovcr cffccts and 1n paI'tlculaI', 'g~

We are studying the generic scale invariance properties
of stochastic Arrhenius hopping MBE growth models.
Ideally this involves three steps: (i) showing that the sim-
ulation results of the minimal MBE growth model obey
the dynamic scaling hypothesis; (ii) connecting the dy-
namical growth exponents obtained in step (i) with those
in some well-de6ned instantaneous-relaxation discrete
growth models; (iii) connecting these instantaneous-
relaxation discrete growth models (which provide con-
sistent descriptions of the minimal MBE growth model)
to coarse-grained continuum differential equations whose
critical exponents can, in principle, be theoretically cal-
culated. Note that step (ii) is necessary because even
the minimal MBE growth model involves both diffusion
and deposition noise as well as several different hopping
rates (corresponding to the initial number of bonds of
the hopping atom), and therefore may suffer f'rom severe
crossover effects, which should, in principle, be substan-
tially reduced in the instantaneous-relaxation models.

The continuuIn coarse-grained. differential equations
must be consistent with the translational invariance in
the growth direction and rotational invariance in the sub-
strate plane. If desorption, overhangs, vacancies, etc. are
allowed then the leading-order growth equation is the
generic Kardar-Parisi-Zhang equation [20]

Oh/Bt = —V' j + g(x, t),

where j is the conserved surface mass current. We empha-
size that the generic KPZ nonlinearity is ruled out by the
conservation law deflned in Eq. (2.2) because ]Vh~ can-
not be expressed as a divergence. Following Lai and Das
Sarma [8] the most general continuum growth equation
which preserves current conservation and all the sym-
metries of the problem (namely, translational invariance
along the growth direction and rotational invariance in
the substrate plane), can be written as

Bh/Bt = v2V h —A4V' h+ A22V (Vh)

+Ais V(Vh) + g(x, t), (2.3)

with the corresponding surface mass current having the
forIn

j = —v2V'h —Ais(W'h) + V'[v4V' h —A22(V'h) ]

= —(V'h)(v2+ Ais ]V'h] )+ V'(v4V' h —A22]V'h~ ),
(2.4)

where v2, v4, A22, and A13, the macroscopic growth coef-
6cients, are in principle determined by the growth con-
ditions (e.g. , temperature, difFusion length, flux rate)
and by the microscopic energetic and kinetic parameters
describing the substrate and the growing system. For
our purposes v2, v4, A22, A13 are simply parameters of the
long-wavelength coarse-grained continuum theory. Note
that the current j is written as a sum of two terms in Eq.
(2.4), the first of which arises &om a generalized surface
tension and the second term arises from a generalized
(nonequilibrium) chemical potential.

may determine the effective exponents in the minimal
MBE growth model at short length scales and at high
temperatures when l is large. Because we are interested
in the asymptotic universality class of MBE growth we
consider the noise g to be unconserved deposition noise
from now on unless stated otherwise. Consistent with
the standard practice we take the shot noise to be uncor-
related random white noise.

It is well accepted that unconserved growth (either due
to desorption or due, to vacancy or overhang formation)
is asymptotically described by the KPZ equation. Our
ballistic deposition-activated diffusion MBE growth sim-
ulation results (some of which are presented in Sec. IV
of this paper) are consistent with an asymptotic KPZ
universality even though we also see clear indications
of conserved growth universalities in the preasymptotic
crossover regime [22]. But our main goal in this paper
is understanding the minimal MBE growth model which
is based on the desorption-&ee SOS model because un-
der the usual MBE growth conditions evaporation from
the growth &ont and. vacancy and overhang formation
are thought to be negligibly small. Then, apart from the
incoming flux, growth must obey a current conservation
law defined by



53 SCALE INVARIANCE AND DYNAMICAL CORRELATIONS IN. . . 363

If v2 g 0, then the long-wavelength, long-time dynam-
ical critical properties of Eq. (2.3) are necessarily deter-
mined by the first term v2V h in the right hand side,
and all the other (fourth-order) terms are irrelevant from
a renormalization group viewpoint. The fourth-order
terms xnay contribute to crossover effects (thereby be-
ing a potential complication for experimental, as well as
simulational, results), but do not alter the asymptotic
growth exponents. The continuum equation without the
fourth-order terms in Eq. (2.3), the EW equation [18],
has been much studied in the literature:

Bh/Bt = v2V' h+ xl(», t). (2.5)

V(Vh) = 3(Vh) (V Ix), (2.6)

so that

|gV'h. +A„%7(Vh) = v, P7'h) (1+ ' (Wh)'),
V2

(2.7)

implying the generation of the V' h, term upon renor-
malization of the V'(V'h) term. (2) The V' h and the
V(Vh) terms are generated as the first two terms in an
expansion if one considers a dynamical Langevin equa-
tion based on the simple surface tension Hamiltonian:

H d~ 1+ Vh 2

dx 1+ —Vh ——Vh
1 2 1 4

2 8

(2.8)

(2.9)

In the absence of the v2V2h EW terxn (i.e. , v2 ——0) the
most relevant fourth-order term in Eq. (2.3) is the non-
linear AxsV(Vh) term, which has recently been shown
[29,30] to behave equivalently to EW universality because
it automatically generates the V' h, linear term upon
renormalization. While the generation of the second-
order V2Ix linear term &om the fourth-order V(Vh)s
nonlinearity is now established [30] theoretically, this re-
sult may be motivated by the following two simple obser-
vations: (1) The V(Vh)s nonlinearity can be expressed
as

It is also useful to consider [3,6,7] the purely linear fourth-
order conserved growth equation [%22 ——0 in Eq. (2.10)]:

Bh/Bt = —A4V h+ xl(», t), (2.11)

which is the nonconserved version of the Mullins-Herring
surface-diffusion equation [32]. For the sake of complete-
ness we also write down [8] the coxnplete fourth-order
conserved growth equation [i.e. , v2 ——0 in Eq. (2.3)],
which follows [29,30] the EW asymptotic behavior:

Bh/Bt = —A4V h+A22V (V'h) +AxsV(Vh) +xl(», t).
(2.12)

In Table I we provide the theoretically known critical
growth exponents cx, P, and z in both d = 1 + 1 and d =
2+1 for the relevant growth equations. The linear growth
equations, Eqs. (2.5) and (2.11), are trivially soluble via
Fourier transformation whereas the analytical results for
the nonlinear equations are obtained via the dynamical
renormalization group (DRG) technique [8,20,30].

Conceptually the simplest and most relevant contin-
uum SOS growth equation is obviously Eq. (2.5), the
EW equation, which dominates the long-wavelength scal-
ing properties if v2 j 0. The chief physical effect cap-
tured in the derivation of this equation is the relaxation
of atoms to local height minima: growth which is found
to scale in the same manner as the EW equation is thus
thought to be asymptotically driven by the transfer of
matter to the lowest local positions on the surface via
an efFective surface tension (or, efFective gravity). No-
table deviations Rom this simplest of descriptions have,
however, been seen in MBE growth simulations and in a
class of MBE-inspired instantaneous-relaxation discrete
growth models. These models contain different physics
because the atoms are driven not to local height minima,
but to local sites providing a higher number of bonds or
local coordination nuxnber (see Sec. III for details), which
is expected to be more relevant to real MBE. This new
class of surface-diffusion-driven models develops interface
Huctuations which seem to be better described [3—10] by

again implying that the V(Vh)s term is, in effect, a
higher-order correction to the EW V' h term. The
V'(V'h) growth nonlinearity was introduced [8] by Lai
and Das Sarma, and has recently been rediscovered
[23,31] in the context of slope selection in surface coarsen-
ing for unstable growth under a step-edge diffusion bar-
rier (Schwoebel barrier).

It has been argued [8,9] that the most relevant second-
order EW term V' 6 is absent for MBE growth on Hat
substrates (v2 ——0), and most numerical simulations are
at least consistent with the scenario that v2 0 if not
v2 ——0. Our discussion of MBE growth simulations under
SOS conditions will therefore be based on Eq. (2.3) as
well as [33] its purely fourth-order variant [8,9] with v2 ——

Ag3 ——0:

Bh/Bt = —A4V' h+ A22V (V'h) + xl(», t). (2.10)

Dimension
Exponent

V'h —Eq. (2.5)
(V'h)' —Eq. (2.1)
V' h—Eq. (2.11)

V' (Vh) —Eq. (2.10)
V'(V'h) —Eq. (2.12)

1+1
n z P

1/2 2 1/4
1/2 3/2 1/3
3/2 4 3/8

1 3 1/3
3/4 5/2 3/10

0 (log)
0.4
1

2/3
1/2

2+1
z P
2 0 (log)
1.67 0.24
4 1/4

10/3 1/5
3 1/6

TABLE I. Theoretical asymptotic exponents for various
continuum equations discussed in the text, listed according
to the term dominating the asymptotic scaling of the given
equation. The exponents for Eq. (2.1) in 2+1 are estimates
from simulation, and those for the V(V'h) term are obtained
[8] from a Flory-type dimensional analysis but are known [28]
to only be transients prior to a crossover to the universality
of Eq. (2.5). All other exponents are either exact, or accurate
to at least a two-loop DRG calculation.
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the fourth-order continuum growth equation in Eq. (2.10)
or (2.11), at least over a large range of system sizes and
growth times.

A diKcult conceptual feature of d = 1 + 1 models
described by Eqs. (2.10) and (2.11) is that the inter-
face height fluctuations can, in the thermodynamic limit
L —+ oo, possess an amplitude growing as fast or faster
than the system size L. This implies that on no scale
can the interface be considered smooth in the sense that
the roughness exponent n & 1. This statement implic-
itly assumes a statistical physics viewpoint because the
thermodynamic limit is being considered. When viewed
on much smaller scales x « I (the so-called solid state
physics viewpoint [34]), larger values of n instead im-
ply locally smoother surfaces [34]. Within this finite size
"solid state physics" viewpoint, self-aKne surfaces with
sinaller n (& 1) tend to have a rougher, more jagged
appearance than super-rough (n ) 1) interfaces because
the lateral scale of a typical super-rough fluctuation is
large with little residual roughness on small length scales.
When discussing roughness in this article, however, we
take the long-wavelength, statistical physics viewpoint
where larger a means a rougher surface unless explicitly
noted.

The isotropy occurring for n = 1 (where ti oc x) can be
considered to define [26] a borderline growth regime sepa-
rating the anisotropic cases of self-affine surfaces (n & 1)
from the super-rough, non&actal regime (n ) 1). As
we discuss in later sections, very large height fluctua-
tions which are generically observed on super-rough sur-
faces (see Fig. 9 below) appear to be responsible for such
large global roughness exponents (n ) 1). We explicitly
demonstrate, however, that the local roughness exponent
n' is less than or equal to unity for all n & 1. In geomet-
rical terms, in the self-aKne case the initial overall ori-
entation of the substrate does not change during growth
while for a = 1 the height is linear with position so the
flat initial surface assumes a new global orientation. In
the super-rough case, groove formation can be viewed as
a local orientational instability which results in values of
o. & 1. Both n = 1 and n' = 1 should hold for completely
isotropic growth, which may be the situation, within log-
arithrnic correction, for the continuum equation (2.10).

Morphologically, then, super-rough surfaces are much
rougher than those obeying the EW equation, showing
very large steps and deep grooves in the interface (see
examples below and in Refs. [5,7,14,15]). In the long-
time limit, though, some [7] of these discrete models are
believed to cross over to the EW equation [10,12,16,35].
The discrete growth model introduced by Das Sarma and
Tamborenea [3,5], the so-called DT model, which we be-
lieve to be the relevant dynamical model underlying the
minimal MBE growth simulations, has shown no such
crossover to EW uiuversality [10,11,14]. The DT model
exhibits scaling properties tantalizingly similar to those
of the linear Eq. (2.11), but with very significant dif-
ferences [11,14]. In particular, the recently discovered
[11,12] anomalous time dependence of the correlation
function in the DT model cannot be explained by Eq.
(2.11). Recently, Krug has pointed out [14] a number
of peculiarities in higher moments of the height-height

correlation functions in the DT model. While these pe-
culiarities can be thought of as the higher-order mani-
festations of anomalous dynamic scaling, there are some
interesting analogies [14] to the phenomenon of intermit-
tency in fluid turbulence which we explore in more detail
in this paper. We show that many characteristics of the
DT model, including most of these peculiarities, are in-
deed reflected in the stochastic, temperature-dependent
minimal MBE growth model.

Several examples of stochastic MBE growth models al-
lowing for temperature-dependent kinetics with no evap-
oration have recently appeared in the literature in the
context of dynainical scaling studies [4,5,22,25,36—38].
There have also been attempts [21] to derive an equa-
tion of motion for MBE growth using a master equation
approach de6ning the transition probabilities in terms of
kinetic rates, with the conclusion that Eq. (2.10), the
so-called Lai—Das Sarma —Villain (LDV) equation, is the
appropriate continuum equation describing MBE growth.
Under SOS restrictions one generally observes that the
scaling exponents are dependent on temperature and on
the details of the microscopic hopping rules [4,5,25,36].
Simulations relaxing the SOS restriction by using ballistic
deposition (BD) and diffusion [22,37,38] (i.e. , permitting
overhangs and vacancies when atoms land or move upon
the surface) show an initial temperature-dependent SOS-
like transient regime which asymptotically crosses over to
scaling typified by the KPZ equation, Eq. (2.1).

The kinetically roughening interface can be character-
ized by extracting exponents &om the evolving surface
width or &om the dynamical height-height correlation
function; recently the actual form of the scaling function
in such models has been studied directly in several ide-
alized dynamical models [11,12,14]. There has been less
discussion of the dynamical scaling function of finite tem-
perature, stochastic growth models. We present in this
paper such an analysis of stochastic growth models with
activated hopping in 1+1and 2+1 dimensions, analyzing
the scaling function underlying the height-height corre-
lation function G(x, t) in the context of the anomalous
scaling hypothesis proposed recently [11,12]. We further
analyze these models for multifractal intermittent behav-
ior [14,39] and show that the minimal SOS-MBE model
possesses two distinct characteristics of the DT model,
namely, anomalous dynamic scaling and multi&actality.
We also present extensive results on multiscaling in sev-
eral instantaneous-relaxation discrete growth models per-
mitting a critical comparison with the minimal MBE
model results.

III. MODELS

Before discussing the details of our models, we define
the quantities used to characterize the growing surfaces.
The most obvious and common measure of the height
fluctuations of an interface is given by the width W, or
the root-mean-square fluctuations in the surface height
h(x, t): W2(L, t) = (P„[h(x,t) —h(t)]2/L~ ), where I.
is the linear substrate size and h(t) is the average height,
and we also perform an ensemble average over several re-
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Gq(x, t) = (~h(x+ x, t) —h(x ) ~~)'~~. (3.2)

[Note that we have included the qth root in the defini-
tion of Gq, while it is not included in the definition of G
in Eq. (3.1).] For a truly self-affine object, the functions
Gq have q-independent scaling exponents, while q depen-
dence is the hallmark of multifractality. Also relevant will
be the step-height distribution function parametrized by
the form P(s) exp( —ass), where s = h(x + 1) —h(x).
In the case of a self-afEne surface growing under the in-
Huence of b-function-correlated white noise, large steps
are rare and h = 2 so that P(s) is Gaussian [14,40]; mul-
tiaKne surfaces show a stronger tail to the distribution,
corresponding to the presence of more high steps, and

& 2. We note that the function G(l, t) is the mean
square step height, and thus the second moment of P(s).

alizations of the simulation. The scaling hypothesis im-
plies that the width scales as W (L, t) L g(L/t ~'),
where the asymptotic properties of the scaling function
are g(y) ~ const for y -+ 0 and g(y) i y for y -+ oo.
For short times such that the correlation length ( ti~'
is small compared with the system size (( « L), then
W(L, t) t~, with the exponent P = n/z N.otice that
the global length scale L dictates the behavior of W in
the large t limit (t ) L'), and that the Huctuations are
measured with respect to the globally averaged height of
the interface.

The height-height correlation function is calculated us-
ing the definition G(x, t) = ([h(x + x, t) —h(x )] )
where ( ) denotes both averaging over x and multiple
realizations of the model. In the usual (i.e. , nonanoma-
lous) dynamical scaling situation the growing surface is
self-aKne, implying that the correlation function G(x, t)
for interface growth varies with the local scale x at time
t as

(3.1)

with ((t) t ~' and where the asymptotic behavior of
g(y) is identical to that shown above. This form follows
from the hypothesis that the surface is a self-aKne ob-
ject. The scaling function g(y) can be found by plotting
G(x, t)/x2 vs y, and for y = x/t ~' && 1 one expects
that g(y) will saturate to a constant, implying generic
scale invariance and self-afBnity. Finally, we measure
the structure factor S(k) of the surface, which is re-
lated to the Fourier transform of G(x, t) at large times
when the interface has reached saturation. Specifically,
S(k) = (h(k) h( —k)), where h(k) is the Fourier trans-
form of the height profile, and the angular brackets here
denote an ensemble average in the limit of large times.
The relevant scaling behavior of the structure factor is
S(k) ~ k r, for k ) 1/(, which for the saturated inter-
face (( I) holds at all k in the siinulation.

As emphasized previously, the usual dynamic scaling
does not hold for MBE growth in d = 1+1, with anoma-
lous dynamic scaling and multi&actality showing up dra-
matically. In the context of multifractality (or inore
specifically, multiaffinity [14,39]), a generalized correla-
tion function proves useful, defined through the various
moments of the height di8'erence:

For the usual dynamic scaling behavior G(l, t) quickly
saturates and becomes a constant as ( )) 1 whereas for
anomalous scaling, G(1, t) t"~' with z the anomalous
scaling exponent introduced in Ref. [11].

In addition to our stochastic MBE model, we will have
occasion to refer to many dynamical growth models pos-
sessing instantaneous relaxation, which we discuss in the
following subsection.

A. Dynamical SOS models

In all of these models, the deposition process is iden-
tical and obeys the SOS restriction: a randomly chosen
substrate coordinate x is selected, and the height h(x, t)
of the interface above that site is incremented by one.
All sites below the newly incorporated site are occupied
due to the SOS constraint. The time t is measured in
number of layers deposited, and the deposition rate in
all cases is fixed at 1 layer/sec. When there is no diffu-
sion of deposited atoms (the random deposition model,
RD), the columns grow in an uncorrelated manner and
the individual heights are drawn from a Poisson distribu-
tion (P = 1/2; o, and z are undefined because there are
no lateral correlations and ( ~ 0).

Fancily naodel

The simplest way to add relaxation was studied by
Family [17] in a simulation that serves as a paradigm
for the behavior of self-afBne growth models following
the scale invariant features of the EW equation and Eq.
(3.1). Relaxation was included simply by comparing the
height at the deposition site with the height at the near-
est neighbor sites: if at a local height minimum the par-
ticle remains at the deposition site, otherwise the par-
ticle relaxes to the location with the minimum height
[Fig. 1(a)]. That atom has no further mobility and is con-
sidered part of the bulk for the remainder of the simula-
tion. Thus the relaxation is instantaneous and complete
following random deposition events. For reference, the
dynamical exponents expected for models following the
EW equation are (see also Table I) z = 2, n = (3 —d)/2.
The simulations of the discrete Family model are com-
pletely consistent with these exponents in d = 2 and 3.
Note that a generalization of the Family model where
the instantaneous relaxation to local height minima oc-
curs over a finite "difFusion" length (rather than just over
the nearest neighbors) also asymptotically belongs to the
EW universality class.

2. DT, Wolf VilLain, an-d related models

In the Wolf-Villain (WV) [7] model a deposited atom
on the surface is allowed to relax to a nearest neighbor
site if it can increase its number of bonds (a bond being
made to each occupied nearest neighbor site). Further-
more, the atom will choose the site which provides the
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maximal coordination if multiple options exist. There are
no restictions on the initial bonding state. It is impor-
tant to distinguish this model from the very similar DT
model [3], in which deposited atoms still relax to nearest
neighbor sites (with greater bonding) but only when the
deposition site has no occupied lateral nearest neighbors.
Also in contrast with WV, the diffusing DT atom always
chooses randomly among several possible landing sites
with higher bonding configurations, not always selecting
the site providing the maximum number of bonds. Thus
DT only increases coordination (provided the initial co-
ordination is one) whereas WV tries to maximize coordi-
nation (independent of the initial coordination number).
Figures 1(b) and l(c) explicitly display the differences
in the relaxation rules between WV and DT. We note
that these rules make no allowance for height minimiza-
tion, although it often implicitly occurs as more highly
coordinated sites tend to correlate with sites at a mini-
mum local height. But, importantly, this is not always
the case, as illustrated by atoms e, f in Figs. 1(b) and
1(c). As noted previously, in d = 1 + 1, both models
show scaling behavior indicative of Eq. (2.11), for which
z = 4, n = (5 —d)/2. Recent work in d = 2 + 1 [35] has

shown the WV model to follow Eq. (2.10), generating
the more relevant fourth-order nonlinear term V'2(V'h)2
for which z = (7+ d)/3, n = (5 —d)/3 [8]. Measure-
ment of the tilted-substrate surface current, however, in-
dicates that all of this may be a transient [16] and that
the asymptotic WV scaling is given [35] by the EW equa-
tion. The DT model therefore remains the only simple
dynamical SOS growth model which has not yet been
demonstrated to asymptotically cross over to the EW be-
havior. In fact, surface current measurements on tilted
substrates and symmetry arguments [41] suggest that the
asymptotic scaling behavior of the DT model cannot be
described by the EW equation.

We propose two extensions of the DT model. First,
we generalize the model to allow atoms to search up to
D sites away for the nearest kink site, introducing the
variable diffusion length D (the original model simply
having D = 1). In addition, we have allowed for atoms to
experience delayed hopping (within the D = 1 model). A
new atom upon deposition relaxes according to the rules
of the normal DT model. If the incorporation of this
new atom creates a kink site within D = 1 units of any
old surface atoms with no lateral bonds, the old atom

A

FIG. 1. Schematic configurations defin-

ing the growth rules for various models
discussed in this paper in 1 + 1 dimen-
sions. (a) Family model, (b) Wolf-Villain

(WV), (c) Das Sarma —Tamborenea (DT),
(d) time-dependent hopping (TDH) modifi-
cation to the DT model, (e) Lai—Das Sarma
(LDS), (f) larger curvature model (LC), (g)
the minimal MBE model, i.e. , the stochastic
growth model in solid-on-solid approximation
(SOS-MBE), (h) stochastic ballistic deposi-
tion model (BD). Atom a in (e), while hop-
ping up in the modified configuration, would
not move in DT, and hops down in LC.
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moves to the newly created kink site [Fig. 1(d)]. We call
this the time-delayed hopping (TDH) model. The time-
delayed hopping contained here encourages the formation
of large islands on Hat surfaces rather than many small
ones, and allows atoms to interact with their changing
environment.

Other mod. els can be obtained with further modifica-
tions of DT-WV rules [10]. First, note that in 2+1 di-
xnensions on a cubic lattice, a deposited atom can Pave
at most five nearest neighbors and still relax in a SOS
model. A model can be named [10] depending upon the
maximum number of bonds that are allowed to break
when relaxing by finding a more highly coordinated site.
Thus, e.g. , a 3+ model means that if an atom on deposi-
tion possesses no more than three bonds then it is allowed
to hop to a nearest neighbor site if it can increase its num-
ber of bonds. An atom with four bonds on deposition is
not allowed to move in the 3+ model. When multiple
relaxation sites are present, one is selected randomly. In
this notation the DT model becomes "1+"and the WV
model is close to "2+."

8. Lai —Da8 Sar ma madel

This model, while also similar to the DT and WV mod-
els, has important differences. Atoms with no lateral
bonds relax exactly as in the D = 1 DT model; atoms
with a single lateral bond (i.e., at a kink site) move to the
nearest kink site with a smaller step height [8] [Fig. 1(e)].
The latter rule allows for upward motion of atoms, in con-
trast to previous models. Lai and Das Sarma (LDS) [8]
found this model to obey Eq. (2.10) in d = 1 + 1 [8].

Larger curvature model

The last model in this class is the so-called "larger cur-
vature" (LC) model introduced by Kim and Das Sarma
[13]. Rather than xnaking height differences or bonding
the criteria for relaxation, this model explicitly calculates
the curvature [h(x+ 1) + h(x —1) —2h(x)] at a randomly
chosen site x and at all of its nearest neighbors. The

particle then relaxes to that site with the larger curva-
ture, ties being decided randomly (unless the site x is in-
volved, whereby the particle does not relax), as depicted
in Fig. 1(f). Using an argument based on a Hamilto-
nian proposed for this model [13], the LC model can be
shown to exactly obey the simple linear V universality
of Eq. (2.11), whether measured by the W, G, or S(k).
Thus the asymptotic behavior of the Family and the LC
model are exactly known to be described by Eqs. (2.5)
and (2.11), respectively, whereas the WV model shows
long-time transients somewhat similar to Eq. (2.11) and
is thought to cross over asymptotically to the behavior
of Eq. (2.5).

B. Stochastic SOS m.odel

This is the minimal MBE growth model which is con-
structed to simulate the spirit of real MBE growth by
including the efFects of temperature-dependent activated
difFusion of adatoms with rates that depend upon the
local bonding configuration. The deposition of atoms oc-
curs in the same manner as in the dynamical models de-
tailed. in the preceding section. Also as in the dynamical
models, relaxation of an atom is allowed only to near-
est neighbor sites. However, the diÃusional processes are
more complicated in that any atom (not just the most
recently deposited atom) at the surface may hop at any
time (not only at the time of its deposition), with a rate
depending on the number of bonds it possesses at that
time. In order to respect detailed balance, the atomic
hopping rate is independent of the height di8'erence be-
tween columns, and there are no requirements that each
hop must increase the coordination of the hopping atom
[Fig. 1(g)]. Hops which decrease the number of bonds can
occur, but the hopping rates are such that atoms land-
ing in weakly bound sites will subsequently relax with an
exponentially enhanced rate so that in a statistical sense
atoms reside for the longest times in tightly bound lo-
cations, getting permanently incorporated when covered
by other atoms. Note that a hopping atom is allowed to
go either up or down in this model.

TABLE II. Diffusion rates at several temperatures for the minimal SOS-MBE model. Given is
R /Ro for d = 2, 3, where the deposition rate Ro = 1 layer/sec and R„is the activated hopping
rate for an atom with n bonds as defined in the text. The numbers displayed in the table therefore
give the rate in the number of atomic hops made in the time required to deposit one monolayer
(i.e., the deposition time for L atoms). We have shown the rates for temperatures corresponding
to our SOS-MBE results, as well as for those temperatures at which R /Ro 1 for n = 1—3.

Dimension T (K)
500
600
650
700
500
600
640
700

Ri/Ro
0.8
149
1120
6320
1.6
298
1530

12600

Rg/Ro
7.7 x 10

0.4
5.3
44

1.5 x 10
0.9
6.6
87

R3/Ro
7.2 x 10
1.4 x 10
2.5 x 10

0.3
1.4 x 10
2.7 x 10
2.9 x 10

0.6

R4/Ro

14x10
8.2 x 10
1.2 x 10
42x10

Rg/Ro

13x10
2.5 x 10
54x10
2.9 x 10
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A particular surface atom's hopping rate is calculated
&om the Arrhenius expression B = Roe "/ where
the prefactor Ro ——d'kT/h. The activation energy E„=
Eo+nEb for an atom with n nearest neighbors and where
Eb is the bond energy per neighbor; the exponential form
of the rates leads to a great disparity in hopping rates
between atoms in diferent bonding environments (see
Table II). Our simulations are carried out in both 1+ 1
and 2+ 1 dimensions, and the parameters used are Eo ——

1.0 eV, Eb ——0.3 eV. The main diIIFerence between 1+1
and 2+1 dimensions manifests in the increased number
of nearest neighbors available at higher dimensionality,
leading to more e8'ective relaxation for d = 2 + 1.

Since the deposition rate defines the time unit in our
growth simulatioiis (i.e. , the average deposition rate is 1
layer/sec), the ratio of the atomic hopping rate to the
deposition rate is the important dimensionless variable
determining crossover behavior. In Table II, we give
the numbers for this dimensionless ratio for our SOS-
MBE simulations in d' = l, 2 at various temperatures.
Note that substantial crossover complications arise in the
full SOS-MBE simulations (but not in the instantaneous-
relaxation dynamical models) due to the existence of sev-
eral diferent hopping rates. The existence of finite diffu-
sion rates in the minimal MBE model leads to a competi-
tion between deposition and difFusion noise considerably
complicating interpretation of simulational (and experi-
mental) results.

the random deposition is SOS constrained but the acti-
vated hopping is BD constrained, has also been studied
recently [38,43].

IV. RESULTS AND DISCUSSION

To put our results in context, we emphasize that
Eq. (3.1) fixes the asymptotic form for the scaling func-
tion g(y) exhibited by truly self-affine interfaces. In
Fig. 2(a) (inset), we show the scaling collapse for the
3+ model [10] in d = 2 + 1 dimensions, and it clearly
exhibits saturation for small y, and a power law increase
for y ) 1: this behavior can be seen in the superposi-

10-' ''
A

C. Ballistic deposition m.odel 0. 1 1.0 10.0
gt( t /3. 0)

I I s ~ ~ I

This is the most complicated model (and numerically
the most difficult to simulate) that we study, yet, as noted
earlier, the most well understood asymptotically from the
dynamic scaling standpoint. In Fig. 1(h), we illustrate in
d = 1+ 1 the main difFerence between the BD and SOS
models, namely, the existence of overhangs at the surface
and voids in the bulk. For the purposes of defining the
height function h(x, t), we simply choose h(x, t) to be
the height coordinate of the highest occupied site above
substrate position x. While the multivalued character of
ballistic aggregates may present certain problems in an
analytical treatment, this definition of the height func-
tion has the advantage of being unique and does seem to
be acceptable for studying scale invariant properties of
the surface so defined.

In BD, the deposition rule is to select randomly a co-
ordinate x: and the particle is added at the highest site
above w with an occupied nearest neighbor site. The
relaxation rule also allows for holes or overhangs to be
created: the hopping particle randomly selects a landing
site from among the eight surrounding sites which are un-
occupied and provide at least one nearest neighbor bond.
No bias for upward versus downward hopping is made,
and the hopping rates are exactly those used in the SOS
model. We shall be concerned only with the stochastic-
activated hopping version of this model since the basic
BD model has been extensively studied in the literature
in the context of KPZ universality [42]. A growth model
intermediate between SOS and BD [20] models, where

10 100

10 100

PIG. 2. (a) Correlation function G(x, t) vs x for the 3+
model in d = 3 for times t = 51, 1.09, 235, 505, 1084, 2324, 5000
layers (bottom to top) and L = 200. Note the superposi-
tion of the various plots for small x. Inset: Scaling collapse
G(z, t)/2: vs x/t r for t = 109, 223, 504, 1083, 5000 layers,
with 2n = 0.92 and z = 3.0. (b) Plot of height-height cor-
relation function G~(m, t) for the 3+ model in d = 2 + 1
for diferent moments q = 1, 2, 4 (bottom to top). Prom
x = 4 to 10, n~ = 0.32, 0.31,0.31 for q = 1, 2, 4, respectively.
L = 200, t = 5000 layers.
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tion of the data at small x in the uncollapsed G(x, t)
as shown in Fig. 2(a). Although the exponents here
are not the asymptotic EW exponents [10] and these
data are &om a crossover regime, this model nevertheless
demonstrates the typical behavior of the scaling func-
tion associated with self-afhne surfaces. Furthermore, as
shown in Fig. 2(b) by the parallel plots of G), G2, G4 (for
t = 1083), this mod. el s scaling function is independent of
the moment q used in evaluating the height-height corre-
lation function. This self-aKne dynamic scaling behavior
is by no means specific only to the 3+ model and is quite
generic, holding for the 2+ and 4+ models [10], the Fam-
ily model (see inset of Fig. 10 below), and the asymptotic
BD model. In fact, this was the only known dynamic
scaling behavior [42] in growth models until recent work
[10—12,14] showed that MBE models may exhibit anoma-
lous dynamic scaling. What we find in many of our MBE-
inspired stochastic and dynamical growth models is that
the scaling function g(y = x/() does not saturate at small

y but shows an anomalous increase as y ", and that the
functions Gq yield p-dependent exponents, a signature of
multiscaling behavior. Below we present observations on
both types of models and speculate on their origins.

10'
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( & L and the interface has not saturated, the anomalous
scaling function corresponding to g(y) in Eq. (3.1) is

FIG. 3. Data collapse of the scaled height-height correla-
tion function in d = 1 + 1 SOS-MBE for T = 600 K and
T = 650 K (inset) with system size I, = 4000 sites. Collapse
is for seven times ranging from t = 32 to 2048; exponents are
in Table III.

A. Anomalous scaling properties G(x, t) = x2 g(x/((), (4.2)

The anomalous behavior of the scaling function has re-
cently received much attention [10—15,35] in the context
of DT-WV-type nonequilibrium models. Such models
initially created interest because they suggested a con-
tinuum equation description for MBE growth dominated
by fourth-order surface-difFusion terms, as in Eqs. (2.10)
and (2.11), rather than the second-order surface tension
(EW) term. Das Sarma et al. [11] have argued that the
anomalous behavior of the scaling function is a re6ection
of the fact that the integral for the height-height corre-
lation function G(x, t) becomes divergent whenever the
roughness exponent o. & 1, the so-called super-rough sit-
uation with W(t -+ oo)/L diverging for L -+ oo. For
example, a rather simple anomalous scaling behavior oc-
curs in d = 1+1 [15] in the linear Mullins-Herring equa-
tion, Eq. (2.11), which is believed to apply exactly to the
discrete LC model [13,14]. The system size L enters as
an important cutofF in this super-rough situation, lead-
ing to the unexpected time dependence detectable in the
correlation functions of anomalously scaling models. For
super-rough models (where a & 1), the behavior [ll] of
G(x, t) is given by (with the correlation length ( t~/')

50.0
10.00

h,

0.5 02

where the anomalous scaling function g(y) = y
" for

y « 1, and g(y) = y in the large y limit. Whether
the "exponent" s: which enters into Eqs. (4.1) and (4.2)
is a true critical exponent, or rather a correction-to-
scaling crossover exponent, is not a settled issue for all
the models we study in this paper. For super-rough mod-
els with n & 1, one must obviously have r g 0 in a

I

true sense because G(x, t) for x « ( behaves as x
where o.' & 1. The boundedness of the efFective rough-
ness exponent o.' determining the short-distance behav-
ior of the height-height correlation function follows very
simply from a triangle inequality argument [44]. Thus,
in situations where o. & 1, one must necessarily have

xzcr —
attic/z

G(x t) —( 2~—KLK

»& (.
(4.1)
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1 0—1
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10
x/t(&/2 &)

10 10

For x « ( « L, the quantity G(x, t)/x does not
saturate but scales as y

" (where y = x/t~/'), precisely
the anomalous behavior seen in both DT [ll] and LC [13]
models and in our more realistic stochastic Arrhenius
hopping MBE growth models in both 1 + 1 and 2 + 1
dimension (see Figs. 3 and 4 below). In the regime where

FIG. 4. Data collapse of the scaled height-height correla-
tion function in d = 2 + 1 SOS-MBE for T = 600 K and
T = 640 K (inset) with a system of I = 500 x 500 sites. Col-
lapse is for 6ve times ranging from t = 45 to 1000; exponents
are in Table III.
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n' = (n —ic/2) ( 1, making K g 0 a true anomalous ex-
ponent. This is trivially demonstrated [11,15] by consid-
ering the height-height correlation function in the linear
Eq. (2.11), whence one finds, in d = 1 + 1, that n = 1.5
and n' = 1.0, making K = 1 for the V' linear model [45].
While the anomalous scaling behavior of all the linear
super-rough models (i.e. ,

V' -type models for n ) 2) is
trivially simple [45], the corresponding nonlinear situa-
tion has not yet been resolved theoretically [46]. Among
the anomalously scaling discrete dynamical growth mod-
els, only the I C model [13], which exactly follows the
linear Eq. (2.11), is completely understood so far. Partic-
ularly puzzling is the behavior of our Arrhenius-activated
SOS-MBE growth models, which seem to exhibit anoma-
lous dynamic scaling behavior (K g 0, n' ( n) somewhat
weakly in d = 2 + 1 and very strongly in d = 1 + 1,
independent of whether o. ) 1. The anomalous scaling
behavior even in the simple DT model is not yet com-
pletely understood [11,14,461. One could attribute K g 0
to an unusually long-lived. transient in the o. & 1 situa-
tion, whose persistence over many decades in growth time
(i.e. , very slow crossover) is not yet theoretically under-
stood. In the following we consider the nonzero value of
v in the scaling function found &om our numerical sim-
ulations of a growth mod. el as the operational signature
of the existence of anomalous scaling in that particular
growth model.

Figure 3 (4) shows the data collapse of the measured
function G(z, t) for 8 (5) values of t in d = 1 + 1 (2+ 1),
presented as the observed scaling function g(y) versus

y = z/ti/' for SOS-MBE models at two different tem-
peratures. Excellent scaling collapses of the correlation
function in both dimensions are obtained. for both tem-
peratures studied, and the exponent K is nonzero, corre-
sponding to the nonsaturatation of the scaling function
g(y) for small y. The scaling parameters K, o;, z are found
to depend on the growth temperature (see Table III), and
n g ci' because ic g 0. The values of n and z are esti-
mated &om the scaling collapse by changing z to provide
the optimal fit using the constraint that P(= n/z) is the
same as that extracted from G(z -+ oo, t) t ~. No
extensive formal error analysis was performed; however,
the displayed. data collapses showed notable deterioration
with changes of roughly +O. l in 2n and 1/z, which gives
an approximate upper bound on the statistical errors in-
volved. Clearly the scaling function g(y) for a self-afFine
interface cannot explain these observations the inset of

Fig. 2 shows a saturation in the normal scaling function
not observed here even for very small y. We emphasize
that the possibility of saturation of g(y) for substantially
smaller values of y than investigated in our simulations
obviously cannot be ruled out (i.e., K may eventually van-
ish for very long times), but nevertheless the observed
anomalous behavior is intriguing.

Additionally, we directly compare the function G(z, t)
in d = 1 + 1 for SOS and BD Arrhenius hopping mod-
els at T = 600 K for identical activation parameters.
The anomalous time dependence of G(z, t) in Eq. (4.1)
can be easily seen for the SOS model in Fig. 5(a) as
G(z = 1, t) does not saturate (K P 0), while in the BD
model [Fig. 5(b)] the values of G(1, t) quickly attain a
saturated value implying x = 0. The SOS 3+ model
shares the behavior of the BD model [Fig. 2(a)]; how-
ever, there the saturation occurs much earlier in time.
In Fig. 5(c) we show explicitly the continued growth of
average step height, G(1, t), in the SOS-MBE model for
T = 600 and 650 K, a striking contrast to the situation in
the T = 600 K BD MBE model (top line), which after a
transient for t ( 100 layers shows G(l, t) saturating con-
sistent with the asymptotic self-afBne scaling associated
with the KPZ equation. The continued increase of G(1, t)
in the minimal SOS-MBE model out to extremely long
times is the most dramatic manifestation of anomalous
scaling in such models, and while it could be a transient
behavior, the associated crossover time is evidently ex-
ceedingly large.

The asymptotic scaling parameters for BD at T = 600
K calculated at late times, z = 1.5 and o; = 0.45 as
obtained 6.om the scaling collapse in Fig. 6, are indeed.
consistent with those of the KPZ equation for d = 1 + 1
[47]. Interestingly, the early time growth in the BD model
shown in the inset of Fig. 6 appears consistent with other
Arrhenius studies of BD [19,22,37], exhibiting an SOS-
like transient detected in the collapse by the markedly
larger values of z = 2.7 and o. = 1.0 for earlier times than
the asymptotic KPZ values. (Although the scaling col-
lapse does not saturate in the inset of Fig. 6, the extent is
too small to definitively conclude that this time regime in
BD shows anomalous scaling on these grounds. ) As the
BD growth model crosses over to the asymptotic KPZ
scaling (initiated by defect nucleation [22]), the time de-
pendence vanishes as shown in Fig. 5(b). The existence of
the strong early time SOS transient explains why G(1, t)
does not saturate until fairly late in the simulation for

TABLE III. Collection of scaling parameters calculated from the scaling collapses in Figs. 3 and
4 using the relations 2n = 2n'+ r and z =—z'/(1 —A) with r = Az. We define P' = o.'/z'. The
quantity zi ——o.'/P is an artificial "exponent" constructed from incompatible exponents which give
a much lower value than z = n//3.

Dimension T (K)
600

600
640

1.12
0.85
0.55
0.48

0.37
0.34
0.19
0.184

z
3.00
2.50
2.90
2.60

0.96
0.47
0.49
0.26

A

0.32
0.19
0.17
0.10

0.64
0.61
0.31
0.34

0.31
0.30
0.128
0.146

2.04
2.03
2.42
2.33

Zg

1.73
1.79
1.63
1.84
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FIG. 5. Raw correlation function vs distance x for times
t = 2~, j = —2, —1, . . . , 11, (12) in the SOS-MBE model (a)
and BD model (b) at T = 600 K in d = 1 + 1 (L = 4000).
Note the difFerent behavior for small x as a function of time;
compare these as well with Fig. 2(a) for the 3+ model. (c)
G(l, t), or equivalently, the mean square slope of the interface,
versus time for BD (tap) and SOS at T = 600 K (middle),
and SOS at T = 650 K (bottom). The slopes equal ta m/z
of the dashed lines are 0.27 + 0.02 and 0.14 + 0.02 for the
T = 600 and 650 K SOS cases, respectively. (Compare with
~/zeee = 0.32 and r/zese ——0.19 fram Table IV.)

BD as compared to the 3+ model (Fig. 2). Our acti-
vated hopping finite temperature MBE growth simula-
tions involving SOS deposition and BD difFusion rules
{not presented here) show even stronger and longer last-
ing SOS transients, consistent with other findings in the
literature [19,37,38,43].

Figures 2—6 demonstrate that the qualitative features
of the scaling function depend upon the microscopic lo-
cal discrete growth rules. In fact, we point out that the
phenomenology suggested by our results is that models
(3+, BD, etc.) which are asymptotically described by
a second-order continuum equation {EW or KPZ) have
r = 0 while those models (SOS MBE, DT, LDS, LC, WV,
etc.) which are thought to be dominated (at presently ac-
cessible simulational time scales) by fourth-order chemi-
cal bonding-driven diffusion terms, V' h, V' (V'h), etc. ,
tend to give anomalous scaling with r g 0. In a more
practical vein, the behavior of our stochastic SOS-MBE
model suggests that in real MBE growth diferent exper-
imental conditions may lead to di8'erent sets of observed
exponents [e.g. , one may be measuring the correlation
function exponent n' = n —r/2 from Eq. (4.1) and not
the roughness exponent o. characterizing the scaling be-
havior of the width]. The nonsaturation of g(y) at small
y, in particular, suggests that there is the possibility of
another (nontrivially large) time or length scale in the
growth scenario as has been observed in the case of DT
and WV models [11,12].

Schroeder et al. , [12] have analyzed in detail the
anomalous time dependence of the height-height corre-
lation function in the WV model, which is now believed
[16,35] to eventually cross over to EW universality even
though there is an extremely long initial transient where
r g 0. The WV model behaves almost the same as the



372 DAS SARMA, LANCZYCKI, KOTLYAR, AND GHAISAS 53

more nontrivial DT model in the long transient regime.
Motivated by the time dependence in the average step
height, G(l, t) t", with A = r/z, and considering it
to de6ne characteristic length and time scales, they have
rewritten the scaling of the correlation function as

(4.3)

where ('(t) (t/t") ~' = t& "l~', as distinct from
((t) t ~'. The unit of time t, (t) = t" adopted in
Eq. (4.3) has been taken as a characteristic time asso-
ciated with the growth of the average step height [12],
G(l, t) Th. erefore in reduced time units the efFective

I I
correlation length (' = t ~':—(t/t, )i~' parametrizes,
through the exponent z', the dynamical spread of corre-
lations in terms of a reduced time t„which is the physical
time t measured in units of the changing scale t, (t). The
exponent z, on the other hand, simply quantifies how
the growth of the correlation length ((t) scales with the
physical time t The d. escriptions in Eqs. (4.1) and (4.3)
are completely equivalent descriptions of anomalous dy-
namic scaling at small x provided that K = A z, and o.'

is in fact exactly the exponent obtained from the small
x behavior of G(x, t) in Eq. (4.1). The relationship be-
tween these exponents [12] and the ones [11] appearing
in Eq. (4.1) is given by 2n = 2n'+ r. and z = z'/(1 —A),
and (o., a') and (z, z') are numerically different whenever
r (or A) is nonzero (i.e. , in the presence of anomalous
dynamic scaling).

The calculated scaling parameters n, o.', z, z', K, and A

as obtained from our simulations are collected in Table
III for our SOS models in d = 1+1and 2+1: the anoma-
lous exponent r = A z g 0 is obtained from the slope of
the small y region of Figs. 3 and 4. We note that o., z,
and ~ all vary with temperature due to the usual finite
size eEects, and hence any experimental MBE growth
exponent obtained by measuring width as a function of
system size is expected to have temperature dependence.
However, notice in Table III that the parameters o.' and
z are not significantly sensitive to changes in tempera-
ture and are nearly constant, although their values do not
correspond to any known universality class as de6ned by
the continuum growth equations (Table I). The relevance
of this observation is not clear since the SOS-MBE model
may be in a transient regime for these particular simu-

Exponent

Z

Family
0.50
0.25
2.0

0.06
0.47

LDS
1.03
0.34
3.04
0.75
0.65

DT (D=l)
1.40
0.37
3.74
1.56
0.62

TDH
1.54
0.38
4.03
1.85
0.61

TABLE IV. Collection of scaling parameters from the scal-
ing collapses of Fig. 8 for the Family, LDS, DT, and TDH
dynamical models in d = 1+l. In all cases, the system size is
L = 10000 and t „=10000, and n' = n —r/2 is surprisingly
constant for LDS, DT, TDH.

lations, but it is interesting to note that several (1 + 1)-
dimensional nonequilibrium dynamical models also have
n' 0.63 (Table IV), as presented below. As empha-
sized before, an interesting and possibly important point
is that o. ( 1 in all cases but one in Table III: this
demonstrates that anomalous dynamic scaling according
to Eq. (4.1) is not merely an artifact of a trivial growth
instability associated with super-roughening (i.e. , n & 1).
While super-roughening (n ) 1) is certainly a sufficient
condition for anomalous scaling, at this stage it does not
appear to be a necessary condition.

We find that the exponent 2o.' calculated directly from
[0lnG(x, t)/cIlnx] in the limit of small x increases with
time, saturating at late times [~ I layers in d = 1 + 1
when. ((t) )) x]. For T = 600 K, we have confirmed that
o.' has saturated at the latest times in the simulation,
whereas for T = 650 K, a slight increase in o.' can still be
observed: our d = 2 + 1 results both show saturation of

This gives us a consistency check on the value of o.'

found in the anomalous scaling situation from the scaling
collapses and both methods of obtaining o.' gave equiva-
lent numerical results. Nevertheless, we cannot rule out
that transients are inHuencing the interfacial dynamics
such that it scales in a nonuniversal manner. Further,
the very large time scales over which such crossover ef-
fects operate are physically relevant, and seem likely to
show up in experiments. Its complete understanding re-
mains a serious issue in terms of interpreting experimen-
tal results which may reside in this regime, and may con-
siderably complicate experimentally extracted roughness
exponents.

In conservative models which obey the SOS restriction
one expects the hyperscaling relations z = 2o. + d' and
z' = 2n'+ d' to hold [8,12]. From the data in Table III
for our minimal MBE model, we find. agreement at the
5 —10% level with both forms of the hyperscaling re-
lation for d' = 1 and 2 [although the values of 2o + d'

(2n'+ d') are consistently high as compared to the mea-
sured values of z(z')]. Additionally, from the definition
of the structure factor, one has the relation 2o.'+ d' = p,
where the structure factor scales as S(k) k ~ in the
saturation regime t ~ oo, or equivalently, ( & L, so that
p = z' (the dynamical exponent describing the spread
of correlations in reduced time t, ) due to the hyper-
scaling relation. We show in Fig. 7 plots of S(k) for
d = 1 + 1 and 2 + 1 at T = 600 K for various small

system sizes L. In both cases, we have observed a sys-
tematic increase of p with L, and for the largest systems
we find p = 2.60 + 0.05 (L = 200) and p = 2.55 + 0.10
(L = 40) in d = 1 + 1 and 2 + 1, respectively (results for
still larger L indicate that there is little further increase
in p). Our d = 2 + 1 result for p agrees within the error
bars with the value z' = 2.42 + 0.15 extracted from the
simulations, and the observed value 2o.' + d' = 2.6 + 0.1.
However, in two dimensions we find from our simulations
that while p = 2n' + d' 2.3 and the hyperscaling re-
lation z' = 2n' + d' each hold at = 10% level, p = 2.6
and z' = 2.0+ 0.2 are very diferent for reasons that are
not clear, but likely are related to Rnite size and time
efFects [48]. Except for this discrepancy [48], the various
hyperscaling relations are seen to hold for our realistic
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MBE model.
In order to develop a better understanding of our min-

imal SOS-MBE simulations, we now display the scaling
collapse of the Family [Fig. 8(a)], LDS [Fig. 8(b)], DT,
and TDH [Fig. 8(c)] model results, and in Fig. 9(a) com-
pare the interfacial Inorphology for these models. The
Family model is the only model in Fig. 8 which shows
explicitly the rapid saturation of g(y = x/ti/') for y « 1
expected for a growing self-affine interface [Eq. (3.1)].
Our numerical scaling collapse data for surface-diffusion-
driven LDS, DT, and TDH models show the continued
increase in g(y) for y & 1 in marked contrast with the
purely self-affine dynamic scaling behavior of Eq. (3.1),
but in complete agreement with the anomalous scaling
behavior defined in Eqs. (4.1) and (4.3). In fact, the scal-
ing collapse for the DT, LDS, and TDH models shown
in Fig. 8 is very similar to the corresponding SOS-MBE

scaling collapse shown earlier (cf. Figs. 3 and 4), reinforc-
ing our claim that the qualitative aspects of anomalous
dynamic scaling in real SOS-MBE growth are captured
in the instantaneous-relaxation nonequilibrium growth
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FIG. 7. Plot of the structure factor S(k) at T = 600
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FIG. 8. Scaling collapses displaying G(x, t)/x vs

y = x/ti~* for various dynamical models for t
=524, 1060, 2100, 4900, 10 000 for a system size of L = 10:
(a) Family, (b) LDS, and (c) DT (TDH in inset). Notice how
only the Family model saturates at small y, all other models
are increasing for decreasing y.
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models of DT type.
Notice erst in Fig. 9 the great difference in the vertical

scale in the morphologies of the four dynamical mod-
els, and how the DT model in particular generates very
sharp, deep grooves, but otherwise shows little short-
wavelength kinetic roughness. The line below each mor-
phology in Fig. 9 shows the spatial step-height distribu-
tion by plotting the step size as a function of position:
while the Family model's distribution of steps across the
system appears simply noisy (ostensibly with a Gaussian
probability distribution), the other models demonstrate
occasional very large steps above the background step
size, and thus exhibit very violent "intermittent" Quctu-
ations. Also in Fig. 9 we show representative saturated
SOS-MBE growth morphologies at two diB'erent tempera-
tures with the corresponding spatial distributions of step
heights shown at the bottom of each morphology. A vi-
sual comparison manifestly establishes the similarity be-
tween the SOS-MBE morphology and that in the DT (or,
for that matter, LDS or TDH) model with the SOS-MBE

step-height distribution exhibiting violent "intermittent"
fluctuations similar to those shown in Fig. 9 for the DT
model. It is also obvious that the Family model results
are qualitatively diferent &om the SOS-MBE results.

These qualitative considerations are further strength-
ened by actually calculating the exponents o., z, K, etc.
corresponding to Fig. 8 for the dynamical discrete mod-
els which are collected in Table IV. We note that the set
of exponents n, P, z in each case (ignoring TDH for the
moment as we expect it to be severely limited by Gnite
size effects) is quite consistent with that of a standard
continuum equation description: Eq. (2.5) for the Fam-
ily model, Eq. (2.10) for LDS, and Eq. (2.11) for the DT
model. Only the Family model exhibits the usual self-
affine dynamic scaling (e = 0) consistent with the con-
tinuum EW description of Eq. (2.5). But, the calculated
anomalous exponent K = 1.56 + 0.06 for the DT model
is signi6cantly larger than the value of 1.0 expected on
the basis of linear Eq. (2.11). Thus the linear fourth-
order Herring-Mullins equation, Eq. (2.11), cannot be a
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complete description for the discrete DT model, a point
recently emphasized in the literature [10,11,13,14]. In
the LDS model, we find K, = 0.75 + 0.05, but the non-
linearity of Eq. (2.10) does not allow for an analytical
comparison [46] for the value of r. If one naively as-
sumes that r = 0+ for Eq. (2.10) in d = 1+ 1 based on
the fact that o. = 1, then one concludes again that x for
the discrete LDS model is substantially larger than that
for Eq. (2.10). The TDH xnodel, with its added time-
delayed hopping of certain atoms, shows slightly rougher
growth both in time and space than the DT model, and
also seems inconsistent with Eq. (2.11) due to the large
value of K 1.85. Surprisingly, though, we find that
o.' = 0.63+ 0.02 for the DT, LDS, and TDH models, es-
sentially the same value as in the corresponding minimal
MBE model in d = 1+ 1. At least for this temperature
and time regime, then, the instantaneous-relaxation dy-
namical models do capture certain quantitative aspects
of the minimal MBE growth model.

Next, we discuss a possible mechanism giving rise
to anomalous dynamical scaling in these models. The
anomalous aspect of the scaling behavior is associated
with the tixne dependence of G(x, t) for small values of z.
Such a time dependence for G(l, t) (the root-mean-square
step-height fluctuation at time t) means that statisti-
cally the height fluctuations between any two neighboring
columns is increasing in time. But certainly, the typical
step height must be bounded kom above by the inter-
face width. To keep the step-height fluctuations from
growing to the size of the width, there must then be net
local downward transfer of particles in response to nearby
height fluctuations. We illustrate the importance of such
responsive downward hops using the Family model, which
explicitly forces downward hops in response to height
fluctuations, modifying it to reduce the response. Our
modification of the Family model for this purpose con-
sists of introducing an effective barrier to hopping down
to the local height minimum, characterized by a param-
eter p E [0, 1], where p is the probability that the chosen
down hopping process to the local height minima will
occur. The original Family model corresponds to p = 1
whereas p = 0 is growth by pure random deposition. Fig-
ure 10 shows the scaling collapse of G(x, t) for two cases,
p = 1.0 and 0.05. The introduction of the barrier does
induce a tixne dependence in G(z, t) for small values of
x, leading to a transient anomalous dynamic scaling be-
havior with efFective r g 0 in the crossover regime prior
to when EW behavior eventually sets in. This confirms
the idea that a reduction in the local downward hopping
can cause anomalous time dependence akin to that in
Eq. (4.1). Ultimately, however, at a crossover time de-
pending upon the specific value of p (with lower p leading
to longer crossover time scales), saturation of the scaling
function occurs in this modified Family model for all p
studied, suggesting that anomalous scaling for this model
at least is purely a crossover phenomenon.

In our activated Arrhenius MBE growth model, while
there is no explicit barrier to down hops, neither is there
an explicit driving force to lower heights [e.g. , consider
atoms a, b, c, e in Pig. 1(g)]. Atoms which hop choose
their landing sites randomly, causing an effective reduc-
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FIG. 10. Scaling collapse for the modified Family model
with p = 0.05 at t = 120, 251, 524, 1096, 2290, 4786, 10000
for I = 200: z = 2.1, o. = 0.54, P = 0.26. Note the lack
of saturation of the collapse. In the inset, the unmodi6ed
Family xnodel is shown (p = 1.0), and the scaling function
quickly saturates. Same times and size used, and z = 2.0,
n = 0 49, P = 0 245.

tion in the downward mobility compared with that in
the Family model. Since growth rules that allow hop-
ping in response just to the nearest neighbor height fluc-
tuations show EW universality [i.e. , normal dynamical
scaling with asymptotic behavior given by Eq. (2.5)],
one expects net downward hopping of suKcient strength
may also generate such a term. We cannot precisely
define "sufhcient, " but the modified Family model with
p = 0.05 clearly shows that transient effects not normally
present can enter when the strength of downward hop-
ping is suppressed even while the asymptotic scaling has
EW character. Depending on the growth rules, however,
the corresponding v2V' h, term can be nearly vanishing
(as appears to be the case for the WV model [16,35]),
or in cases such as the LC model, where v2 = 0 and the
V'2h term vanishes exactly [13,14] in spite of considerable
downward motion [Fig. 1(f)]. These observations indi-
cate that anomalous scaling may be subtly related to the
underlying microscopic growth rules which dictate how
atoms seek out stable sites. It is also obvious from these
considerations that there are at least two possible differ-
ent scenarios producing r g 0 (i.e. , anomalous dynamic
scaling), namely, the mechanism of suppressed downward
hopping which is effective in our modified Family model
(and, presumably in the WV model) where r is purely a
crossover exponent, and the mechanism effective in the
LC model (which is related to super-roughness) where v.

is exactly unity and is not a pure crossover eKect phe-
nomenon. The discrete DT model, which is the most
relevant dynamical model underlying the minimal SOS-
MBE growth model, is suggested to have v2 ——0 based on
symmetry arguments [41], and therefore the anomalous
dynamic scaling in the DT model (and, presumably in
LDS and TDH, and by inference, in the minimal MBE
growth model) could be expected to be an intrinsic phe-
nomenon (at least in d = 1 + 1) and not a crossover
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effect. (It is possible, however, that the observed anoma-
lous dynamic scaling in SOS-MBE growth in d = 2+ 1
is a crossover effect related to suppressed downward hop-
ping. )

Dynamical models exist in which particle diffusion does
not respond to the height difference between two sites,
but to another local geometrical property, such as the LC
model wherein diffusion is explicitly driven by the curva-
ture of the local interface. Particle transfer between the
neighboring sites therefore is not exclusively determined
by the nearest neighbor height fluctuations, but includes
the effects of more remote sites. Of course, there are
situations in which the particles do hop d.ownwards in
the LC model in response to the curvature [atoms a, f,
Fig. 1(f)]. However, they are only implicitly respond-
ing to the nearest neighbor height fluctuations, while the
unifying characteristic driving all diffusion is the curva-
ture. The LC growth rules limit the number of downward
hops that decrease the height (atom c), and in some cases
permit hopping to increase the height (atoms 6, e). Note
that in 1+1 dimensions the curvature measured at a kink
site is always greater than that at the top edge of a cliff
or at a flat terrace site, so an in-plane hop to a kink site
(atom c) or an upward hop to a kink site (atom 6) is only
d.ictated by the curvature difference.

A similar analysis of Fig. 1(c) for the DT model
shows that various processes can (and cannot) occur
when driven by the microscopic rule of increasing the
local bonding: hopping to lower sites (atoins a, c, f),
curvature-driven hopping (atom c), the lack of hopping
to lower sites (atom e), and the lack of curvature-driven
hopping (atoms b, e). The DT model (together with the
WV and stochastic SOS-MBE models) in some sense is
then "impure. " While the Family and LC models allow
diffusion consistent with a single geometrical rule (height-
or curvature-driven relaxation, respectively) and produce
scaling consistent with a single linear continuum equation
[Eq. (2.5) and (2.11), respectively], the DT model has
subsets of processes which belong to both height-driven
and curvature-driven geometrical rules, and certain pro-
cesses consistent with neither [atom e in Fig. 1(c) does
not move; cf. Figs. 1(a) and 1(f)]. Hence the DT (and
SOS-MBE) results are close to but not exactly those of
the LC model: Eq. (2.11) predicts K = 1.0, and the LC
model shows K, 0.96 [13], while for the DT model the
nearest neighbor height fluctuations are stronger, with

1.6 (see Table III and Ref. [11]). Our qualita-
tive geometric discussion here is based entirely on lin-
ear growth equations, Eqs. (2.5) and (2.11), because it
is easy to identify geometric rules which correspond to
linear growth terms. The DT interface morphology (as
well as that for the minimal MBE model) very clearly
indicates that any underlying continuum description (if
it exists) must necessarily be nonlinear for these mod-
els (see also the discussion below on the lack of up-down
symmetry), and the relevance of this qualitative geomet-
ric discussion to the DT (and the SOS-MBE) model re-
mains questionable.

In the above discussion we have noted a connection
between a strong tendency of atoms to move downward
to self-affine scaling behavior (Family, 3+, BD), while

inhibition of downward motion (DT, LC, Family with
p ( 1) leads to anomalies in the scaling function. Since
the SOS-MBE model, by allowing atoms to hop to any
site independent of final coordination numbers and height
differences, inhibits local downward mobility, it is qual-
itatively (and for n', quantitatively) similar to the dy-
namics of the DT model. Of course, how strong the
downward motion must be to avoid anomalous scaling
remains unclear, but the decrease in the value of v, (Ta-
ble III) with increasing temperature is understandable,
considering that the higher bond cutting processes are ac-
tivated at higher temperatures and global height minima
are more easily reached. through multiple hops of a sin-
gle atom. But, at higher temperatures, diffusion lengths
are enhanced exponentially [28] making the (conserved)
diffusion noise qD dominant over fairly large distances,
leading to smooth layer-by-layer growth, and the whole
issue of deposition noise-induced kinetic roughening be-
comes essentially moot.

B. MultifractajIity and up-dawn symmetry breaking

Recently the DT model has been studied by Krug [14]
as an example of multiaffinity [39] with the phenomenol-
ogy of the DT model showing striking similarities to fluid
turbulence interinittency [40,49]. We have applied Krug's
analysis to our minimal MBE growth model and to a
number of dynamical growth models. A multiafIine in-
terface can qualitatively be thought of as the union of
several self-aKne &actal surfaces possessing a range of
exponents. One of the signatures of multiafFine behavior,
as distinct &om simple self-afFine surfaces, is q-dependent
exponents, where the integer q denotes the qth moment
of the height fiuctuations as in Eq. (3.2). For the special
case of a self-afFine surface, all the o.' are equal. The step-
size distribution function P(s) of a multiaffine surface is
a stretched. exponential with b ( 2, not the Gaussian
shape (b = 2) of a simple self-affine interface. Below we
discuss our results on the multiafFinity of the stochas-
tic SOS-MBE model and of various dynamical models
separately. We also discuss the associated issues of the
6 —+ —h symmetry breaking in the evolving interface
morphology and of the intermittency phenomenon in the
step-height distributions.

Staehastic m.odels

In Fig. 11, we show Gz(2:, t) for q = 1, 2, 4, 6 for
d = 1 + 1 (q = 1, 2, 4 for d = 2+ 1—inset) at T = 600
K at the longest times of our simulations. The multi-
afFine behavior is evident Rom these plots based on the
inequality of the initial slopes of the various curves, de-
fined as n' = BlnG&(x, t)/Bine. Note that n2 is precisely
n' = n —m/2, and that n' is a monotonically decreasing
function of q, from 0.84 (q = 1) to 0.41 (q = 6) in 1+ 1
dimensions, and 0.34 (q = 1) to 0.20 (q = 4) for d = 2+1.
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FIG. 11. Multiaffine behavior of the correlation function
G~(x, t) for the SOS-MBE models in 1 + 1 dimensions,
T = 600 K, L = 1000 after 8192 layers grown. The mo-
ments q = 1, 2, 4, 6 are displayed (from bottom). Inset: 2+ 1
dimensions, T = 600 K, L = 500 after 1000 layers grown.
The moments q = 1, 2, 4 are shown from bottom to top. The
variation in initial slope here indicates multiaffinity.

X

FIG. 13. Morphology of the BD surface at t = 100, 4000
monolayers at T = 600 K, L = 4000.

In the DT model [14], in addition to the q-dependent
exponents for higher moments, the 6 —+ —6 symmetry of
the interface is manifestly broken as evidenced by sharp
pits being carved out of the bulk without any equally
sharp peaks [Fig. 9]: clearly the inverted interface has
a very diferent morphology. This is also true in our
d = 1+ 1 SOS-MBE growth results where the h —+ —h
symmetry is also manifestly broken, as shown earlier in
Fig. 9. In Fig. 12, the nonsaturated morphologies of our
d = 1+1 Arrhenius-activated hopping model at T = 600
K are shown in more detail and indeed the h —+ —h sym-
metry is clearly absent. The breaking of 6 —+ —6 symme-
try implies only the existence of nonlinear nonequilibrium
terms in the growth equation which manifestly violate de-
tailed balance, and must therefore vanish in the limit of
zero incident Hux. Figure 13 shows a typical morphol-

40-

0 100 200 300 400 50Q

FIG. 12. Morphology of the SOS-MBE surface at
t = 100,4000 monolayers at T = 600 K, L = 4000.

ogy for the BD model, showing the expected asymme-
try due to the nonlinear KPZ term (V'h)2 which mani-
festly breaks the h ~ —6 symmetry. However, no multi-
afBne behavior is present in the BD results and neither is
there asymptotic anomalous scaling behavior [Figs. 5(b),
6]. Based on this we conclude that asymmetry in the
surface morphology is not a suFicient condition for the
existence of multiaKne behavior, but is necessary. The
only concrete, de6nitive implication of h ~ —h symme-
try breaking is that any underlying continuum equation
must necessarily be nonlinear and nonequilibrium, estab-
lishing that the linear Eq. (2.11) cannot be a full descrip-
tion for the DT model, and that nonlinear Eq. (2.10) can,
in principle, be a description because the V2(V'h) term
manifestly breaks the up-down symmetry [46].

Figure 14 shows the height Huctuation distribution
functions for DT, 3+, and SOS-MBE growth at 600 K in
2 + 1 dimensions [the corresponding MBE growth result
in 1+ 1 dimension is displayed in the inset of Fig. 14(c)].
The DT and the MBE models show net skewness [13,14]
and the distributions are visually asymmetric. In fact,
for the saturated DT model (d = 1 + 1) we measure
the normalized skewness rr = ((h —h)s)/((h —h)2) ~2 to
be negative, reHecting the dominant contribution of the
grooves: o = —0.50 + 0.05. For the discrete LDS model
the skewness shows very large Huctuations, and our best
estimate for the steady state 0 is a small, negative num-
ber (0 = —0.1 6 0.15) but zero and small positive values
are not completely ruled out. The SOS-MBE model at
the latest simulation times of Fig. 3 for T = 600 and 650
K produces skewed surfaces with 0. = —0.49 + 0.10 and
—0.44+ 0.10, respectively, which is quantitatively consis-
tent with the DT model. Again, this illustrates a quan-
titative link between the realistic SOS-MBE model and
the nonequilibrium DT model, and demonstrates that
the purely linear surface-difFusion equation, Eq. (2.11),
cannot be the entire story for either model.

As a result of the symmetry breaking, one can see
that the asymmetric tail of the distribution becomes im-
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portant in calculating the various moments G~. Such
an asymmetric distribution rejects the fact that deep
grooves exist in the interface (Fig. 9), and the intermit-
tent step-height Huctuations are manifestations of rare
events from the tail of the Huctuation distribution. The
3+ model, which exhibits only the usual self-aKne scaling
(Fig. 2), has a narrow symmetric step-height distribution

and no skewness within our error bars. Thus multiaKne
behavior may have some logical link with the up-down
symmetry breaking and asymmetric Huctuations within
the subclass of conservative growth models (i.e. , when
BD is excluded).
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FIG. 14. Height distribution functions around the mean
for I = 200 in the (a) DT, (b) 3+, and (c)
d = 2+ 1,T = 600 K SOS-MBE models [the inset of (c) gives
d = 1 + 1& I = 1000,T = 600 K results]. Only the normally
scaling 3+ model has a symmetric distribution function, while
a tail for large, negative height Buctuations exists in all other
cases.

FIG. 15. Comparison of multiafBne scaling properties in
the LDS and DT (inset) models. (A) Correlation functions
G~(z, t = 1 x 10 ) vs x for q = 1, 2, 3, 4 from bottom to top,
where the slope for z = 1 —10 gives o' (I = 500). (B)
The average step height G~(l, t) vs t, where the slope for
1 « t ~*

&& I is K(q)/qz. These results are ten-run averages,
and the q dependence of the exponents extracted appears in
Table V. (C) P(s) vs the step size s for I = 25, sampling the
saturation regime 10 times to acquire sufBcient statistics.

—~a~The solid line is a 6t to a stretched exponential Cexp
where b = 0.47 (0.42) for LDS (DT).
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2. Dye, amieal models

We have also studied Gz(z, t) for the DT, LDS, TDH,
and Family models in d = 1+1. Our motivation here is to
provide an in-depth analysis of multiafBnity as it arises in
models where one has precise control over the microscopic
dynamics. We repeat that the signatures of multiaKn-
ity are (i) q-dependent exponents n' in the correlation

I

functions Gz(z, t) ~ z ~ for z (( (; (ii) anomalous time
dependence of G~(l, t) (t~/')" (~&«; and (iii) deviation
of the step-height distribution function &om Gaussian:
P(s) exp( —as ), b ( 2. In Figs. 15(a)—15(c) and in Ta-
ble V, our simulation data for the LDS model exhibit all
three of the above features: (i) n' changes from a~ = 0.84
to n4 = 0.48; (ii) the value of K(q)/q rises from 0.19
(q = 1) to 0.34 (q = 4); and (iii) b = 0.47 provides the
best 6t to a stretched exponential form for the step distri-
bution function, substantially smaller than the Gaussian
value of b = 2. Since by definition n = n' + K,(q)/q, these
results predict that o. = 0.92 6 0.10 for q = 1—4, in basic
agreement with the prediction of Eq. (2.10), o. = 1. We
extract tc(q) /q here from the slope of G~(l, t) plots, which
is in fact K(q)/zq; in the LDS (DT) model we take z = 3
(4), which are the approximate values we obtain from
separate measurements of the global exponents from the
t and L dependence of the surface width. Note that these
values of z for the LDS and DT model are consistent with
the continuum equations (2.10) and (2.11), respectively.
For comparison, in the insets of Fig. 15, the same quan-
tities are shown for the DT model using identical growth
parameters. Krug [14] has previously examined the DT
model for multiaKnity and has found similar quantitative
results.

Interestingly, we find in Table V that the functions
G~(z, t) are characterized by essentially identical values
of the effective roughness exponent o.' in DT and LDS
models, even though the mean step size G~(l, t) grows
markedly quicker in the DT model and the exponents o.
and z are very different for the two models. Given the
constancy of o.' in these two models, the change in the

anomalous exponent K(q)/q seemingly reflects the mech-
anism responsible for changing the growth universality
class as manifested through the global roughening ex-
ponent o. in the DT and LDS models. Table V there-
fore also gives the quantity b, = [tc(q)/q]DT —[r(q)/q]LDs
(= nDT —nz, Ds because of the constancy of n'), showing
that L —0.5, agreeing with the difFerence in o. between
the respective universality classes associated with Eqs.
(2.11) and (2.10). Note that o. is nearly q independent
for each model in Table V.

The DT streching exponent of b = 0.42 for the step-
height distribution function deviates only slightly from
the LDS value of 0.47, although the fit to the streched
exponential form is not particularly good for LDS. Nev-
ertheless, the fact that b decreases is consistent with the
increase in r(q)/zq [G(l, t) t" ~()/'~] seen in going from
the LDS to the DT model, and implies that there are
more high steps in the DT model than in the LDS model.
The morphologies and step-height profiles in Fig. 9 also
demonstrate this behavior. We emphasize that the mi-
croscopic difference in the local growth rules between DT
and LDS models is in the diffusion of atoms at kink sites,
which could potentially be upward in the LDS model:
considering Fig. 1(e), only atom a would have a diB'er-
ent behavior for the DT model, in which case it would
not move. [In the LC model, on the other hand, atom
a in Fig. 1(e) would move down, emphasizing that DT,
LDS, and LC all obey quite similar but not identical local
growth rules. ]

In Fig. 16, the behavior of o, ' for a wider range of q
in the LDS and DT models is shown and the behavior is
similar in the two models, with only minor quantitative
differences. In the inset, however, K(q)/q appears very
different in the two cases (as it must be in order to pro-
duce very different values of o. in the two models given
an approximately constant n'), with the DT model hav-
ing a well-defined plateau near 0.85 for a wide range of
q and dropping sharply for q ( 2. In the LDS model,
the decrease is much smoother due to the lower value
of the plateau in K(q)/q = 0.45. This further empha-
sizes that these two models are distinguished not by the
short-distance spatial scaling of the correlation function,

TABLE V. Multifractal exponents o~ and r(q)/q for the SOS-MBE (L = 1000, t = 10, T = 600
K for d = 1+1), LDS, DT, and TDH models in d = 1+1 for q = 1—4. The data for the dynamical
models (all of which have L = 500, t = 10 ) come from Pigs. 15(a,b) and Pig. 19. The quantity
A = [K(q)/q]oT —[a(q)/q]r, Ds should be compared with the difference in a between the continuum
equations (4) and (3), expected to be 0.5. We note that n~ is essentially constant for all the
models, even the temperature-dependent stochastic models, while r, (q)/q is distinguished for the
various models. Small quantitative differences between these data and Table III are attributed to
6nite time efFects due to the drastically different system sizes in the two cases.

1
2
3

MBE
0.82
0.64

0.50

LDS
0.84
0.67
0.56
0.48

DT
0.85
0.67
0.56
0.50

TDH
0.84
0.63
0.50
0.43

LDS
0.19
0.25
0.30
0.33

K(q)/q
DT TDH
0.59 0.64
0.71 0.76
0.78 0.85
0.83 0.90

0.50
0.46
0.48
0.50

LDS
1.03
0.92
0.86
0.81

DT
1.44
1.38
1.34
1.33

TDH
1.48
1.39
1.35
1.33
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FIG. 16. Expanded q dependence of the exponents 0;~ and
~(q)/q (inset) for the LDS (*) and DT (+) models. Notice
the close correspondence of n~ for the two models while the
plateaus of r (q)/q differ by about 0.5, expected by comparison
vrith continuum equations.

but by the anomalous time scaling in G(x, t) as given
in Eqs. (4.1) and (4.3). For the sake of completeness,
we show our multiscaling analysis of qth-order correla-
tion functions for the Family model in Fig. 17, and as
expectedAq050+003 for all q, establishing theexis-
tence of only the usual self-a%ne dynamic scaling in the
Family model in sharp contrast to DT and LDS model re-
sults of Figs. 15 and 16 (as well as the SOS-MBE results
shown earlier) which exhibit multiscaling.

Clear &om our results, as has been emphasized in ear-
lier studies [3,5,10—14], is the fact that the DT model
does not exactly follow the scaling behavior of linear

FIG. 17. Correlation function G~(x, t = 1 x 10 ) vs x for
the Family model vrith L = 500. The near constancy of the
slopes for q = 1, 2, 3, 4 (from bottom to top) indicates the
presence of self-affine scaling, for 0.&

——0.53 4 0.02, very close
to 0.4 ——0.48 + 0.02.

Eq. (2.11), as does the LC model. Even though the
global exponents a, P, and z of the DT model are sur-
prisingly well described by Eq. (2.11) (at least ln an ef-
fective sense over Inany orders of magnitudes of length
and time scales), the local exponents n' and e(q) are
not. Krug found [14] no multiafFinity in the exponents
8, n', r(q)/q of the LC model which follows Eq. (2.11)
exactly, while the DT model displayed nontrivial q de-
pendence in the higher-order correlation functions. In
fact, for linear equations such as Eqs. (2.5) and (2.11),
one can show that the growth term renormalizes inde-
pendently of the noise so that the distribution of step
heights P(s) should reflect only the stochasticity of the
noise, which in all of our models is 8-function-correlated
white noise with a Gaussian distribution. Thus all lin-
ear models, or discrete models which obey linear growth
equations, must necessarily have b = 2. This is strong
evidence that Eq. (2.11) cannot be the whole story for
the DT model, which clearly has an intermittent quality
to its step-height distribution function and b ~ 2. In ad-
dition, the manifest breaking of the 6 —+ —6 symmetry in
the DT morphology also indicates that a linear descrip-
tion is not applicable. The very slow crossover associated
with z = 4, the earlier observation of ct. = 1.4 ( 1.5 [3,5J,
and the decreasing of o. for increasingly larger system
sizes [5,50] when. taken together indicate that the agree-
ment between the linear Eq. (2.11) and the global ex-
ponents in the discrete DT model must necessarily be
a very long-lived transient. The physical reasons for
the crossover time scale in the DT model being exceed-
ingly large () 10 ), and for its global exponents to be so
well described by the linear fourth-order Mullins-Herring
equation (while at the same time the model exhibiting
multiafFinity, nontrivial anomalous dynamic scaling, and
up-down. symmetry breaking) are unknown. In fact, we
do not know what nonlinear continuum equation the DT
Inodel eventually crosses over to because the asymptotic
regime has not yet shown up in any simulations.

The question naturally arises as to how the DT model
shows global scaling corresponding to Eq. (2.11) (i.e. ,

P = 0.375, n 1.4 [3,5]) and yet generates nontrivial
anomalous scaling and multiaFinity not contained in Eq.
(2.11). Theoretically one expects the relevant fourth-
order nonlinear term A22V (V'h)2 to be the most likely
candidate, changing Eq. (2.11) to Eq. (2.10), which has
the advantage of breaking the up-down symmetry. But
it is puzzling how the nonlinear term could so drasti-
cally affect the morphology (Fig. 9), yet be small enough
to not show up more clearly in the global scaling expo-
nents. Understanding the q dependence in v(q) and n'
also remains a serious problem. Indeed, as the deposi-
tion shot noise is additive and Gaussian, it is dificult
to see it producing the observed non-Gaussian step dis-
tributions and the multiafBne spectrum, although there
has been some very recent theroetical work in this di-
rection [46J. It is possible that the DT model may in
a subtle fashion be introducing multiplicative noise, or
for reasons not understood yet, cannot be described by
a local equation in spite of its growth rules being appar-
ently local. Along these lines, we note that power law
noise and quenched noise are both known [39] to gener-
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ate nontrivial multiafFinity in surface growth. One can
speculate that there are various random "stable" config-
urations in the DT morphologies that essentially "pin"
the surface at random locations, for example, the bot-
toms of the large grooves which invariably develop in the
DT model (Fig. 9) are candidates for such effective ran-
dom pinning sites. These sites could perhaps lead to an
effective quenched nc6se because the steep sides prevent
diffusion into grooves due to the microscopic rules of the
DT model. In this context, we note that DT, WV, and
LDS models show anomalous scaling and multiaKnity,
and all develop grooves in their morphologies.

The analogy [14] between height fluctuations in the
DT model and the phenomenon of intermittency in Buid
turbulence may also help shed some light on the origin
of multiaKnity in these growth models. Intermittency
in turbulence refers to the occasional injection of energy
from a large-scale structure into a local region, creating
structures (e.g. , eddies) on the smaller scales. Velocity
gradients are created, the magnitudes of which are dis-
tributed according to a stretched exponential, and thus
very high energy injections (velocity gradients) are rare

but do occur [40,49]. Krug suggested [14] that an analog
of intermittency may be responsible for the occurrence
of localized regions with very large step heights (Fig. 9)
and the stretched exponential form of the step-height dis-
tribution function P(s) I.n the surface growth problem,
intermittency may be generated by the noise when a par-
ticle happens to land in a site on the interface which has
a particular propensity to generate large step heights.
Kink sites in the DT model [e.g. , particle e in Fig. 1(c)]
are candidates for such "intermittent" sites, as they are
manifestly stable and can generate higher steps. On the
other hand, site 6 or f in Fig. 1(c), for example, or trap-
ping sites (e.g. , the triply bonded site between particles e
and f), would not be "intermittency" candidates as they
locally do not encourage nonequilibrium structures, but
generate smoother morphologies with lower step-height
Buctuations. Much more work is clearly needed to clar-
ify the microscopic reasons for the intermittent behavior
in the height Huctuations of these models.

We now focus on two modifications of the DT model
outlined in Sec. (IIIA2). In Fig. 18 and Table VI, we
show the behavior of the DT model in the presence of a

100
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FIG. 18. Multifractal behavior of G~(x, t) and G~(l, t) (inset) for the DT model with variable diffusion length. (a) D = 2,
L = 1000, t „=1 x 10, (b) D = 3, I = 1500, t „=1 x 10, (c) D = 10, L = 5000, t „=1 x 10, (d) D = 20, L = 10000,
t „=1 x 10 . To measure ~q) we extract the slope from the x & D region to avoid the finite size edlects seen for small x at
large D ~(q)/q is measu. red in the range 10 —t „.The exponents found are tabulated in Table VI. Note that D/L is kept
constant.
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TABLE VI. Multifractal exponents n~ and e(q)/q for the D = 1,2,3,10,20 variants of the DT
model in d = 1+1 for q = 1—4. The data for the dynamical models come from Figs. 15(a,b) and
Figs. 18(a)—18(d). Here, o' is not constant and increases at large D, and the global exponent n
falls due to a more rapid decrease of m(q)/q.

q 1 2 3 10 20
1 0.85 0.89 0.88 0.85 0.83
2 0.67 0.70 0.68 0.76 0.76
3 0.56 0.57 0.54 0.68 0.72
4 0.50 0.50 0.46 0.62 0.67

1
0.59
0.71
0.78
0.83

K(q)/q
2 3 10

0.52 0.53 0.33
0.68 0.57 0.36
0.80 0.64 0.55
0.86 0.71 0.72

20 1
0.12 1.44
0.13 1.38
0.14 1.34
0.16 1.33

2

1.41
1.38
1.37
1.36

3
1.41
1.25
1.18
1.17

10 20
1.18 0.95
1.12 0.89
1.23 0.86
1.34 0.83

variable "difFusion length" D = 2, 3, 10, 20 (D = 1 corre-
sponds to the original DT inodel). For values of D up to
3, little qualitative deviation &om the DT model in n
is detected, although r.(q)/q does change noticeably by
D = 3. For larger D, however, we observe the vanishing
of the multiscaling behavior, a qualitative difference sig-
naled by the parallel plots in Fig. 18(d). Here, we find
that o.' actually rises for larger D at a fixed q ) 1, al-
though the range of o," shrinks and, we expect, should
collapse to a constant in the D ~ L limit. It is impor-
tant to note that D represents a new microscopic length
scale over which we permit the surface to reorganize, and
Figs. 18(a)—18(d) clearly illustrate that this new length
scale modifies the behavior of the correlation function.
Note that we ignore x & D in extracting exponents from
these inodels and keep the L/D ratio fixed by increasing
the system size in order to avoid any obvious finite size
effects arising from the diffusion length D.

Concurrent with n' attaining q independence, K(q)/q
falls with increasing D [Table VI and insets of
Figs. 18(a)—18(d)] indicating that the average step height
may be tending toward saturation. The anomalous scal-
ing of G~(l, t) weakens in the large D limit, appearing
only after 1000 layers for D = 10, 20; prior to this
tiine, the large difFusion length permits G~(l, t) to re-
main fixed. At D = 20, the variation of r(q)/q has
sharply contracted to the small range of 0.12—0.16, in-
dicating again that multiafIinity is giving way to simple
self-affinity [G(l, t) = const]. We cannot, however, ex-
clude the possibility that the apparent q ind. ependence of
v(q)/q and the disappearance of multiscaling is a finite
time effect, and that for longer simulations one would. see
G(l, t) rise more sharply. Indeed, G(l, t) appears satu-
rated over almost four orders of magnitude prior to a
slight upturn for D = 20. Furthermore, another inter-
esting question which remains unanswered in this model
is whether anomalous scaling and. multiaKnity are van-
ishing through independent mechanisms or whether the
loss of one necessitates the loss of the other: we believe
they are both disappearing due to a single mechanism,
for reasons to be elaborated below.

Notice that n'(D = 20) 0.77 in the DT model is
significantly different Rom the value of n = o.' = 0.50 in
the EW equation. In addition, o. is actually increasing
with D and therefore the DT model with finite diffusion
length (D ( 20) is not in the EW universality class. How-
ever, we do observe a continuous decrease in the global

roughness exponent n, which falls &om 1.4 (D = 1)
to 0.90 (D = 20). While a finite size efFect involving
the new length scale D will by itself lower the value of o.,
such a finite size correction should be small here as we
have kept the ratio L/D constant at 500 in Fig. 18. We
have also attempted to fit the step-height distribution
P(s) with the expected stretched exponential form [14]
for D = 10, to check if the large D limit in some approx-
imation approaches the normal scaling behavior defined
by Eq. (3.1). The distribution for D = 10 could not
be parametrized by a stretched exponential for the full
range of parameters [51]. This result and the large value
of o.' can be understood by noting that when D becomes
large, the basic DT rule whereby kink sites cannot move
still holds so that not all deposited atoms can reach local
height minima as they could within the Family model.
Thus the WV model [Fig. 1(b)] for D -+ oo should be a
better approximation to the Family model than the DT
model in the large D limit. This is consistent with the
recent finding that the WV model is asymptotically in
the EW universality class [16,35], and another indirect
indication that the DT model does not asymptotically
possess EW universality.

As opposed. to the DT model and the D ) 1 variant
which allows spatially remote regions of the interface to
interact at a fixed time, the TDH mod. el examines how
"temporally remote" events at a given location on the
surface interact by permitting a crude dynamical ver-
sion of delayed hopping [see Sec. IIIA 2 and Fig. 1(d)
for details]. By allowing atoms to hop at times after
their deposition in response to noise-induced changes in
the local environment, this model in some sense couples
noise and morphology jointly to the dynamics a distance
D + 1 away. We consider only D = 1 in the following
discussion for simplicity. The generic multiscaling be-
havior here is still quite similar to the other DT models
studied in this paper (see Fig. 19 and Table V). Quanti-
tatively, o.' shows a slight decrease from the DT model,
while (qK)/q increases by an amount that almost exactly
compensates for the drop in o.'. The best estimates of
the exponents are n 1.6 and P 0.41 (approximately
consistent with the values in Table III for a larger sys-
tem), both larger than the corresponding estimates in
the DT model [3,5], but they give z 3.9, consistent
with the DT result. Thus the delayed hopping has in-
creased slightly the global exponents, with little change
in the multiscaling exponents. This is somewhat surpris-
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X
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FIG. 19. Multifractal behavior of G~(x, t) and G~(l, t) (in-
set) for the TDH model with I = 500, t = 10 . The resulting
exponents are slightly larger than in the DT model; see Table
VI.

ing as one would have expected the interface to become
smoother as a result of the additional relaxational mode
in the TDH model.

The SOS-MBE, DT, DT with D & 1, LDS, and TDH
models all possess both multiaffinity and anomalous scal-
ing behavior, but as noted above, these two features
are, in principle, independent characteristics: depend-
ing upon the details of the growth model both, one,
or none of these characteristics may show up (with the
caveat that we believe anomalous scaling to be a nec-
essary prerequisite for multiafrinity). For example, the
DT model has both, the Family model has neither, and
the LC model [13] exhibits anomalous scaling but not
multiscaling. Recall that the LC model exactly follows
the fourth-order linear continuum equation [13,14], Eq.
(2.11), with r = 1 and n' = 1 for all q, and has up-
down symmetric morphologies [52]. The Family model,
which follows exactly the linear EW equation, our Eq.
(2.5), shows neither anomalous scaling nor multiscaling.
Nonlinear terms in conservative continuum equations are
responsible for generation of h, ~ —h symmetry breaking
and, we suspect, multiaKinity. But, again, the breaking
of up-down symmetry does not necessarily imply anoma-
lous scaling or multiafIinity —the KPZ equation does not
show anomalous scaling or multiaffinity in any physical
dimensions (certainly not in d = 1 + 1), but the second-
order nonlinearity, Eq. (2.1), obviously breaks the up-
down symmetry. We are not aware of any model pos-
sessing multiscaling, but lacking anomalous scaling and
broken up-down symmetry. We therefore believe that
anomalous scaling and broken up-down symmetry (i.e. ,

skewness in the growing interface) are absolutely neces-
sary conditions for the existence of multiafFinity in growth
models; either alone does not seem sufficient (cf. the LC
and BD models). Evidently, rather nontrivial nonlin-
ear growth terms are necessary to produce multiaffinity
[while anomalous scaling, i.e. , n' ( n and r, & 0, is triv-

ially present in any growth model with o; & 1, e.g. , Eq.
(2.11)], but the sufficient conditions needed to produce
multiscaling in surface growth models are not yet known
[46].

We conclude this section by emphasizing that our nu-
merical results support the original contention [3,5] that
the instantaneous-relaxation DT-type dynamical models
(and its variants such as LDS, DT with finite diffusion
lengths, TDH, etc.), which emphasize local coordination
or bonding-driven atomic diffusion, catch the essential
qualitative and quantitative aspects of the minimal SOS-
MBE kinetically rough growth model with temperature-
activated Arrhenius hopping of all atoms at the growth
front. In particular, the global exponents n and P of
the full SOS-MBE growth model (Table III) are reason-
ably close to those of the DT model (Table IV) with
D = 1 or the DT model with D & 1 (Table VI) de-
pending on the growth temperature (at higher growth
temperatures diffusion length is enhanced, making the
DT model with D & 1 the more appropriate model).
The correlation roughness exponent o.' = o.' » which is
experimentally relevant, is essentially the same (within
error bars) in the DT model (n' = 0.67) as in the SOS-
MBE growth model (n'=0. 64—0.61) over the time scale
considered. This agreement in the anomalous scaling be-
havior of the DT model with the full SOS-MBE model
reinforces the contention that critical properties of MBE
growth (at least in the kinetically rough low tempera-
ture regime) are well described by the nonequilibrium
DT model. What we find truly remarkable is that the
multiscaling exponent n' (Table V) is essentially the
same numerical value for each q in Table V for all five
SOS growth models we study here: full MBE, DT, LDS,
TDH, and DT with D ( 10 (Table VI). Because a'
is an important exponent characterizing anomalous scal-
ing and multiafFinity in our growth models as well as
being experimentally the most accessible, its numerical
uniformity in all our MBE growth models (including the
stochastic temperature-dependent model) strongly sug-
gests that there may very well be a single underlying long-
wavelength description for all of these diffusion-driven
models (including the SOS-MBE model), and the dif-
ferences in the observed global exponents among these
models (with SOS-MBE being in the "DT universality"
in d = 1+1and in the "LDS universality" in d = 2+1 ac-
cording to Table III) could be arising from slow crossover
and finite size effects. The fact that SOS-MBE may have
different "universalities" in different dimensions and that
the surface-diffusion-driven growth models (DT, LDS,
WV, SOS-MBE, etc.) may have slow crossover effects
have earlier been noted in the context of other simula-
tion studies [4,5,10,22,35]. Our work here establishes that
the similarities between temperature-dependent stochas-
tic Arrhenius SOS-MBE growth simulations and those
based on instantaneous-relaxation DT-type dynamical
growth models encompass both global and local scaling
exponents as well as morphologies, anomalous and multi-
scaling behaviors. Thus in order to understand minimal
MBE growth we must first develop a complete under-
standing of the simpler DT dynamical model.

As emphasized throughout this paper and elsewhere
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[10—14] we do not yet have a full understanding of the DT
model. In fact, we do not even know whether a coarse-
grained continuum description exists for this deceptively
simple model. It is hard to see how simple local growth
rules, which in the case of the DT model are inspired by
the physics of MBE, could be lacking a long-wavelength
continuum description. One difFiculty is that the DT
rules [Fig. 1(c)] do not have any simple local geometrical
interpretation in terms of local height or local curvature
as the Family [Fig. 1(a)] or LC models [Fig. 1(f)] do. In
particular, Kim and Das Sarma showed [13] quite gener-
ally the connection between local geometric rules involv-
ing height, curvature, etc. and the continuum growth
equation, and it is clear that while DT-type models obey
many features of the curvature-driven model there are
significant difFerences. The current belief [14,46] is that
if a continuum description for the DT model exists, then
it probably involves an infinite series of relevant terms.
For example, the following equation has recently been
suggested [46] as a possible long-wavelength continuum
description of DT-type models (and therefore by infer-
ence of SOS-MBE growth):

(4 4)

where if we keep only the first term in the infinite series
we get our Eq. (2.10), which has been much discussed in
the recent literature [8,9,29,30]. We note the obvious fact
that the growth coefIicients A2 are manifestly nonequi-
librium and must therefore vanish in the limit of zero flux
(I" -+ 0). Further discussion of this topic [14,46] is well
beyond the scope of this article.

V'. CONCLUSION

We first summarize the principal findings reported in
this paper. (1) The critical exponents and inorpholo-
gies of minimal SOS-MBE growth are well described by
the nonequilibrium DT growth model at least in the in-
termediate temperature range where finite size efFects
are minimized. The MBE growth universality at low
to intermediate temperatures is therefore most likely the
same as the DT universality. (2) The equivalence be-
tween these two models extends from the approximate
numerical agreement in the global exponents (n, P) char-
acterizing the dynamics of interface width fluctuation all
the way to the anomalous scaling and multiscaling ex-
ponents n' = n —e(q)/q characterizing the higher mo-
ments of height difFerence correlation functions. (3) We
show that the SOS-MBE model as well as a whole class of
surface-dift'usion-driven discrete dynamical growth mod-
els (Fig. 1), namely, LDS, DT with finite difFusion length,
and TDH models have anomalous and multiafBne scaling
properties very similar to those in the DT model [14],
and they all exhibit the intermittent height fluctuation
behavior with a stretched exponential step-size distribu-
tion function. In addition, we find that all these models
have exactly the same multiscaling exponent o.' for var-
ious q s, implying the possible existence of one underly-

ing theoretical universality class for all of these models
(including SOS-MBE). Our numerical results are incon-
sistent with the asymptotic universality class being de-
scribed by any of the continuum equations discussed in
Sec. II of this paper, although the fourth-order contin-
uum equations [i.e. , Eqs. (2.10) and (2.11)] provide good
agreement with our calculated global growth exponents.
None of the SOS models studied in this paper (except for
the Family model) seems to belong to the EW universal-
ity of Eq. (2.5). (4) Our BD-MBE stochastic siinulation
results show the expected KPZ behavior asymptotically;
however, the preasymptotic crossover is slow and domi-
nated by the SOS behavior found in our SOS-MBE sim-
ulations, and can thus mimic SOS-MBE in early time
regimes.

There has been extensive recent experimental activ-
ity ineasuring MBE growth exponents [53—71] following
the suggestions of Refs. [3,7—9] that MBE growth may
not belong to the generic second-order continuum growth
model. Most of these experiments conclude that MBE
growth exponents are well described by fourth-order con-
tinuum growth equations such as Eqs. (2.10) and (2.11),
with P = 0.2—0.25 and n(n') large (close to unity) in
d = 2+ 1. Qualitatively, therefore, these experimental
findings are completely consistent with the results pre-
sented in this paper —in particular, our conclusion that
the DT model is the appropriate MBE growth model
is approximately consistent with experimental Findings.
(We should emphasize that all the experimental results,
except for one [61] which actually is a BD-MBE growth
experiment, are for d = 2+ 1 growth and most of our nu-
merical results [37] are for d = 1+ 1.) On closer inspec-
tion, however, we find the experimental situation quite
unconvincing because none of the experimental results
definitively establishes the existence of scale invariance
in MBE growth in a large enough range of parameters
to satisfy us that the measured exponents are mean-
ingful (rather than wishful). The only compelling con-
clusion from these experimental studies that we draw
is that kinetically rough SOS-MBE growth is substan-
tially rougher (in the thermodynamic limit) than that im-
plied by the generic second-order EW and KPZ models,
and the proposed surface-difFusion-driven growth models
(e.g. , DT, LDS, etc.) with the associated fourth-order
continuum equations, Eqs. (2.10) and (2.11), may have
some relevance to real MBE growth.

The implications of anomalous scaling for experimental
observations of various exponents are potentially impor-
tant. In many experiments, the roughness exponent is
measured from the width R' as a function of a window
size (not the system size L), or &om the height-height cor-
relation function G(x, t) In these ca.ses, it is the anoma-
lous roughness exponent o.' for the correlator which is be-
ing measured [see Eq. (4.1)]. Alternatively, the structure
factor S(k) k ~ could be employed to give the expo-
nent n' from the relation 2o.'+ d' = p. The measurement
of the growth exponent P is most often accomplished
by analyzing the time dependence of the evolving width.
The exponents typically quoted for continuum equations,
though, are n and P, not n' and P. [In fact, for nonlin-
ear equations, such as Eq. (2.10), n' is not exactly known
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theoretically even though it is expected to have only log-
arithmic corrections to unity [46].] With the measured
combination of n' and P, one does not know the true dy-
namic exponent z = n/P g n'/P if a g n' (i.e., if there is
anomalous scaling). In the presence of anomalous scaling
the parameter zi ——n'/P is always an underestimate of
the exponent z relevant to the various continuum equa-
tions (see Table III). For our SOS-MBE models, zi = 1.7,
which is even less than zF~ = 2. If this value of zi is com-
pared with the theoretical models, assuming that zi ——z,
one would erroneously conclude that the simple Edwards-
Wilkinson universality is present. One therefore needs to
know whether anomalous scaling occurs in the experi-
mental situation to interpret the data. When anomalous
scaling occurs, either n must be measured directly [from
W(I, t) data, for example] or r inust be found to convert
n' to o.. Investigating G(l, t) t"~' tells us if anomalous
scaling is present. In particular, scaling is anomalous if
one Ands K to be non-zero. Because the solid-on-solid
minimal MBE model with activated diffusion has long
been the paradigm for modeling detailed material spe-
ci6c situations, we feel that our scaling findings for the
MBE model may in fact reflect aspects of the true under-
lying dynamical behavior (i.e. , that in real systems K g 0
so that n' P n). Thus it is important for experimental
studies to extract a single set of exponents (a, P, z, for
example) where we reiterate that the distinction between
the primed and unprimed exponents is that the unprimed
exponents assume time is measured in layers, while the
primed exponents assume time is the reduced time t„
defined following Eq. (4.3). Few experimental studies
consider these subtleties in interpretations of the data.

Another possible complication in interpreting exper-
iment is the interplay between the deposition and the
difFusion noise. Asymptotically the nonconserved depo-
sition noise g~ always determines the growth exponents,
but for short length scales x ( l (where l is the diffu-
sion length [28]) the conserved diffusion noise gLi domi-
nates the crossover behavior. The growth exponents cor-
responding to Eqs. (2.10) and (2.11) with only conserved
noise (i.e. , q~ = 0 and q—:gLi) are known [33]:

n = (2 —d')/3, P = (2 —d')/(10+ d'),

z = (10+d')/3

corresponding to Eq. (2.10), and

(5 1)

n = (2 —d')/2, P = (2 —d')/8, z = 4 (5 2)

corresponding to Eq. (2.11). [For the sake of complete-
ness, we mention that EW growth, Eq. (2.5), driven only
by conserved noise, is completely smooth with no kinetic
roughness whatsoever for both d' = 1,2.] The diffu-
sion length l increases [28] exponentially with increasing
temperature and therefore at higher temperatures (and
low deposition rates) one may be dominated by con-
served noise crossover behavior defined by Eq. (5.2) or
Eq. (5.2). We further note that the growth exponents
for conserved difFusion noise are substantially smaller
than those for the nonconserved deposition noise [e.g. ,

n = 1/3 (0), P = 1/ll (0) in d' = 1(2) for conserved
noise in Eq. (2.10) as against n = 1 (2/3), P = 1/3 (1/5)
for unconserved noise], which may be part of the rea-
son why finite temperature SOS-MBE simulations con-
sistently produce (cf. Table III) growth exponents some-
what lower in numerical value than the corresponding
DT-LDS model results. (We emphasize that by construc-
tion instantaneous-relaxation dynamical models have no
diffusion noise. ) Invariably the presence of some con-
served diffusion noise leads, therefore, to somewhat lower
crossover growth exponents than the true asymptotic ex-
ponents, further complicating interpretation of realistic
simulational (or, experimental) results in molecular beam
epitaxy. Note that, in general, the diffusion length l is a
very complicated and unknown function of growth tem-
perature and deposition rates [28]. Of course, at very
high (low) growth temperatures and/or very low (high)
deposition rates, there are rather trivial crossover effects
in MBE growth arising from local equilibration (purely
random deposition) which are easy to discern.

In conclusion, we have demonstrated (conclusively in
d = 1 + 1, somewhat tentatively in d = 2 + 1) that for
finite temperature minimal MBE growth models with ac-
tivated diffusion in the SOS approximation and for sev-
eral relevant surface-difFusion-driven dynamical models,
the usual dynamic scaling ansatz does not apply. The
modified ansatz of anomalous scaling works well over a
long range of time (whether this is a very long-lived tran-
sient or not is unknown at the present time). In this time
range, the exponents n' and z' defined by the dynamical
scaling form of Eq. (4.1)—(4.3) turn out to be tempera-
ture independent in our SOS simulations for d = 1 + 1
and 2+ 1, and surprisingly close to nz in all the relevant
dynamical models. In fact, extensive study of anoma-
lously scaling dynamical models indicates that they are
distinguished not by the x dependence of the correlation
function, but by the anomalous time dependence of the
average step height through the anomalous exponent K,.
In the finite temperature ballistic deposition model, no
anomalous scaling appears asymptotically, although be-
fore crossing over to the eventual KPZ universality, the
scaling function exhibits many characteristic features of
the stochastic SOS-MBE model.

The SOS-MBE models also show multiaFinity, which is
associated with the asymmetric distribution of the height
Buctuations when manifestly nonequilibrium nonlineari-
ties are present in a conservative continuum growth de-
scription. All the surface-diffusion-driven discrete dy-
namical models we study also show multiaffinity under
these same general conditions; only LC and Family mod-
els, which obey linear continuum equations, do not. Dy-
namical models with multiaffinity necessarily display an
up-down asymmetry in the observed morphologies and
anomalous scaling, leading to the speculation that the
existence of such features is a necessary condition for mul-
tiaffinity. The presence of nonequilbrium nonlinearities
in the corresponding continuum description may also be
a sufficient condition for multiaffinity. Based on these
ideas, we believe that the DT model, sometimes con-
sidered to follow the linear Eq. (2.11), must cross over
asymptotically to some other nonlinear nonequilibrium
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continuum description [perhaps to Eq. (4.4)], in keeping
with the observed multiafBnity and nontrivial anomalous
scaling. When the diffusion length D in the DT model
is increased, an interesting increase of the global expo-
nents has been observed, and in the range of D studied,
the multiaFine exponents o.' in the models moved away
&om those of the EW universality class, a further in-
dication that it is unlikely that the DT model, even in
the large D limit, belongs to the EW universality. The
TDH model with delayed hopping also shows anoma-
lous roughening and multiscaling, but generates a slightly
rougher interface than the pure DT model. Considering
all these factors which can lead to nontraditional scaling,
it is clear that experimentally measured exponents could
easily lead to wrong conclusions regarding the dynam-
ical universality class of kinetic roughening unless care
is taken to study subtle aspects of anomalous scaling in
interpreting data.

Our most important qualitative conclusion is that the
simple DT model describes very well the critical aspects
of the minimal SOS-MBE growth scenario, with the two
(DT, SOS-MBE) models showing identical (in a statisti-
cal sense) features for both anomalous scaling properties
and multiaKnity. Our understanding of scale invariance
and dynamical correlations in models of molecular beam
epitaxy is far &om complete, however, because we do not
yet have a firm quantitative explanation for the details
of even the deceptively sixnple DT model. In particu-
lar, the continuum growth equation underlying the DT
model is not yet decisively known, even though it is clear
the generic second-order EW equation, Eq. (2.5), does
not work, and that the fourth-order continuum equations
[Eqs. (2.10) and (2.11)] must be playing an important
role. Much more work will be needed before we develop a
complete understanding of MBE growth models in par-

ticular, the nature of anomalous scaling and multiscal-
ing in these models remains intriguing even though the
details provided in this paper give a rather complete de-
scription (for Hat substrates in the absence of Schwoebel
barriers) of the phenomenology in d = 1 + 1 dimensions.
Correspondingly detailed calculations in d = 2+ 1 are not
currently feasible and considerable work will be needed to
completely elucidate the possible anomalous and multi-
scaling behavior in three-dimensional MBE growth. Un-
fortunately, that work awaits a many-fold increase in the
speed of computation, because the results presented in
this article already push the limits of currently avail-
able state of the art workstations, parallel processing ma-
chines, and supercomputers. Based on extensive numeri-
cal results presented in this article our best current guess
for the MBE continuum growth equation is Eq. (4.4)
at low (high) temperatures (growth rates), with perhaps
v2V' 6 and AqsV(V'h) growth terms of Eq. (2.3) show-
ing up (with very small numerical values of the coeK-
cients v2 and A~s) at higher (lower) temperatures (growth
rates) as multiple bond breaking processes get activated.
Very recent theoretical work [46] indicating the possible
existence of anomalous scaling [72] and multiaKnity in
Eq. (4.4) provides some support [73] for this speculation,
but more work is needed before a definitive statement
can be made about the MBE growth equation.
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We mention that the anomalous scaling ansatz as de-
fined by Eqs. (4.1)—(4.3) has some formal similarities with
critical phenomena in the presence of a dangerous irrel-
evant field. In particular, the scaling form of Eq. (4.2),
G(x, t) = x g(x/t ~*), with g(y (( 1) = y

" in the
anomalous scaling situation instead of g(y (( 1) = 1 in
the normal, self-aKne scaling situation, is similar to the
critical behavior associated with a dangerous irrelevant
variable. The important aspect of our problem is that the
nonzero value of the anomalous exponent e not only indi-
cates an "anomalous" scaling function for y = x/t ~ —+ 0
(exactly the same way as in the dangerous irrelevant
variable case) but also signifies a physical difFerence in
the local and the global dynamic scaling behavior of the
growing interface as the dynamical interface width and
the height-height correlation function scale with diferent
roughness exponents n and n' = n —r/2, respectively. In
contrast, dangerous irrelevant variables only modify the
asymptotic scaling function and do not acct any criti-
cal exponents. (We thank M.E. Fisher for a discussion on
this point. )
It is easy to show that toithin the perturbative DBG the-
ory aH the nonlinear Az V' (V'h) terms in Eq. (4.4)

are relevant and have exactly the same global critical ex-
ponents in d' = 1 as the leading-order Lai—Das Sarma-
Villain nonlinearity AzV' (V'h) considered in Ref. [8].
In d' = 2 the higher-order nonlinearities (n ) 1) are
marginal, and the perturbative DRG exponents are given
by the leading-order nonlinearity. One finds the following
exact results for d' & 1 for Eq. (4.4) within the pertur-
bative DRG theory: z = [4(n+ 1) + d'(2n —1)]/(2n + 1);
cr = (z —d')/2. This leads to z = 3 and o. = 1 for all
n in d' = 1 whereas z = 4(2n + 1/2)/(2n + 1) ( 4 (for
all n) in d' = 2. The global exponents of Eq. (4.4) are
therefore consistent with our MBE numerical simulation
results. There are also indications [46] of nonperturba-
tive (logarithmic) singularities for the nonlinear series in
Eq. (4.4) which may be responsible for anomalous scaling
and multiaf6nity observed in our numerical simulations of
discrete MBE growth models. The possibility of Eq. (4.4)
sufFering from nonperturbative "strong coupling" efFects
in d' = 1 was first pointed out in Y. Tu, Phys. Rev. A
46, R729 (1992) even though Tu's numerical simulations
have recently been questioned in V. Putkaradze, T. Bohr,
and J. Krug [The Niels Bohr Institute Report No. NBI-
95-04, 1995 (unpublished)]. See also Refs. [14,29,30] and
particularly Ref. [46] in this context. Further discussion
of this issue is well beyond the scope of our paper.




