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Oscillatory bifurcation with br@ken translation symmetry
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The effect of distant endwalls on the bifurcation to traveling waves is considered. Previous ap-
proaches have treated the problem by assuming that. it is a weak perturbation of the translation
invariant problem. When the problem is formulated instead in a finite box of length L and the
limit L ~ oo is taken, one obtains amplitude equations that differ from the usual Ginzburg-Landau
description by the presence of an additional nonlinear term. This formulation leads to a description
in terms of the amplitudes of the primary box modes, which are odd and even parity standing waves.
For large L, the equations that result take the form of a Hopf bifurcation with approximate D4 sym-
metry. These equations are able to describe, qualitatively, not only traveling and "blinking" states,
but also asymmetrical blinking states and "repeated transients, " all of which have been observed in
binary Quid convection experiments.

PACS number(s): 47.20.Bp, 47.20.Ky, 03.40.Kf

I. INTRODUCTION

This paper is devoted to the understanding of the ef-
fects of breaking translation invariance in continuum sys-
tems undergoing a bifurcation to traveling waves. We
imagine that the translation invariance is broken by the
presence of endwalls of some container but assume that
these are distant so that their efFects might be expected,
in some appropriate sense, to be weak. We focus on the
effects of such endwalls near the onset of the instability.
The two canonical examples of systems of this type are
provided by doubly diffusive (or binary Huid) convection
and by spiral vortices in the Taylor-Couette system with
counter-rotating cylinders. Since a pure traveling wave
cannot exist in a finite container it is clear that the end-
walls must be responsible for substantial modification of
the initial instability. Experimentally one finds the fol-
lowing (e.g. , [1—4]):

Traveling waves. Surprisingly, propagating wave-
forms analogous to the pure traveling wave pat terns
found in unbounded systems can emerge in finite systems
with endwalls. Within a limited portion of the container
the appearance of these waves can resemble that of pure
traveling waves. Both left and right propagating pat-
terns are possible, depending on initial conditions. Such
waves, in the form of spiral vortices, are well known in
the Taylor-Couette system, and have been extensively
studied in the context of binary Huid mixtures [1—3].

9. Blinking states. The presence of endwalls can in-
duce so-called "blinking states, " in which the direction
of propagation of the wave reverses. Such reversals can
be either periodic or irregular, depending upon system
parameters [2—4]. Such waves were first discovered in the
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form of "alternating" spiral vortex How in the Taylor-
Couette system [5] and in numerical simulations of dou-
bly difFusive convection [6].

8. Repeated transients/collapse states In bina. ry mix-
ture experiments an additional phenomenon, dubbed "re-
peated transients, " has also been observed [7]. In this
state a small-amplitude traveling wave solution grows in
amplitude (maintaining its spatial profile), and then un-
dergoes a rapid collapse back to a small-amplitude state.
This process repeats at irregular intervals. This phe-
nomenon depends sensitively on the aspect ratio of the
system. A similar phenomenon was observed by Jacqmin
and Heminger in a numerical study of binary Quid con-
vection in a rectangular container [8], with the primary
mode (apparently an even parity standing wave) grow-
ing into a large-amplitude state (dominated by a small
number of spatial modes), and then undergoing a sud-
den, rapid collapse. This process then repeats. These
repeated transients and collapse states are not yet un-
derstood.

In an unbounded system with periodic boundary con-
ditions the transition from the trivial state to oscillatory
behavior is described by the Hopf bifurcation with O(2)
symmetry. The normal form for this bifurcation, trun-
cated at third order, is given by [9]

—= (%+i~)v+ a~tv~ v+ b(~v~ + ~w~ )v,
dt

de
dt

= (A —iso)to+ a~v~ to+ b(~v~ + ~ui~ )tv, (1b)

where v, m denote the amplitudes of left- and right-
traveling waves, and a, b are complex coefficients. So-
lutions with ~v~ = ]to~ are reHection symmetric and are
hereafter called standing waves. This interpretation fol-
lows from the form of the temperature eigenfunction [10],

8(x, y, t) = Rf[v(t) + u)(t)]e'"*f (y))
+(higher-order terms),
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where f (y) describes its vertical structure. By con-
struction these equations are equivariant under (v, w) —+
e'" (v, w) (i.e., under translations x + x + l), and
(v, vt) m (m, 8) (i.e., reflections x —+ —x). These op-
erations generate the group O(2). An additional sym-

I

metry, called a normal form symmetry, is also present:
(v, w) —+ (e'~v, e '~m). Equations (la, b) have two types
of nontrivial solutions, traveling and standing waves, at
most one of which can be stable [9].

Equations (la, b) are strictly valid only when the wave
number k is fixed at its onset value as A increases, since,
once the Rayleigh number is raised above its critical
value, there is a whole band of wave numbers, all of which
are unstable. This problem is typically resolved by allow-
ing the traveling wave amplitudes in the stream function
(2) to be modulated on a long spatial scale X and a
slow time scale T [v = A(X, T)e*, m = B(X,T)e ' ].
An asymptotic analysis then leads to a set of coupled
complex Ginzburg-Landau equations for A and B, whose
structure depends on the magnitude of the group velocity
[11,12].

As indicated by the experimental observations above,
the corresponding situation for large but bounded sys-
tems is more complex than the unbounded case. In the
last few years there have been several efForts to develop
the theoretical underpinnings needed to describe the dy-
namics of large aspect ratio systems near the onset of an
oscillatory instability.

Cross [13]has adopted an approach based on a multiple
scale analysis. The result is a pair of coupled complex
Ginzburg-Landau equations describing the slow evolution
of the envelope functions for the traveling wave solutions,

AT = DAxx+ sAx + AA+ alBj'A

+b(IAI'+ Bj')» (3a)

BT = DBxx —sBx + AB + ajAj B

+b(lAl'+ Bl')B, (3b)

together with boundary conditions designed to take into
account the effects of the distant endwalls:

A —e(pgAX + vgBX) = 0, B —e(p2BX + v2AX) = 0,

at X = I/2, (4a)

A + e(@2Ax + TJ2Bx ) B + e(jlyBX + vyAx) = 0,

at X = I,/2 (4b)— .

Here A, B are the complex amplitudes of the left- and
right-traveling waves depending on the slow spatial and
temporal scales X, T; D is a complex. difFusion coeKcient,
s a measure of the group velocity (assumed to be small),
and A a measure of the growth rate and. frequency shift of
the modes. The boundary conditions are taken to be lin-
ear and homogeneous, on the assumption that the mode
amplitudes A, B become small near the endwalls. The

most general such boundary conditions depend on the
complex reflection coefFicients pq 2, vq 2, and follow from
symmetry considerations. Higher order derivatives enter
with higher powers of e (« 1) and are neglected. See [11,
13—16] for details. Numerical simulations of these equa-
tions have revealed behavior that qualitatively resembles
some of that found in the experiments, including travel-
ing waves and blinking states.

A more direct approach to this problem was suggested
Dangelmayr and Knobloch [16—18]. The basic idea is
to model the efFects of' distant endwalls by introducing
small, linear SO(2)-breaking (i.e. , translation-breaking)
terms into the normal form equations describing the "per-
fect" problem [Eqs. (la) and (1b)]. The most general
equations of this type take the form

dv = (A + ia )v + ale j'v + b(lv l' + ju)
j

2)v + eau,

dies

GV

= (A —i(u)m+ alv 'ca+ b(lvl'+ jwj')~+ ee,

(5a)

where, as before, the amplitudes v, m are associated with
left- and right-traveling wave disturbances in the system
(analogous to the "pure" traveling wave solutions found
in the unbounded case), and e is a (small) complex coef-
ficien.

This system has been analyzed in considerable detail
[18]. Owing to the symmetry-breaking terms, pure trav-
eling waves are no longer possible. Instead, the primary
instability is to an even or an odd standing wave solution.
Depending on the spatial eigenfunctions these standing
waves can take the form of "chevrons, " with left-traveling
waves dominating in the left half of the container and
right-traveling waves dominating in the right half [16].
See [8] for explicit calculations of such eigenfunctions.
Two new solutions, traveling waves and modulated waves
(corresponding to periodically reversing blinking states),
bifurcate from the standing wave branch in secondary
bifurcations, in remarkable qualitative agreement with
experiment. These traveling waves are single frequency
states traveling predominantly in one or the other direc-
tion, but are not rotating waves: there is no comoving
frame in which these waves appear steady. The blinking
states are quasiperiodic states born in a secondary Hopf
bifurcation: the Hopf frequency corresponds to the re-
versal period. These states persist only for an interval of
parameter values, and with increasing forcing give way
to (nonreversing) traveling waves, typically via a global
bifurcation. More recently, it has been noted that chaot-
ically reversing waves are also possible [19].

The advantage of this approach stems from its rela-
tive simplicity: it provides a concise way of modeling
the efFects of "weakly" breaking the translation symme-
try in a system. In fact, the resulting equations can be
shown to describe completely the small-amplitude behav-
ior of Cross' amplitude equations [16]. The procedure
suggested by Dangelmayr and Knobloch does not, how-
ever, address the issue of whether the addition of small,
linear, symmetry-breaking terms sufBces (a priori) for a
complete dynamical description of the effects of distant
endwalls.

In this paper we pursue an alternative approach. We
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II. OSCILLATORY CONVECTION IN BOXES

We begin by considering a general system,

MB,@(x,y, t) = CC(x, y, t) +AC(T, y, t), (6)

where 4 is a multi-component field depending on
time t and spatial coordinates x C IR, y C IR

M(0, 8„),Z(0, 0„), are linear partial differential oper-
ators, and JV(8, 8„) is a nonlinear operator (typically
bilinear). We assume that Eqs. (6) are equivariant under
the group operations

formulate the problem in a finite container, and then ex-
amine the limit as the length of the container becomes
large. This formulation requires the use of the stand-
ing wave solutions, since, as shown by Dangelmayr and
Knobloch [17,18], all the primary bifurcations take this
form, a conclusion also reached by Bestehorn, Friedrich,
and Haken [20]. In such a formulation, as in the work of
Dangelmayr and Knobloch, analogues of traveling waves
will be produced through symmetry-breaking secondary
bifurcations from such standing wave branches. How-
ever, the present approach elucidates the conditions un-
der which the presence of distant endwalls can be consid-
ered to be a weak perturbation of the unbounded prob-
lem. In particular we show that the correct amplitude
equations in the limit of large aspect ratios are described
by the normal form for the Hop f bifurcation with D4
symmetry in which the D4 symmetry is weakly broken.
We describe the origin of the D4 symmetry and show
that Eqs. (5a,b) are a special case of our more general
equations.

The paper is organized as follows. In Sec. II we discuss
properties of Hopf bifurcations in boxes. In Sec. III we
obtain finite-dimensional amplitude equations describing
the interaction of odd and even parity standing waves,
and show that in long boxes these equations have an ap-
proximate D4 symmetry. In Sec. IV we analyze the re-
sulting equations and in Sec. V complement this analysis
with numerical results. Our conclusions are summarized
in Sec. VI.

To understand the effects of such endwalls on the be-
havior of the system we will consider the limiting case
where the endwalls are very far apart (I large), and com-
pare the results with the unbounded case. On the basis
of this comparison we show below that adding distant
endwalls to an unbounded system does not represent a
simple "perturbation" of the system. In particular, the
L —+ oo and I = oc limits will not necessarily agree, and
fundamentally distinct behaviors will be associated with
each.

We denote by O'A, (x, y) the spatial eigenmodes of the
system (6), linearized about the trivial [i.e. , O(2) sym-
metric] equilibrium and subject to the horizontal bound-
ary conditions (8) (along with appropriate boundary con-
ditions for the other spatial directions). Each "mode" is
characterized by a particular temporal growth rate. Ow-

ing to the boundary conditions at the endwalls, these
modes will be quantized, and we index them with k.
We assume that for some control parameter A below
threshold (e.g. , a heating rate), all linear modes are ex-
ponentially stable. As the control parameter is increased,
the modes successively become unstable. This is qualita-
tively similar to what occurs in the unbounded case, but
with two fundamental distinctions:

1. Since the modes of the system are discrete, there
will exist a finite gap separating the critical values of the
parameter R at which successive modes become unstable.
Formally this is due to the discrete nature of the spec-
trum of the linear stability problem. See Fig. 1. This is
in contrast to the case of an unbounded system, where
once the critical parameter threshold is crossed, a con-
tinuum of unstable modes emerges. Note that the gap
spacing approaches zero as the system size L —+ oo; cf.
[8]. Nonetheless, such gaps are present for any finite L.

2. Once endwalls are placed on an unbounded system,
pure traveling wave solutions are no longer possible, re-
gardless of how distant the endwalls are; the large L and

:x + t (translation),
; —x (reflection),

(7a)
(7b)

but impose endwalls on the system,

R(@) = 0 at x = I./2, L/2. — (8)

The theory that follows requires only that these bound-
ary conditions break the translation invariance of the sys-
tem while preserving the reflection symmetry (x ~ —x),
but is otherwise independent of their detailed form. This
is in contrast to the corresponding theory for the onset
of the steady state instability in a Rnite container where
the results with Neumann endwall conditions differ, even
in the large aspect ratio limit, from the generic result
that holds for other types of boundary conditions [21].
This is a consequence of the so-called "hidden" symme-
tries present in the Neumann case; in the case of the Hopf
bifurcation these symmetries are still present but do not
introduce any restrictions on the normal form [22].
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FIG. 1. Rayleigh number vs wave number for the bounded
system.
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infinite L cases are fundamentally distinct.
These considerations underlie some of the inherent

mathematical diKculties that arise if one attempts to
treat distant endwalls as a weak perturbation of the un-
bounded system. Instead, we begin with the finite prob-
lem, and then let the size of the system become large.

Given the set of spatial linear mades (4A, (x, y)) (which
we assume forms a complete basis), the fields iIJ(x, y, t)
can be expanded as

@ = ) ak(t)Ck(x, y) + aA, (t)4i, (x, y),

where ai, (t) denotes the complex temparal amplitude af
the kth spatial made. Substituting into (6), a (infinite)
set of modal amplitude equations is obtained. We are
interested in the case of an oscillatory bifurcation, and
wish to derive a reduced (finite-dimensional) set of equa-
tions that characterizes the behavior of the system in the
vicinity of this instability.

We know that at onset (B = Ri) there is a single neu-
trally stable critical mode kq corresponding to a stand-
ing wave pattern; all other modes of the system are sta-
ble since they are below their respective thresholds (at
B2, Bs, . . .). Sufficiently near Ri this critical mode can
be regarded as the "driving" mode of the system, with all
other modes effectively "slaved"; a center manifold reduc-
tion could then be performed based on this single critical
mode. However, for large aspect ratio systems, such a
reduction procedure cannot capture the full physical be-
havior of the full system (such as the presence of traveling
waves). For this purpose the retention of the modes ki
and k2 (where k2 represents the first mode to become
unstable after mode ki} is necessary. As explained be-
low, it is the interaction between these two standing wave
modes that produces "traveling" wave behavior, and cap-
tures the essential physics of the problem.

The linear spatial modes of the system (6} and (8) can
be assumed to be eigenstates of the reHection operator,
and hence strictly of even or odd parity. Generically,
all such modes set in at simple Hopf bifurcations. Even
though in the bounded system the first two (typically, op-
posite parity [8]) standing wave modes become unstable
at slightly different parameter values, for the purposes of
a reduction procedure valid in the large L limit, it is cru-
cial to treat these modes as emerging "simultaneously, "
as though from the degenerate L = oo case. The result-
ing mode interaction is capable of describing mixed parity
states, such as traveling waves and blinking states. This
notion can be formalized by imagining that there exists a
second parameter, such as the system length L, which can
be freely varied. By adjusting this parameter, the first
two modes of the bounded system can be arranged to bi-
furcate simultaneously. A formal center manifold reduc-
tion can then be carried out, yielding equations for both
critical modes (cf. [23]). Any variation of this second
parameter away from its e~act value at cocriticality can
simply be treated as an unfolding of the bifurcation, and
will not effect the dimensionality of the center manifold
itself. Alternatively, the device of introducing a second
parameter into the problem can be entirely avoided by
employing instead a center-unstable manifold reduction

[24] ta capture the dynamical behavior of bath mades
(one mode being slightly unstable when the other is at
criticality). In either case in the limit I —i ao the normal
form coefficients will be independent of L and the result-
ing unfolding will therefore capture the whole interval of
Rayleigh numbers within which only two modes are un-
stable. At higher Rayleigh numbers, the small-amplitude
nonlinear dynamics is often governed by the first one or
two modes even though additional modes may also be
unstable; cf. [25]. Consequently the applicability of the
resulting normal form equations may well extend beyond
their formal range of validity.

III. REDUCTION TO A FINITE-DIMENSIONAL
SYSTEM

In the following we let zi(t), z2(t) denote the complex
amplitudes of the first two standing wave modes to go
unstable (i.e. , the driving modes), and assume z2 cor-
responds to the odd parity mode. A center manifold
reduction (or center-unstable manifold reduction) of the
full (infinite-dimensional) modal equations in the vicinity
of the oscillatory instability will yield a system of coupled
equations describing the interaction of these two complex
modes. The form of these equations follows from simple
considerations. First, since each mode is close to, but not
precisely at a Hopf bifurcation, the linearization about
the origin for the reduced equations must have the form

(p+ i(u O & fzil
~+' ) &"i

where p, p' are unfolding terms that vanish when a given
mode passes through criticality. Second, the nonlin-
ear terms in these equations must be equivariant under
(zi, z2) ~ (zi z2), owing to the reflection symmetry
(x ~ —x) of the original system (6). A third considera-
tion is slightly more subtle, but crucial. The only obvious
symmetry of the center (-unstable) manifold equations is
the spatial reHection symmetry z2 —+ —z2. In fact, how-
ever, there exists an additional discrete symmetry hid-
den in the asymptotic limit: for large L, the system has
an approximate symmetry under interchange of the two
modes,

(zi, z2) -+ (z2, z, ),

stemming from the fact that these modes are degenerate
at L = oo. This symmetry is not exact for any Hnite
L. Nonetheless, since it becomes a true symmetry in the
large L limit, it will be vital to retain it in the normal
form calculations. This interchange property changes the
symmetry group of the problem &om Z2 to D4, and thus
alters the basic structure of the equations. In particular,
this symmetry will force certain coeKcients in the nor-
mal form equations to vanish, and others to be identical.
The fact that this symmetry is only approximate has im-
portant consequences and requires the introduction of
interchange-breaking terms as unfolding parameters in
the interchange-symmetric system. Together, the reHec-
tion symmetry and the (approximate) interchange sym-
metry imply that the reduced equations for zi, z2 have
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the form

dzl = (P, + XLd) Zl + E(zl ) Zl, Z2 ) Z2Z2, Z2 ) 1 (12a)

dZ1 2 2 2

dt
= iwzi + Alzl

I
zl + BIZ21 zl + Czlz2,

dz2 2 2 2

d't
= iwz2 + A~Z2~ z2 + B~zl

~
z2 + Cz2zl, (18b)

dz2 :(P + ZW ) Z2 + E(Z 2) Z21 Zl 1 Zl Zl, Zl ) .
dt

We next put the system (12a) and (12b) into normal
form, treating the modes zl, z2 as bifurcating Simulta-
neously, i.e. , p = p,

' = 0. This is necessary in order
to avoid removing certain formally nonresonant terms;
if this is not done the coordinate transformation that re-
moves such terms will develop a singularity in the I ~ oo
limit, and hence will not be acceptable. [Alternatively,
this issue can be avoided entirely by adjusting a second
system parameter (L) to force zl, z2 to become unstable
simultaneously. ] A related issue concerns the oscillation
frequencies ~, u' of the two modes. These frequencies
also become equal in the large I limit. Hence, as above,
to avoid coordinate singularities only those nonresonant
terms that remain nonsingular in the w = w limit should
be removed. Once these normal form transformations are
completed, the detunings that exist between p, p' and
u, w' for finite I will be reintroduced.

The normal form equations are now readily calculated.
The linearized equations can be written as

dz—= Az,
dt

where z = (zl, zl, z2, z2) and

(i~ 0 0 0
0 —i~0 0
0 0 i~ 0

( o o o —i~)
(14)

f —

ianna

p p

0 e' 0 0
0 0 —z4)T 0
o o o e'".)

(15)

for r p R [26]. An arbitrary monomial term z~zzlzzzz in
the normal form must therefore obey the constraint

p —q+r —8= 1. (16)

Thus, no quadratic terms will appear. The six possible
resonant cubic terms are

Observe that this linearization corresponds to the case of
a semisimple double Hopf bifurcation with 1:1resonance.
The nonlinear resonant components of the normal form
vector field must commute with

where A, B', t are complex coeKcients, and the vector
field has been truncated at cubic order. Such a truncation
is valid subject to appropriate nondegeneracy conditions.
One may verify that the system (18b,b) is equivariant
under the group D4 x S:

D4 . (zl, z2) M (zl, —z2),

(zl, z2) + (z2, zl),
S': (z„z2) + (e' zl, e' z, ).

(19a)
(19b)

(19c)

dzl 2 2 2

dt (p + z(d)zl + Alzil zl + Bl 2I zzl + Czlz2

These equations describe the onset of an oscillatory in-
stability in a box, in the limit that the box length I
goes to infinity. Note that this limit, derived on the ba-
sis of symmetry considerations (i.e. , the group D4), dif-
fers from the normal form equations at I =—oo, which is
instead described by a Hopf bifurcation with O(2) sym-
metry. This observation indicates that the imposition of
distant endwalls need not constitute a mild perturbation
to the unbounded system.

Equations (18a,b) are identical to the equations de-
scribing a Hopf bifurcation with D4 symmetry consid-
ered by Swift [27] in the context of coupled oscillators.
However, since our primary interest is in the large but
Pnite I, case (for particular scaling regimes), we are led
to consider symmetry-breaking unfoldings of this limiting
D4-symmetric case.

The unfolded equations are easily found: first note that
weakly breaking the interchange symmetry (which is only
approximate) will not introduce any additional nonlinear
terms into the problem. [This is actually a somewhat
subtle issue. Only the reHection symmetry z2 —+ —z2 is
an exact symmetry of the problem, yet Eqs. (18a,b) are
also equivariant under zl ~ —zl. This second discrete
symmetry results from the Hopf normal form symmetry
(in conjunction with the left/right reflection symmetry),
and will be present regardless of whether the interchange
symmetry is exact or not. In this study we will not
be considering the eKects of breaking such normal form
symmetries. We also note that for physical systems that
have a midplane reHection symmetry in addition to the
left/right reHection symmetry, the normal form symme-
try zl —+ —zl is exact. ] The unfolded equations, through
cubic order, are

Zl Zly Z2 Zly Z1Z2, Z2 Z2~ Zl Z2~ Z2Z1. (17)

Since the linear part of the vector field (13) and (14) also
commutes with the normal form symmetry (15), the full
normal form equations will be equivariant under this S
normal form symmetry. The approximate D4 symmetry
in the problem restricts the way in which the resonant
terms appear. In particular, in the I —+ oo limit, the
normal form equations are

= (~'+ 1~')z2 + &'IZ2I'Z2 + B'~zi ~2Z2 + C'z2z,'
dt

(20b)

The unfolding quantities p, p', p —p, ', w —w', A —4', jg—
B', C —C' are all small. The resulting equations (20a, b)
describe the interaction of even and odd parity standing
waves in the system and will be the main focus for the
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remainder of this paper. These equations should be re-
garded as describing a double Hopf bifurcation with 1:1
resonance, with the special property that they are close
to the D4-symmetric problem owing to the large size I
of the system. They are exact in the sense that they
can be formally derived by the center manifold reduc-
tion procedure by requiring that the two modes z], z2
bifurcate simultaneously, and noting that the spectrum
corresponding to all other modes remains bounded away
from the pure imaginary axis in the complex plane for
any finite L. We remark that Bestehorn, Friedrich, and
Haken [20] have proposed Eqs. (20a,b) as a model for
modulated wave behavior in finite boxes. A special case
of these equations was studied by Nagata [28].

The crucial observation is that under the coordinate
transformation zi ——v + iv, z2 ——v —ur (which may be
regarded as a transformation from standing wave coordi-
nates to traveling vrave coordinates), the system (20a,b)
becomes identical to the "standard" (Ginzburg-Landau-
like) equations (5a,b) describing broken translation sym-
metry, except for the appearance of new cubic terms
(eiv2, iv82) in (5a,b), respectively. Most significantly, the
coefficients of these new terms remain O(l) in magnitude
even in the limit I ~ oo. This observation demonstrates
that such cubic terms must be retained in addition to
the small, linear symmetry-breaking terms in order to
capture correctly the effects of even distant endwalls.

IV. ANAIVSIS OF THE NO%MAL FOB,M
EQUATIDNS

A. Scaling consicierations

This derives from the fact that Bq, B2 lie near the min-
imum of the "curve" R, = R, (m/I); in other words
M, M + 1 = M*, where M ( M* ( M + 1 and the
(noninteger) M* satisfies

dR, (m/L)
87D

=0

Since vn and. I appear as a ratio, the scaling result
(21) follows. This diff'erence in the critical values for
the two modes, ~Ri —R2~, sets the scaling behavior for
the difFerence in linear growth rates ~p

—p'~ in the nor-
mal form equations (20a,b). Note that by making small
[i.e. , O(1)] adjustments in the system length L, the two
modes M, M+1 can be made to bifurcate simultaneously,
thereby reducing the deviation ~p

—p'~ belovr O(l/L ).
This mechanism is responsible for the sensitive depen-
dence of the resulting behavior on the aspect ratio.

We next consider how the difference in oscillation fre-
quencies between the two modes scales with L. As a
function of m and I, the oscillation frequency of a given
mode may be written as 0 = A(m/L). This follows from
the requirement that the frequency of the modes M, M+1
should remain O(l) as L —+ oo. Letting Bi ——A(M/L),
02 ——A[(M+ 1)/L], the frequency deviation between the
critical modes is

system to become unstable, the (integer) mode numbers
corresponding to these modes vrill (usually) differ in mag-
nitude by one, and we denote them by M, M + 1. These
two integers yield the minimum values of R, (m/L) for all
integers m. Letting Ri ——R (M/L), R2 —R, [(M+ 1)/L]
be the critical values for the two modes, it follows that

The asymptotic dynamical behavior of Eqs. (20a,b) is
determined by the scaling relations that hold among the
various unfolding parameters. These scaling relations are
set by the following two quantities:

(z) The departure of the control parameter R from its
critical values at Ri, R2 for modes zi, z2, respectively
This will determine the growth rates p, p' of the modes.

(ii) The length L of the system This will .set the
scale for the difFerences betvreen the two modes (i.e. ,

/p,
—li'/, /cu —cu', A —A'/, /B —B'/, C —C'/). At times

it will prove useful to treat the system length I itself as
a control parameter of the system, which can be used to
modify the generic scaling behavior of ~p,

—p, '~.
We determine first the various scaling relations among

the unfolding parameters set by the system length I.
Let R, (m, L) denote the critical value of the parameter
B at which the m, th mode erst becomes unstable. In
general the critical parameter values B will be functions
of the quantity m/L, i.e. , R = R (m/L), in order that
in the limit L m oo, the minimum value of R (over
all possible m) should remain O(1) in magnitude, as in
the infinite case. [The quantity m/L can be regarded
as the dominant wave number of a mode. For large L
systems, the modes that first go unstable generate wave
patterns whose local length scale is similar to that of the
unbounded case, i.e., O(1).] Since the complex ampli-
tudes zi, z2 in (20a,b) represent the first two modes of the

(22)

The quantity ~Oi —02
~

sets the scaling behavior of ~w
—cu'

in Eqs. (20a,b). Similar reasoning to that above shows
that the quantitites ~A —A'~, ~B —B', ~C —C'~ also scale
as 1/I in the limit of large L.

The final scaling relation in the normal form equations,
giving the magnitude of the growth rates p, p', is deter-
mined by the deviation of the parameter B from its crit-
ical values at Bi, B2 for the two modes. More precisely,
the average growth rate (p+ p')/2 in (20a, b) scales with
R —AR, vrhere AR = (Ri + R2)/2.

There is no intrinsic scaling relation between the scale-
setting parameters LB and. I, and a variety of choices is
available. However, only for one of these do the normal
form equations (20a,b) provide (generically) an asymp-
totically well-defined description of the behavior in the
original system (6). A second scaling choice, correspond-
ing to a more restrictive set of conditions, will also yield
exact asymptotic equations, as will be described later.

B. Asymptotic scaling: AR 1/L~, Ace 1/L

This scaling of the growth rate with aspect ratio is a
"natural" one, and it is the one assumed implicitly in
various other reduction schemes appearing in the litera-
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ture (e.g. , [13]). This derives from the fact that as B is
raised above its minimum critical value, the number of
spatial modes activated (i.e. , unstable) in the system is

dt
= [(p+ Ap) + i(tU + Atv)]zi + [A + AA]IziI zi

+[B+ AB]Iz2I zi + [c+ Ac]zizz, (24a)

GZ2 2

dt
= [(p —Ap) + i(tU —Atv)]z2 + [A —»]Iz2I z2

+[B—t"iB]
I
zi

I
z2 + [c—t I, c]z2zi . (24b)

Observe that the O(1) frequency tU can be omitted, since
it can be pulled from the equatio'is via the redefinition
zq ~ e' zi) z2 —+ e' z2. In what follows we assume this
has been done. We define e to be our scaling parameter
(L - 1/e, AB - e ), setting

p = 6 p, )

Ap=6 Lp,
Lcd = EAcd)

Zy —CVi + 6 V2)
2

Z2 = CtU] + 6 tU2)
2

+ 6
(25)

Substituting, and dropping the carets, the leading order
terms in r yield

[Ot, —iA(U]vi ——0,

[Otz + ZAM]ZUi = 0.

These equations are readily solved. We find

(26a)
(26b)

P(t )
zA& tt

ZUi ——Q(t2) e (27)

where P, Q are arbitrary functions of the slow time scale
t2. At next order in e we have

[Ot~ —ZAM]V2 = —BZ2vi + (p + Ap)vi + AI'UiI Vi

+BlzUZI vi + cvizU„ (28a)

[Btq + zAtd]zU2 = —Bt zvl + (p —A jl,)u i + AIPB1
I

lUi

+BIviI zvi + Czuivi. (28b)

Substituting in from (27), the solvability conditions are

Bt,P = (p, + Ap)P + AIPI P + BIQI P, (29a)

wave number spacing between adjacent modes

LQAB. (23)

Thus, for the scaling AB 1/L2, the number of active
modes is O(1). As AR is lowered towards its critical
value, a point is reached below which there are only two
active modes left these correspond to the two critical
amplitudes zi, z2 in (20a,b). Hence, for this choice of
scaling of LR with I, the normal form equations have
a well-defined limit. Evidently this two-mode analysis
formally breaks down if LA is increased too much. How-
ever, even in this case, the normal form equations (20a,b)
might still provide a reasonable (though incomplete) de-
scription of the basic dynamics.

To analyze this scaling limit, we rewrite equations
(20a,b) in a slightly more useful form:

~t, Q = (I —&I ) Q + AIQ I'Q + BIPl'Q (29b)

dt
= (p+ Ap)r, + (A„r, + B„r2)r„

dt
= (p, —Ap)r2 + (A.„r22 + B„r,)r2,

dog

dt
= A, r~ + B;r2,

d02

dt
= A, r2+ B,r~,

(30a)

(30b)

(30c)

(30d)

where A„,B„,A;, B', denote the real and imaginary parts
of the coefFicients. We distinguish four types of solutions:

where we have used the fact that terms that go as e'
in Eq. (28a) are resonant, as are e ' ' terms in (28b).

The amplitude equations (29a,b) provide an asymptot-
ically exact description near the onset of the oscillatory
instability. Comparing these equations with the normal
form equations (24a,b), it is clear that the primary efFect
of the asymptotic scaling (25) is to eliminate the terms
ziz2, z2zi in (24a) and (24b), respectively. This is be-
cause the frequency difFerence (Atv) between the modes
is much larger than the difference in growth rates (Ap),
i.e. , 1/L versus 1/L2. Consequently the behavior of each
mode on the "fast" time scale is dominated by its os-
cillation frequency, i.e. , zj e', z2 e '; cf.
(27). Looking now at the nonlinear terms in (24a, b) it is
clear that the final term in each fI.uctuates rapidly com-
pared to the first two terms and hence effectively "aver-
ages out" to zero. Even in the absence of these terms,
however, the resulting equations continue to differ from
"standard" equations (5a,b) by the presence of additional
cubic terms, as described previously.

The emergence of this "fast" time scale associated with
Au can be understood rather simply, and has a natu-
ral analog in the unbounded problem. Consider the two
spatial modes zq and z2. These will be characterized by
slightly different length scales, and hence slightly differ-
ent wave numbers. The unfolding parameter Lw mea-
sures the variation of the standing wave oscillation fre-
quency with wave number. In the case of an unbounded
system, it can be naturally associated with the group ve-
locity of the traveling wave solutions. Hence there exists
a "fast" time scale in the unbounded case as well. How-
ever, in the standard derivation of the coupled complex
Ginzburg-Landau equations for an oscillatory instability
in an unbounded system, one demands that the time scale
associated with the group velocity be slow) even though
this will only be true under very special circumstances,
e.g. , near the codimension-two point. Though this prob-
lem has been recognized, the correct Ginzburg-Landau
equations have been derived only recently [12] and only in
the unbounded case. These new equations are integrodif-
ferential in nature, and are more complex than the stan-
dard Ginzburg-Landau equations. It is therefore rather
remarkable that for bounded systems, this same fast time
scale leads to a simplified set of equations (29a,b).

As a result of this averaging over a fast time scale, the
amplitude equations (29a,b) possess an extra phase shift
symmetry, and are readily analyzed. Letting P = rqe' ',
Q = r2e' ' yields equations of the form [29]
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i. The trivial state (ri, r2) = (0, 0). This solution cor-
responds to the no motion (conducting) state of a system.
It is stable if 0 & lAy,

l
& —p, , a saddle if lApl ) lpl, and

a source if 0 & lApl & p, .
2. A pure mode (ri, r2) = (ri, 0). This solution

at ri ——g (Ep, +—p, )/A„corresponds to a pure (sin-
gle &equency) standing wave (SW1) in the original sys-
tem. It exists if either (1) A„& 0, Ap, & —p, , or (2)
A„( 0, Ap ) —p. For both cases, one eigenvalue is
[(A„—B,)p —(A„+B„)b,p]//A„' the other eigenvalue is
strictly positive for case (1), and strictly negative for case
(2).

9. A pure mode (ri, r2) = (0, r2). This second standing
wave (SW2) solution at r2 ——g(Ep, —p)/A„exists if
either (1) A, ) 0, Ap & p, or (2) A„( 0, Ep & p.
For both cases, one eigenvalue is [(A„—B,)p + (A„+
B„)Ep]//A„; the other eigenvalue is strictly positive for
case (1), and strictly negative for case (2).

Mixed mode fixed point. This fixed point in (ri, r2)
space satisfies

1 f(A„—B„)p,+ (A„+ B„)Ap,l
q(A„—B„)p—(A„+, B„)Ap~

and represents a two-frequency modulated ivave (MW),
consisting of a mixture of the even and odd parity modes
Z])Z2 If

o& IA, I
&B„, p&o, lap

(A, —B,)
A„+B,

or if

0& lA l
& B„, p&0-, l4pl & — p,

(A„—B,)
A„+B,

then the modulated wave exists and is a saddle. If

0(lB„l&A„, p, &0, l4pl& — " "p,,
(A„—B„)

r + v

the modulated wave solution is a source. It is a sink if

0(lB l& —A„, p)0, lApl&
' "

p, .
(A, —B„)
A, +B„

We summarize these results in the following bifurcation
diagrams [Figs. 2(a)—2(d)] in the (p, Ap) plane. For each
figure, the (p, Ap) plane divides into six regions. The
boundaries are defined by the lines: I'0 .. @+LE= 0, I'z ..
p —Lp = 0, and the half lines: I'2 .. Lp = z+&"p, I'3 ..

Lp, = &"+ i p. Within each of the six regions is drawn the
r

associated (ri, r2)-phase portrait. (Note that, through
rescalings and. parameter symmetries, we have restricted
to the case A„= —1 with no loss in generality. ) Observe
that the MW solutions bifurcate from the SW1, SW2
branches in a pitchfork bifurcation in the reduced (ri, rz)
space.

It is interesting to consider the temperature eigenfunc-
tion corresponding to these various solutions. Recall
that the eigenfunction associated. with modes zq, z2 in
Eqs. (20a,b) is of the form

~( ~ t) -R([ (t)&.(x)+ 2(t)&-(*)]f(~))
+(higher-order terms), (32)

where E„F are the even and odd parity horizontal spa-
tial eigenfunctions. For illustrative purposes, we take

L
'

p, (e) = (e o +'" —eo '"
) eoe (33b)

defined on the domain [
—2, 2]. Here p = (n + i/3)/L

is a complex parameter depending on the group veloc-
ity of &ee traveling waves, and k is their wave number.
This choice of eigenfunctions is in excellent qualitative
agreement with the form of the primary unstable mod. es
as determined from experiments (see Kolodner [7]). For
this reason, we will use this functional form to illustrate
the various possible solutions to Eqs. (24a,b). For the
pure standing wave solutions, we set (zi, z2) = (rie', 0),

~ I

(0, r2e' ), while for the modulated wave, we write

(zi, z2) = (rie' ', r2e' '). The former [Figs. 3(a),(b)]
takes the form of a chevron pattern, consisting of waves
propagating in opposite directions in the two halves of
the container. Note that we refer to such patterns as
standing waves because they are pure parity states. In
contrast, the latter tends to be localized first in one half
of the box, and at time O(I ) later, in the other half of the
box. This behavior is illustrated in Fig. 4. The sloshing
back and forth of the modulated wave qualitatively re-
sembles the "blinking state" behavior observed in binary
Huid and doubly difFusive convection experiments ([3,4]).

It is important to note that by varying the aspect ratio
L by a small [i.e., O(l)] amount, difFerent regions of the
(p, Ap, ) plane can be accessed. Hence, the theory predicts
that the type of behavior found near onset will be highly
sensitive to aspect ratio, as observed experimentally [3].

Cl. Asymptotic scaling: AR. ~ 1/I, Aw ~ 1/L

We next consider the original scaling relation LR
1/I and supplement it with the auxiliary condition

1/I . A multiscale asymptotic analysis similar to
that described above now recovers the full normal form
equations (24a, b) (neglecting deviations in the nonlin-
ear coeKcients), i.e. , there is no longer any "averaging
out" of any terms in the equations. This is because
Eqs. (24a,b) are in i'act invariant under the rescaling:
p M 6 p) L kp, M 6 Ap) L Ltd M 6 &) Zy ~ CZi) Z2 ~ CZ2)

t ~ t/e Hence, with .this new scaling, Eqs. (24a, b)
also provide an asymptotically well-de6ned d.escription
for the underlying system. The requirement Ace 1/L2
implies that the difFerence in oscillation frequencies be-
tween the two modes is smaller than what it would be
under generic circumstances. This can be achieved by
adjusting a second control parameter in the system and
is entirely analogous to the (implicit) assumption made
in the usual derivation of the Ginzburg-I andau equations
that the group velocity of a traveling wave is small. With
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0

7 4 —1

{c)

FIG. 2. The bifurcation diagrams for A = —1 and (a) B ) 1, (b) 0 ( H„( 1, (c) —1 ( B„(0, and (d) B ( —l.
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this scaling there is no longer a fast time scale in the sys-
tem and thus certain terms in the normal form equations
no longer average to zero.

The analysis of the normal form equations (24a,b)
divides naturally into two parts, the Hopf bifur-
cation with D4 symmetry when the parameters
A p, A~, AA. , AB, LC vanish, and the nonsymmetric
case when they are small but nonzero. We begin by re-
viewing the D4-symmetric problem.

The D4-Symmetric caae

In the D4-symmetric case Eqs. (24a, b) have the sym-
metry

(zq, z2) + (zg, —zg), (zq, z2) ~ (z2, zq),

in addition to the S normal form symmetry. To study
these equations, the following coordinate transformation
proves useful [27j:

t=7/8-

t=6/8-

t=5/8-

t=4/8-

t=3/8-

t=2/8-

t=1/8-

t=o-
—20

I

0
X

(a)

20 40

PIG. 3. Odd and even par-
ity states 8(x, yo, t) given by
(32) and (33a,b) as a function of
x Q ( ——,—), at a sequence of
times separated by At = ——,
for L = 80, ur( u') = 2vr,

k = 1, n = 2.5, P = 2.0.

t=7/8—

t=6/8-

t=5/8-

t=4/8-

t=3/8-

t=2/8-

t=1/8-

—40
I

—20
I

0
X

20

(b)
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t=157—

FIG. 4.~ . A modulated wave
shoown at two successive times
(t = 0, 157.0) for u = 6.293,
~' = 6.273, T, = S.6, T, = j..3,
L = 80, k = 1, n = 25,
P = 2.0.

—40
I

-20 20 40

u + iv = r sin Oe'~ = 2ziz2,
tv = r cos 0 = izt/ —iz2f

e
Zi Z2

Zi Z2

(35a)
(35b)

(35c)
+C„sin 0 cos 2P)), (38a)

In terms of the ~u, v ~ "'(u, v, tv, +) coordinates, Eqs. (24a, b) take
do—= r sin o[cos0(B„—A„+ C„cos 2P) —C sin 2

1 dtt
(p + R~p ) + (I~ —I~ )v tv )

1 Gv
v(p + Bvr) + (Im Iu)tvu,

1 GXU

2 dt
= tv(p, + B r) + (I„—I„)uv,

(36b)

(36c)

Kt .. (u, v, tv) ~ (—u, —v, tv);

r2 .. (u, v, tv) m (u, —v, —tv), (37)

constituting the grou Z Z
exist three s m

p 2 x 2
— D . There

symmetric fixed points of th
(u00) (Ov0, 00tv w

' 'o

in the four-dime
, m, w ic represent period b to ic ol i s

h — imensional phase space of the D -s mm
system. A nonsymmet

o e 4-symmetric

where r = gu2+v2+tv2 ) 0 g
p e equation for the phase g. Th

B„,B,B I I I
se . e parameters

are de6ned in terms of th
cients A, B,C.

s o , e coe

The symmetr o
by

y of the reduced system 36 —'o &(a—c)~is given

(38b)

dP = r[cos 9(A; —B, —C, cos 2P) —C„sin 2$],

(38c)

where A„,B„C A ;, C, denote the real and ima i-

nary parts of the coeKcients 4, B C an

in o projecting the three-dimensional system r 0 )

0 2
a associate spherical system"

(,P) [27]. Under appropriate re t t', h a
one-to-one co

res ric ions, there exists a
one- o-one correspondence between the fixed oints

in t e t ree-dimensional system (38a—c . B ana

n s t at when the nonsymmetric fixed
sent an

ic xe points are ab-
and all the symmetric Axed

' t b'
~ ~

e poin s i urcate su er-
critically and are unstable, a stable limit c

p

ependmg on parameters [30]. Such limit
cycles represent two-fre uenc sq cy so'utions in the original

our- tmensional) normal form equations an

e oun int especialcase p=B„=B =A =0
when equations (36a—c) reduce to th E 1e o e u er equations,
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and when B„=B . These connections are prime candi-
dates for generating chaotic dynamics once the D4 sym-
metry is broken.

Note that these equations are equivariant under

K, : (tL, v, tU) ~ ( tL—, —V, tU); (41)

2. The nenaym, m, ethic case

We now consider the full normal form equations
(24a,b), for which the D4 symmetry is only approximate,
corresponding to a large but finite container. We be-
gin by reducing these normal form equations to a three-
dimensional system using the (u, v, tU) coordinates intro-
duced in (35a—c):

1 dD = Vu+ R„rtL+ (I„—I )vtU —ALU v —AI„rv
2 dt

The K2 symmetry (37) associated with the D4-symmetric
case is no longer present.

In the following we set

AB„=AB„=AB = AI„= AI„= AI = 0, (42)

as indicated by the present scaling. Only in cases where
certain degenerate structures are present will it be neces-
sary to retain these terms. Moreover, through rescalings
we may also set I„—I = —

2
—o., I —I„=——+ o.1 i

2I„—I„= 1, while absorbing the factors of 1/2 on the
left-hand side of (39a—c) into a redefined time scale. The
pure modes (zi, o) and (0, zz) now take the form

1 dv

2 dt
:Vv + B rv + (I —I )tLJtL + ALU tL + AI rtL

+(AB —AB„)tUV,

1 dQJ

2 df.
= Vtv + R rtU + (I —I„)tLV + AV r + AB„tL

( ,tL,v)tU=
I

0, 0,
I

ifv —»~ . v —&v
& 0.B B

(43a)

+LB„v + AB u) .

Here

B„+i I„=(A + B + C) /2,
B„+iI„=(A+ B —C)/2,

B +iI =A,
AB„+i AI„= (AA + AR + AC) /2,
AB„+i &I„=(AA + AH —AC)/2,

LB +iAI =AA.

(39c)

(40a)
(4ob)

(4Oc)

(4od)

(4Oe)

(4of)

These two solutions, which we call m„w for short, repre-
sent the even and odd parity standing wave modes in the
original system. Note that the fact that m is invariant
under the reflection (41) is an artifact of the coordinate
transformation (35a—c) leading to the reduced equations
(39a—c); in the original coordinates tU is odd under par-
ity.

Owing to the reflection symmetry (41) in the problem,
the line m = const is invariant under the Row. Conse-
quently, the 3acobian determinant governing the stability
of these fixed points factors as follows:

( 2(V + B„r) —2ALU —(1 + 2a) tU

2ALU + (—1+ 2n)tU 2(V+ B„r)
o 0

0
2(V +»—+ 2R r) )

For the even parity standing wave fixed point m, the
eigenvalue associated with the tU direction is —2(V+»).
Hence m is stable in the m direction for B & 0 and
unstable for R ) 0. Similarly, for the (odd parity) tU

solution, the eigenvalue is —2(V —»), and the fixed
point is stable in the m direction for R & 0, unstable
for B ) 0. The even mode undergoes a r i-breaking
steady state bifurcation at

[(ALU) + V, ]
—[2nALU + V(B„+B„)]

~2 ——+ R„R„, = o. (45)
(v+»)'

4
" B2

The corresponding condition for the odd mode is ob-
tained by setting» —+ —», ALU —i —ALU in (45).
Such (pitchfork) bifurcations will give rise to nonsym-
metric fixed points, which correspond to single-frequency,
traveling nave solutions in the original system. Except
very close to where they first branch from the standing

wave solutions, these fixed points cannot be found ana-
lytically without additional scaling assumptions. We will
therefore study these solutions and others numerically.

V. NUMER, ICAL B.ESULTS

We have performed a series of numerical simulations
on the normal form equations (20a,b) and various equiva-
lent representations [e.g. , Eqs. (39a—c)]. These numerical
studies were carried out using a DSTooL simulation pack-
age, as well as a fourth-order, variable-step Runge-Kutta
scheme in MATHEMATICA.

A. Standing and traveling waves

Since Eqs. (39a—c) are a perturbation of the D4
symmetric normal form, it is helpful to first provide
a physical interpretation for the various possible fixed
points of Eqs. (36a—c). The fixed points of the form
(0, 0, tU) correspond to the primary standing wave modes
of the system with either odd (tU ( 0) or even (tU ) 0)
parity. Specifically, using the representation (32),(33a,b),
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t=7/8-

t=6/8-

t=5/8-

t=4/8-

t=3/8"

t=2/8-

t=l/8-

t=o-

—40

t=7/8—

-20

~L Va

40
FIG. 5. (a), (b) Traveling

wave states of the form (47) and
(c), (d) mixed parity states of
the form (48). The solutions
are periodic in time. The plots
are constructed using the nu-
merical parameter values given
in Fig. 3.

t=6/8—

t=4/8

t=3/8—

t=2/8---

t=l/8--

t=o —--

-40 —20 20

Cb)

px) I, ( px1 7rx
y(z, y C) = se~w(e ~ cos

~

we +kz —
~ pe ~ cos

~

wt —kz+
~

cos f( ). yI ) & -Lr (46)

These solutions are illustrated in Figs. 3(a,b). The fixed points (u, 0, 0) are either left-traveling waves localized near
the left wall (u ) 0) or right-traveling waves localized near the right wall (u ( 0):

px l 7rx
tl(x, y, t) = 2Q+ue+ cos

~

(ut + kx ~ ~

cos f(y)l 1. ) L

See Figs. 5(a,b). Finally, fixed points of the form (0, v, 0) represent a type of mixed parity standing wave mode:

(47)
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t=5/8-

t=4/8"

t=2/8-

—40 —20 20

FIG. 5 (Continued)

t=7/8-

t=4/8-

t=3/8-

t=2/8-

t=o-

—40
I

—20
1

0 20 40

Px vr) Px vr 7t X
8(x, y, t) = g+2e e cos

] cut+ kx — ~ —
~

+ os u& —kx+ + — cos f(y).
l L 4) I 4 I (48)

See Figs. 5(c,d). Note that there is no spatiotemporal
symmetry that relates the solution for v & 0 with that
for v ( 0. This is because these two solutions are related
by the symmetry K2, which is an interchange symmetry
between the odd and even parity modes. The existence
of this mixed parity state in the perturbed problem was

I

noted in a related context by Nagata [28].
The perturbed equations (39a—c) have fixed points that

are either fixed by the remaining reflection vq or that
break it. The symmetric fixed points continue to be of
the form (0, 0, ui) and are thus standing vraves of either
odd or even parity, while the nonsymmetric IIixed points
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take the general form (u, v, tv). The latter can look like
perturbations of localized traveling waves if v, m are both
small, or the mixed parity waves if u, m are small. More
generally the nonsymmetric fixed points combine char-
acteristics of all three types of waves, with a gradual
transformation of one type into another as parameters
are varied. All of these patterns break reBection sym-
metry and hence exhibit some propagative features. We
will therefore refer to the nonsymmetric fixed points col-
lectively as traveling waves. All are singly periodic in
time. Numerically we find that the nonsymmetric fixed
points emerge either by bifurcating from a standing wave
fixed point [in a steady state (pitchfork) bifurcation], or
through a saddle-node bifurcation. We illustrate these
possibilities in Fig. 6.

B. Modulated waves and global bifurcations

If a symmetric or nonsymmetric fixed point (u, v, tv)
undergoes a supercritical Hopf bifurcation, a stable,
periodic orbit emerges. In the full four-dimensional
phase space, this solution represents a two-frequency
(quasiperiodic) modulated tUave. Modulated waves may
be classified as symmetric or asymmetric, according to
whether they remain invariant under the symmetry op-
eration (u, v, tu) ~ (—u, —v, tv) of the system (39c—c).
We identify the symmetric modulated waves with sym-
metric blinking states, and the nonsymmetric ones with

FIG. 6. Typical fixed point structures in the reduced
space (u, v, iv) for equations (39a—c), shown for increasing val-
ues of the parameter p. Projections in the (v, vi) and (v, u)
planes are given. Triangles denote sinks, crosses denote sad-
dles. The standing wave solutions lie along the line u = v = 0.
Observe that the traveling wave solutions can emerge either
through a saddle-node bifurcation, or through a steady state
bifurcation from the standing wave branch.

FIG. 7. Phase portraits for equations (39a—c) with Ap =
—0.0082, Aw = 0.02, B = —1, R = —3, R = —2, o. =
1.3, showing a series of global bifurcations for the modulated
waves as the parameter p, is increased from 0.0225 to 0.051.
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oscillations about a confined traveling wave. Both so-
lution types have been identified by Cross [15] in the
Ginzburg-I andau model and are also present in the sys-
tem (5a,b) [16,19]. The symmetric solutions were also
noted by Bestehorn, Friedrich, and Haken [20]. We have
numerically tracked both solution types away from onset,
and found that they can undergo an interesting assort-
ment of heteroclinic bifurcations. A representative bifur-
cation sequence is illustrated in Fig. 7 as the parameter
p is varied. Projections onto the (v, zv) and (v, u) planes
are given. The sequence shows a pair of asymmetric
(small-amplitude) modulated waves born in a Hopf bi-
furcation from an asymmetric traveling wave pair. The
orbits grow in amplitude, and combine in a (symmetry-
increasing) gluing bifurcation to form a symmetric mod-
ulated wave solution. This symmetric orbit continues
to grow, spending an increasing amount of time near the
"cusps" (see the figures for p = 0.05). Such cusps are due
to "ghost" Axed points. A heteroclinic connection forms
near p = 0.051 as two new pairs of nonsymmetric Axed
points (formerly the "ghost points") come into being via
a saddle-node bifurcation. One member of each pair is
stable (denoted by the triangle in the last set of figures),
and these stable traveling waves attract all nearby tra-
jectories. This transition thus corresponds to the usual
picture of frequency locking.

It is interesting to compare the global bifurcations
present in the normal form equations (39a—c) with those
found in the D4-symmetric case. Recall that Swift [27]
located heteroclinic connections involving various fixeR
pojnts for the D4-symmetric problem. For that case,
it was not crucial which pairs of fixed points were in-
volved, since all pairs of points could be related via a
parameter symmetry of the problem. However, for the
purposes of comparing such bifurcations with those in
our full (non-D4-symmetric) normal form equations, it is
necessary to distinguish two cases, namely, bifurcations
that, in the D4-symmetric case, are heteroclinic to the
fixed points of the form (+u, 0, 0) and those heteroclinic
to the fixed points (0, 0, +tv). The motivation for this
is as follows: as noted earlier [cf. 37] the symmetry of
the "D4-symmetric" problem in the reduced phase space
coordinates (u, v, tv) is generated by the reflections

remaining case of the (0, kv, 0) fixed points is analogous
to the (+u, 0, 0) case. ]

We begin with the global bifurcations involving the
standing wave fixed points. In the D4-symmetric prob-
lem (Ap = Aw = 0) we have a pair of periodic orbits
(i.e. , the modulated waves) that are invariant under ic2.
(The two members of the pair are related to one another
by the symmetry Ki.) These orbits grow in amplitude as
the parameter R„ is varied. They then join (at R„= —2)
in a heteroclinic connection involving the two fixed points
(0, 0, kzv) (i.e. , the two opposite-parity standing waves).
This connection then breaks, and a pair of periodic or-
bits emerges that breaks the K2 symmetry. This new
pair is invariant under Ki v 2. This global bifurcation thus
induces a v 2 ~ v i v 2 symmetry exchange in the modu-
lated waves, the bifurcation being mediated by a pair of
standing wave solutions. This is illustrated in Fig. 8. All
modulated waves considered here are stable.

In contrast, when the D4 symmetry of the normal form
equations is weakly broken (Ap = 0.005, Bur = 0.0003),

(u, v, tv) ~ (u, —v, —iv).

The fixed points (0, 0, +tv) are invariant under vi, while
the fixed. points (+u, 0, 0) break the Kj symmetry, be-
ing instead invariant under K2. The full (nonsymmetric)
normal form equations (39a—c) (Ap, Ace g 0) destroy the
K2 symmetry of the problem but preserve the Kq equiv-
ariance. Hence r i-symmetric axed points of the form
(0, 0, +tv) continue to exist (i.e. , the standing waves),
while those that break the Ki symmetry are now associ-
ated with (asymmetric) traveling wave solutions. Thus,
qualitatively diferent global bifurcations occur in the full
normal form equations depending upon whether the cor-
responding heteroclinic bifurcation in the D4-symmetric
case is to Ki-symmetric or ri-breaking fixe points. [The

FIG. 8. Modulated waves for the D4-symmetric case, with
@=0.05, &p=O, &u=O, R = —2, R = —1.75, o. =O.
The sequence shows the projections onto the (u, v} and (u, iv}
planes as the parameter B is varied from —1.9 to —2.1.
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the initial pair of modulated waves is no longer v2 in-
variant, although the two waves remain related to one
another under v~. As R„ is varied, these solutions even-
tually merge and form a single, v.z-symmetric orbit. This
orbit then pinches ofF in an "ungluing" bifurcation involv-
ing a, single homoclinic point at (0, 0, —tv). Following this
homoclinic bifurcation to a standing wave, a pair of new
periodic orbits emerges, both of which again break the
v. q symmetry. This is illustrated in Fig. 9.

We next consider global bifurcations of modulated

waves involving the traveling wave fi.xed points. In the
D4-symmetric case we find a stable pair of periodic orbits
that break the vj and r2 symmetry, but that are invari-
ant under vqr2. As the parameter B is varied, these or-
bits eventually merge in a heteroclinic connection involv-
ing the pair of traveling wave fixed points at (+u, 0, 0).
A new pair of Ki-symmetric orbits then emerges. The
global bifurcation thus leads to a Kzv2 —+ r j symmetry
exhange. See Fig. 10. This picture is significantly modi-
fi.ed when the D4 symmetry of the problem is weakly bro-
ken (Ap = 0.001, Ace = 0.005). For the parameter values
examined there exists, in addition to an initial pair of or-
bits (which are still related by r.i, but which are no longer
Kir2-symmetric), a stable ri-symmetric orbit. Each of
the orbits in the pair becomes homoclinic to a (different)
traveling wave fixed point and is destroyed. The stable
ri-symmetric orbit remains. See Fig. 11.

We note also that, as for Eqs. (5a,b) [17,18], stable
modulated waves can coexist with stable traveling waves.
This is true despite the fact that both such solutions can
be brought arbitrarily close to the origin (as can be seen
by rescaling the u, v, m variables along with the unfold-
ing parameters p, Ap, , Aw). We illustrate this in Fig. 12.

FIG. 9. Modulated waves for the broken-D4-symmetry
case, with p = 0.05, Ap = 0.005, Aw = 0.0003, R„= —2,
R = —1.75, n = 0, as R„ is varied from —1.96 to —2.0233.
Note the ez-symmetric modulated wave that forms near R
—2.007 (frame 3). A homoclinic connection occurs between
R„=—2.0231 and —2.0233 (frames 5 and 6).

FIG. 10. Modulated wave for the D4-symmetric case, with
p = 0.05, Ap = 0, Ace = 0) R„=—1.75, R = —2, n = 1.5.
The sequence shows the projections onto the (v, iv) and (v, u)
planes as the parameter R„ is varied from —1.90 to —2.02.
Observe the heteroclinic connection in frame 3 (R„=—2.0).
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u

FIG. 11. Modulated waves for the broken-D4-symmetry
case, with p = 0.05, Ap, = 0.001, Aw = 0.005, R„= —1.75,
R = —2, o. = 1.5, as the parameter R is varied from —1.900
to —1.939.

Numerical simulations also show that the stable modu-
lated waves appearing in the D4-symmetric problem per-
sist even after the D4 symmetry is (weakly) broken; the
waves merely deform, despite the apparent absence of an
invariant sphere.

C. Period doublings, chaos, and collapsing states

Numerical simulations have revealed a number of other
dynamical phenomena associated with the modulated

FIG. 13. Period doubling of a modulated wave for p, = 0.1,
Ap= —013, An=008, R = —09, R = —18, m=25
[Egs. (39a—c)], as the parameter R„ is varied from 0.0610 to
0.0621. The motion is projected onto the (i), u) plane (left col-
umn); blow-ups of the top portion of each figure are provided
(right column) .

wave solutions. In particular, period-doubling sequences
can occur for the modulated wave solutions. Since the
modulated waves are in fact 2-tori in the full four-
dimensional phase space, such bifurcations correspond. to
torus doubling. Nonetheless, for visualization purposes,
it is simpler to remain within the three-dimensional phase

V

FIG. 12. A stable, @z-symmetric modulated wave coexist-
ing with a stable traveling wave (denoted by a triangle), for
p = 0.09, Ap, = —0.01, A~ = 0.1138, R„= —1, R„= —3,
R = —2, n = 1.3.

FIG. 14. A chaotic attractor for R = 0.0625. The at-
tractor breaks the re6ection symmetry mi of the problem (not
obviaus from picture).
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space (e.g. , u, v, m). In Fig. 13 we illustrate a sequence of
period doublings, through period eight, as a control pa-
rameter (B„) is varied. Note that the modulated waves
depicted here break the reBection symmetry vi of the
problem.

As the parameter B is increased further such period-
doubling sequences can lead to (apparently) chaotic dy-
namics. This is depicted in Fig. 14. With increasing
parameter values such an asymmetric attractor can grow
and merge with its opposite parity counterpart to form
a ri-symmetric object. This process can reverse as well.
The existence of chaotic structures has also been noted
by Knobloch and Hirschberg in a numerical study of the
related equations (5a,b) [19].

For other parameter values additional types of solu-
tions are found. Figures 15(a,b) depict large-amplitude
periodic and apparently chaotic solutions. The presence
of such large-amplitude solutions is particularly interest-
ing, since points on these trajectories spend a great deal
of time near the origin, while making occasional, short-
lived, large-amplitude excursions away from it. During
such "bursts, " the amplitudes of the solutions have been
observed to grow to over 40 times their characteristic size
near the origin before undergoing a rapid collapse. This
bursting behavior is qualitatively similar to the "repeated
transients" and "collapse states" observed in experiments
and numerical simulations of binary fluid convection [7,
8], and offers a possible explanation for the observed be-
havior. It is useful to examine these large-amplitude or-
bits in terms of the full four-dimensional normal form
equations (24a,b). In Figs. 16(a,b,c) ~zq~ + ~z2~ is plot-
ted as a function of time for both types of solutions. The
bursting behavior is clearly seen. Observe that the col-
lapse of the spike is more rapid than its growth, as ob-
served in the experiments [7,8]. Note that this repre-
sentation for the solutions eliminates the fast oscillations
at frequency near w, and hence describes the dynamics
of their envelopes. Consequently, the temperature field
8(x, y, t) corresponding to Fig. 16(a) is in fact quasiperi-
odic. As noted previously, parameter values can be found
such that the burst peaks are significantly larger than
those depicted here. We have observed that the ampli-
tudes of the bursts are highly sensitive to parameter value
and integration time step, suggesting that in the physical
system, external noise could play a prominent role. This
behavior is reminiscent of that usually associated with
the presence of a global bifurcation.

It should be noted that the "large-amplitude" burst-
ing behavior considered here must really be regarded as
small in absolute magnitude, in order for the normal form
equations to remain valid; the significant feature of the
solution is the large ratio of the amplitude of the bursts
to the amplitude of the motion near the origin. The
overall amplitude can be made small by reducing the bi-
furcation parameter and rescaling the equations. How-
ever, experimentally it is unclear whether the observed
finite-amplitude bursting behavior would be reduced in
amplitude if the system parameters were brought closer
to threshold. If this is so the asymptotic description pro-
vided by the normal form equations presents a reasonable
explanation for this particular phenomenon. However, if
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FIG. 15. Large-amplitude attracting orbits for p = 0.1,
A(v=008, R =01, R„= —09, B = —18, m=25; (a)
periodic attractor at Ap = —0.13; (b) aperiodic attractor at
Ap = —0.14. Enlargements near the origin are also shown. In
these parameter regimes the system behavior depends sensi-
tively on the time step size used in the numerical integration
scheme. The attractors shown here were calculated with a
fourth-order Runge-Kutta Inethod with a step size of 10
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the experimental bursting behavior is inherently a Bnite-
amplitude efFect, then the theory ofFers no such solution.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have argued that traveling wave con-
vection in a large aspect ratio container cannot be com-
pletely described as a perturbation of the unbounded
translation-invariant system. In particular we have
shown that when the problem is described as the large

aspect ratio limit of oscillatory convection in a box the
resulting amplitude equations have an approximate D4
symmetry. As a consequence an additional cubic nonlin-
earity with an O(1) coefficient is present. This new term
is intrinsic to the problem and thus does not represent a
perturbation to the unbounded problem, where this term
is entirely absent. Mathematically this is because in 6-
nite boxes translation invariance cannot be used to argue
for the absence of terms of the form (Szv2, ee2) in (5a,b).
A similar observation applies to the onset of steady con-
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vection in a large container. Here too the interaction
between even and odd. parity modes is described by am-
plitude equations with approximate D4 symmetry [31]
and the equations of [23] cannot be obtained as a small
perturbation of the translation-invariant system.

The above conclusion is at variance with earlier at-
tempts at treating this problem in terms of traveling
waves using coupled complex Ginzburg-Landau equa-
tions with appropriate (linearized) boundary conditions
for the envelope functions [15,16]. As shown in Ref. [16]
this approach leads, near onset, to the normal form equa-
tions for the unbounded problem, perturbed by small lin-
ear terms. The predictions of the resulting theory [17,18]
are in good. qualitative agreement with the experiments
[3, 16] and with numerical integration of the Ginzburg-
Landau equations [15]. Nonetheless, in spite of this suc-
cess, there has in fact been no quantitative tests of this
theory, neither against experiments nor against numeri-
cal simulations of the full fj.uid equations in long but finite
boxes.

The present theory, as shown in this paper, also pre-
dicts states that bear a qualitative resemblence to the
observed ones. In particular we have described not only
the two types of standing waves and secondary bifurca-
tions to traveling and blinking states, but have also found
in our equations asymmetric quasiperiodic states of the
type described by Cross [15], as well as states resembling
the "repeated transients" first observed in Ref. [7].

Although once again the agreement is merely quali-
tative, the amplitude equations derived here have suc-
ceeded in describing a larger variety of the observed dy-
namical behavior. Despite this success, there remain
some problems in directly comparing these results with
the experimental observations. A prime difhculty is that
in experiments on doubly diffusive and binary Quid con-

vection, the precise degree to which the system is above
threshold (corresponding to the parameters p, Ap, ), as
well as the scaling behavior of the system, are not eas-
ily determined. Moreover, we know that for most val-
ues of the. separation ratio the bifurcation to standing
waves is in fact subcritical [32, 33] and this is so also
in finite but large aspect ratio boxes [8]. However, for
other problems, like the Taylor-Couette, the transition
to standing waves is usually supercritical [34] and the
potential for comparing the present theory with experi-
ments is much improved. It should be emphasized that
because of the approximate D4 symmetry the applicabil-
ity of our equations will extend beyond the present set of
problems. We mention just two examples, the dynamics
of Faraday waves in a nearly square container [35] and
the long-term dynamics of the solar sunspot cycle arising
from the interaction of dipole and quadrupole magnetic
fields [36].

In an accompanying paper [37] we compute explicitly
the normal form coefIicients A, H, C in Eqs. (24a, b) for a
doubly diffusive system in Hele-Shaw geometry, recently
studied in Ref. [4]. These calculations verify that all three
coefIicients remain of order one in the limit of large aspect
ratio boxes and provide an independent justification of
our approach. A related calculation by Zangeneh [38] for
oscillatory magnetoconvection in finite containers yields
similar conclusions.
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