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Capillary gravity waves caused by a moving disturbance: Wave resistance
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The dispersive property of capillary gravity waves is responsible for the complicated wave pattern generated
at the free surface of a calm liquid by a disturbance moving with a velocity V greater than the minimum phase
speed c '"=(4g y/p)" (p is the liquid density, y is the liquid-air surface tension, and g is the acceleration due

to gravity). The disturbance may be produced by a small object immersed in the liquid or by the application of
an external surface pressure distribution. The waves generated by the moving disturbance continually remove

energy to infinity, and, consequently, the disturbance experiences a drag called the wave resistance. The wave

resistance corresponding to a surface pressure distribution symmetrical about a point was analyzed by Have-

lock in the particular case of pure gravity waves (i.e., y=0) for which the minimum phase speed reduces to
zero. Here, we investigate the more general case of capillary gravity waves using a linearized theory. We also
analyze the integral depression of the liquid, the momentum carried by the liquid, and the effective mass of the
disturbance for velocities V smaller than c '". These results may possibly lead to a new method of probing soft
surfaces.

PACS number(s): 47.35.+i, 68.10.—m

I. SOME PRELIMINARY IDEAS

A. Probing liquid surfaces

The surface of soft systems (e.g. , liquids, gels, or smectic
phases) is often rather difficult to probe, because many pow-
erful techniques (e.g. , electron microscopy) impose severe
conditions (presence of a high vacuum, introduction of stain-

ing agents, etc.). These conditions perturb dramatically the

original surface.
The atomic force microscopes (AFM) are essentially free

of these problems: here we can bring a very sharp tip close
to a soft surface. Usually, what is measured is the force be-
tween the two partners. Our general aim here is to propose
another family of detection methods. When we move the tip
at some uniform speed V parallel to the surface (Fig. 1), the

tip induces a local distortion of the soft system. We may
probe this distortion by optical means, but the resolution is
poor. We may also use mechanical information: (a) a mea-
sure of the horizontal force on the probe, which is cleary
related to the dissipation in the soft medium, or to the cre-
ation of surface waves, (b) more delicately, we may expect
that the mass of the probe is renormalized by the coupling.

These effects are complex, and it is of importance to as-
certain their magnitude. The simplest soft system is a non-
viscous liquid. In previous notes [1,2], we considered a
model system with a point like particle carrying an electric
charge e moving at a small distance (10—1000 nm) from the
liquid surface (see Fig. 1 of Ref. [2]).This, in itself, is utterly
unrealistic, because the velocities V of interest are small, and
an electron or a proton moving at such low velocities has a
very short mean free path if we operate at the liquid vapor
pressure (even if we think of a polymer liquid, which in itself
has an exponentially small vapor pressure, oligomer con-
taminants in the liquid are enough to provide a vapor phase).
However, the charged particle system was not useless, for the
following reasons:

(a) Instead of using a single charge, we can think of using
a beam of rapid electrons, and to move the beam laterally at

a low speed (Fig. 2). Then we do not require a very high
vacuum.

(b) We can think of charging the AFM tip, provided that
we remain below a certain spark threshold.

(c) Ultimately, the point charge system was interest-
ing: it brought in a number of physical features. A "bump"
is expected to show up in the liquid, and the number of
molecules involved is quite large, even for a single electron
charge and relatively large distances from charge to surface.
Originally, we had an incorrect belief: namely, that the
mass in the bump would show up as a (large) effective mass
correction for the probe [1].After some time we realized that
it is not so, and we constructed explicit formulas for the
effective mass [2] [see also Sec. III, (2)].

(d) It is also quite clear that the exact nature of the probe,
and of the surface-probe interaction, is not essential: many
local perturbations show common features.

FIG. 1. An AFM tip moving above the surface of a soft system
at a constant velocity V.
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wave: c=(g/k)" . In the opposite case of the short wave-
lengths (k&)/c), the effect of gravity may be neglected and we
have a pure capillary wave: c = ( yk/p)" . An important
feature of Eq. (1.3) is that it implies a minimum phase speed
of

c '"=(4gy/p)" (1.4)

FIG. 2. A beam of rapid electrons moved laterally at a low speed
V. The beam (represented by the dotted line) induced a local dis-
torsion of the soft system.

One crucial point, however, was not deeply discussed in
Refs. [1]and [2]: namely, the friction force due to the cre-
ation of a wake at the surface of the fIuid. Wakes have been
studied extensively in the hydrodynamic literature, mainly
for large objects such as ships, etc. But we lack a detailed
analysis of the wake friction for small objects where capil-
lary ~aves are essential. This analysis is the aim of the
present paper.

z = j(x,t) = a cos(kx+ tot),

where cu is the (circular) frequency and k is the wave num-
ber. By "small amplitude" we mean that the amplitude a
of the oscillations is small compared to the wavelength X

=2~/k. For a liquid of infinite depth, the relation between co

and k (i.e., the dispersion relation) is given by [4,5]

k
co =gk+ p

p
(1.2)

where p is the liquid density, y is the liquid-air surface ten-
sion, and g is the acceleration due to gravity.

Equation (1.2) may also be written as a dependence of
wave speed c = cu!k on the wave number

k~ 1/2

C= —+
k p )

(1.3)

B. Capillary gravity waves

Consider a body of liquid in equilibrium in a gravitational
field and having a plane free surface. If, under the action of
some external perturbation, the surface is moved from its
equilibrium position at some point, motion will occur in the
liquid. This motion will be propagated over the whole sur-
face in the form of waves, which are called capillary gravity
waves [3].These waves are driven by a balance between the
liquid inertia and its tendency, under the action of the force
of gravity and under that of surface tension forces, to return
to a state of stable equilibrium.

Consider a small-amplitude sinusoidal plane wave propa-
gating along the liquid-air interface in the negative x direc-
tion with a wave speed c. The liquid is taken to be incom-
pressible and inviscid. The vertical displacement of the
disturbed surface g may be written as

E=-2pc ka . (1.5)

It is well known that the sinusoidal wave (1.1) transports
energy not at the wave speed c = to/k (also called the phase
velocity) but at the group velocity defined by c =dco/dk.
From Eq. (1.2) we obtain

g+3yk /p

2(gk+ yk /p) " ' (1 6)

Equations (1.3) and (1.6) indicate that the group velocity is
smaller than the phase velocity for k(K, while the reverse is
true for k)/r. For long wavelengths (k((v), Eq. (1.6) reduces
to cs=(g/k)" /2=c/2. In the opposite case of the short
wavelengths (k&)/c), we have c =(3/2)(yk/p)" =3c/2.

C. Wave resistance

The dispersive property of capillary gravity waves is re-
sponsible for the complicated wave pattern generated at the
free surface of a still liquid by a moving disturbance [4—7].
The disturbance may be produced by a small object (such as
a fishing line) immersed in the liquid or by the application of
an external surface pressure distribution P,„, [7]. Consider,
for example, the waves generated by a pressure distribution
localized along a line parallel to the y axis and traveling over
the surface in the negative x direction with speed V. A
wavecrest propagating in the negative x direction at a phase
velocity c can be stationary relative to the moving distur-
bance if and only if c= V. Equation (1.3) shows that there
are no steady waves generated by the disturbance if the ve-
locity V is smaller than the minimum phase speed c '". If,
however, V) c '", there are two values of k for which c = V
(say k, and k2, with k, (k2). These values are given by

I/ V )2
minc

/ min) 4 i/2

1 — 1— (1.7)

and

reached at k '"=K. For water with y=73 mN m ' and
p=10 kg m, the minimum phase speed is c '"=0.23
m s ' and the corresponding wavelength is X '"=2'!K=1.7
10 m. Equation (1.3) indicates that there are two possible
values of k for any prescribed value of c greater than c

The excess energy (which we shall call simply the energy)
in the small-amplitude sinusoidal wave (1.1) is divided
equally between (i) the kinetic energy and (ii) the energy
associated with the restoring forces (gravity and surface ten-
sion). The energy per unit horizontal area E is easily shown
to be [3]

For long wavelengths such that k((/r=(pg/y) (where /t

is the capillary length), the effects of the surface tension are
negligible and the wave is a pure gravity

i V ) 2 j min) 4 1/2

k2=K mjll l 1 + 1 (1.8)
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The smaller (i.e., k, ) satisfies k(x ' and represents a rela-
tively long-wavelength wave for which the group velocity is
less than the speed U of the disturbance. Accordingly, this
wave is found behind the moving disturbance. The larger
value (i.e., k2) satisfies k)sc ' and represents a relatively
short-wavelength wave for which the group velocity is
greater than V. Accordingly, this wave is found in front of
the moving disturbance. The waves generated by the moving
disturbance continually remove energy to infinity. Conse-
quently, for V~c '", the disturbance will experience a drag
called the wave resistance. The wave resistance, denoted
here as R, can be calculated as follows [5]: The energy F„
per unit area in the waves downstream of the disturbance is
moving away from it at the velocity V —c ", where c is the
group velocity for these longer waves with wave speed c = V
[c is obtained by substituting k=ki into Eq. (1.6)]. Simi-
larly, the energy F, per unit area in the wave upstream of the
disturbance is moving away from it at the velocity c ' —V
[c" is obtained by substituting k= k2 into Eq. (1.6)]. There-
fore, the power D that the moving disturbance must expend
to generate both sets of waves is (per unit of length along the

y direction)

D=[V—c ]Fd+[c"—V]F.„.
Since the rate at which work is being done by the moving
disturbance is D = R V, the force R resisting the disturbance
motion is (per unit of length along the y direction) [5]

U —c
R= Ed+ (1.10)

An explicit expression for R may be obtained by substituting
Eqs. (1.3), (1.5) and (1.6) into Eq. (1.10), yielding

Vk2(1+k' ') 2

y~ [(1—k, x. )a„+(k2~ —1)a,], (1.11)

where ad is the amplitude of the waves downstream of the
disturbance and a„ is the amplitude of the waves upstream of
the disturbance. These amplitudes depend on the wave num-
bers k, and k2 and on the exact form of the pressure distri-
bution [6].Consider, for instance, the case of a pressure dis-
tribution P, , concentrated on a mathematical line. It is then
of the form P„,=PS(x V+t), where 8 denotes the Dirac 6
function. It will be shown below (Sec. II A) that in this case
the amplitudes ad and a„are equal and given by [6—8]

II. WAVE MOTION CREATEO BY A MOVING PRESSURE
SYSTEM

Consider an incompressible, inviscid, infinitely deep liq-
uid whose free surface is unlimited. We take the xy plane as
the equilibrium surface of the quid and the z axis as the
direction perpendicular to the equilibrium surface. Let
z = j(x,y, t) denote the displacement of the free surface from
its equilibrium position. Let us assume that the Auid motion
is irrotational. Consequently, the liquid velocity can be ex-
pressed as v =grading, where y is called the velocity potential.
In the presence of an external pressure distribution
P„,(x,y, t), the velocity potential y is determined by solving
Laplace's equation

Acp=o, (2.1)

along with the boundary conditions

8+ 8 cp 8 8 p 8 (pi

z
~ gt gz gx gy ~

for z=O, (2.2)

(remember that R =0 for V(c '", since in that case there are
no steady waves generated by the disturbance). In the limit
V&) c '", Eq. (1.13) reduces to R =p /y. In this high velocity
limit, R is independent of gravity. As the velocity V ap-
proaches c '" (from above), the amplitudes ad and a, and,
consequently, the wave resistance (1.13), become un-
bounded. The reason for this unbounded response is the fol-
lowing: As V approaches c '", the group velocities c and
c ' tend to V and the energy transferred to the moving pres-
sure distribution cannot be radiated away.

In the examples discussed above, the surface pressure dis-
tribution was uniform in one direction (the y direction). Ac-
cordingly, the generated waves were two-dimensional (2D)
waves with straight, parallel crests (perpendicular to the di-
rection of the disturbance motion) and the wave resistance
was given by the simple expression given in Eq. (1.10). The
main concern of the present paper is the wave resistance
corresponding to a surface pressure distribution localized
near a point, rather than distributed along a line. The wave
pattern is then more complete and involves oblique waves
that propagate at nonzero angles to the direction of the dis-
turbance motion (we will refer to such waves as 3D waves)
[5].The wave resistance corresponding to a surface pressure
distribution symmetrical about a point was analyzed by
Havelock [9] in the particular case of pure gravity waves
(i.e., y=0) for which the minimum phase speed c '" reduces
to zero [see Eq. (1.4)]. In this article we will explore the
more general case of the capillary gravity waves. This study
was done within the framework of the linear theory of cap-
illary gravity waves [see Sec. III, (1)].

2p

v(k2 —ki)
(1.12) 8p ~0 for z —+ —~. (2.3)

S' k2+k~ S' 1

y k2 —ki y [1—(c '"/V) ]
(1.13)

The wave resistance for V) c '" is therefore [cf. Eq. (1.11)] We now study the wave motion created by an external
surface pressure distribution that moves with speed V in the
negative x direction. The external pressure distribution is
then of the form
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FIG. 3. The curve C defined by Eq. (2.11) for
V/c '"=l.l.
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P,„,(x,y, t) = P(x+ Vt, y). (2.4)

Having in mind Eq. (2.1) and the boundary condition (2.3),
we shall seek a velocity potential of the form

As long as the stream velocity V is smaller than c '", the
bracket on the left hand side of Eq. (2.10) is positive. For
V&c '", however, the equation

dk dky
rp(x, y, z, t) = A(k, , kY) exp i [k,(x+ Vt)

J 2m' 2m

+ k y]exp[kz), (2.5)

k
y(k +K ) —pV —=0

k
(2. 1 1)

where k= (k + k )" . The amplitude A(k, , k ) is obtained
by substituting Eq. (2.5) into the free surface boundary con-
dition (2.2), and is

[yk(k +K ) —pV k, ]A(k, , k, )= —ik, UP(k, ky),
(2.6)

gives solutions that define a curve C in the (k, , k, ,) plane. It
is worth noticing that Eq. (2.11) corresponds to the disper-
sion relation (1.2) for co=k, V. The curve C is sketched in
Fig. 3. It is symmetrical about both the k and the k axes.
Using polar coordinates, Eq. (2.11) can be rewritten as

where P(k, , k ) denotes the Fourier transform of the func-
tion P(x,y)

pU
k2 —k cos2 0+ v2 = 0, (2.12)

f dkx dkY
P(x,y) = P(k, , k )exp i[k,x+kyy].

J 277 27T
(2.7)

where k =k cos 0 and k~=k sin 0. Let y be the angle de-
fined by

A. Surface displacement cos y=c '"/V, O~y&z/2. (2.13)

The vertical displacement of the liquid-air interface may
be obtained by combining the kinematic relation at the free
surface BI.IBt=(8@IBz), o [3] and Eq. (2.5), and is

dk. dk, .
j(x,y, t) = j(k, , k~)exp i[k,(x+ Vt)+k~y],

J 2' 2m
(2 g)

where

For a given 0 in the range 0~&y, Eq. (2.12) gives two
solutions, k (0) and k+(0):

t V f 2

k ( 6l) = K' ~;„(COS l9 (COS 8 COS g) ),

k
j(k. , k, ) = . A(k„ky).)k V

(2 9)

( V ) 2

k+( 6l) = K' (COS 9+ (COS 0 COS g)
(2.14)

According to Eq. (2.6), the Fourier component j(k, k ) sat-
isfies

k2

y(k + K ) —pV —s(k, , ky) = —P(k, k, ). (2.10)

Since the motion of the pressure distribution is steady, we
can consider the physical properties of the system at any
time including, in particular, t=0. According to Eqs. (2.8)
and (2.10), the surface displacement is given by



3452 E. RAPHAEL AND P.-G. de GENNES 53

dk dky
/(x, y, t=0) =— P(k„ky)

k
y(k + tr ) —pV

k

2p
g(x) = — sin(k~x)+F(x)

y kp —k(

for negative values of x, where

(2.20)

Xexp i[k,x+k y]. (2.15)

P„,(x,y, t) =e "P(x+ Vt, y). (2.16)

Here, e is a small positive number that will ultimately be
allowed to tend to zero. The solution (2.15) is now replaced
by

j(x,y) = lim g,(x,y),
e—+0

(2.17a)

[In order to simplify the notations, we shall simply write
j(x,y) instead of f(x,y, t=0)] The. integral (2.15) cannot be
evaluated unambiguously because the poles of the integrand
are on the domain of integration. This ambiguity is removed
by imposing the radiation condition that there be no wave
coming in from infinity [5]. There are several mathematical
procedures equivalent to this radiation condition. One of
them is to consider that the amplitude of the disturbance has
increased slowly to its present value in the interval
—~(p(Q

p [+- m m
F(x) = dm

~y(k, k, )—J0 m +k, m +k, l

X exp( —m~x~). (2.21)

j(x~0) = —
~ sin —

~ x
p V2 V2

The disturbance of the level represented by the function
F(x) is very small for values of x that exceed, say, half the
greater wavelength X&=2~/k, . Beyond this distance, the sur-
face is covered on the downstream side of the disturbance by
a simple sinusoidal wave of wavelength P &=2m/k& and am-
plitude a&=2p[y(kz —k, )] ', and on the upstream side of
the disturbance by a simple sinusoidal wave of wavelength
kz=27rlkz and amplitude a„=2P[y(kz —k, )] '. In the ab-
sence of capillary forces (i.e. , y=O), Eqs. (2.19)—(2.21) re-
duce to [6,7]

where

dk, dk~
C,(x,y) = —

„
P(k. , ky)

y(k + t~ ) ——(k V —ie)
and

p f+
+

7rpV J 0
dm ~

(
~ ~ exp( —mx)

m +(g/V
(2.22)

Xexp i[k x+k y]. (2.17b)
p I

+
c( «)=

m'PV g 0
dm ~

(
~ ~ exp(+ mx),

m +(g/V
(2.23)

In order to illustrate how Eqs. (2.17) can be used, it is
instructive to consider the case of 2D waves. The surface
displacement is then given by s(x) =lim, Dj,(x) where

1j,(x) = ——Re
30

P(k )

[y(k, + t~ ) —pk V +2iepV]

X exp i[k x] (2.18)

(Re stands for "real part of").The pole of the integrand that
was located at k, [Eq. (1.7)] has now been shifted above the
k axis and lies at k, +b, , where 5=2iepVy '/(kz —k, ).
Similarly, the pole that was located at kz [Eq. (1.8)] has now
been shifted below the k axis and lies at k2 —A. Note that
the fact that k& (kz) has been shifted above (below) the k,
axis is a direct consequence of the inequality c g

(U

(c")V). Since the poles are now out of the domain of inte-
gration, the integral (2.18) can be easily evaluated by using
contour integral techniques [10].For a pressure distribution
of the form P(x) =p8(x), for instance, we obtain [6,7]

I

dx dy j(x,y) = lim lim ((k, , k ).
kx~0 k ~0

(2.24)

Now, using Eq. (2.10), we obtain

P(k, =O, ky
——0)

(2.25)

respectively. Using Eqs. (2.22) and (2.23), Lamb [6] calcu-
lated the "integral depression" of the surface II=jdx g(x)
and found that A= —p(pg) ' [ll], exactly as if the fluid
were at rest.

The fact that 0 is independent of the velocity V is in fact
a general result that is not restricted to the particular case of
2D pure gravity waves with a pressure distribution concen-
trated on a mathematical line [i.e., y=O and P =p B(x)].This
can been seen as follows: According to Eq. (2.8), the inte-
gral depression of the surface can be written as

2p
g(x) = — sin(k, x) + F(x)yk —k,

for positive values of x, and

(2.19)

exactly as if the fluid were at rest [P(k =0, k =0) corre-
sponds to the total force acting on the Quid surface along the
negative z direction] [1,2]. It is remarkable that fI is inde-
pendent of the velocity V of the disturbance. This result is
valid over the all range 0(V(+~.
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B. Wave resistance

We now investigate the wave resistance experienced by
the disturbance, using the method proposed by Havelock in
his study of pure gravity waves [9].According to Havelock,
we may imagine a rigid cover fitting the surface everywhere.
The assigned pressure system P(x,y) is applied to the liquid
surface by means of this cover; hence the wave resistance is
simply the total resolved pressure in the x direction. This
leads to

f(x)

1.4

1.35

1.3—

1.25

1.15

f
R= — dx dy P(x,y) —g(x, y)Bx

(2.26)

By using Eqs. (2.17), the wave resistance (2.26) can be writ-
ten as

I

1.5
I

2.5
I

3.5 4.5

dk, dk~R= lim 2'' 2m

ik, P(k, k )~

k
y(k + v ) —pV —+2i epV—

k k
(2.27)

FIG. 4. The function f(x) defined by Eq. (2.37).

(x
R= dO cos 0

m'y Jp

Let us consider a pressure system symmetrical around the
origin

(k (0)G[k (0)]j +(k (0)G[k (0)]j
k+(0) —k (0)

P(x,y) =g(r), r=(x +y )" . (2.28)
(2.33)

The Fourier transform P(k, k ) is then a function only of k
and can be written as P(k, , k ) =G(k), where

Equation (2.33) is our central result. It gives the wave resis-
tance as a function of the velocity of the pressure distribu-
tion.

If we now consider the case of a very localized pressure

3 p

dr rg(r) d0 exp[ —ikr cos 0]
Jo

+ oo

P(x y) =p~(x) ~(y).

Eq. (2.33) then becomes

(2.34)

=27r] dr rg(r) Jo(kr). (2.29)

(x

Here, Jp denotes the Bessel function of the first kind of ze-
roth order [12]. Using polar coordinates and remembering
that curve C [see Eq. (2.11)] is symmetrical about the k, and
the k axes, we can rewrite Eq. (2.27) as 2

/ V 2 ( V
R=

2r'y Ic Ic i
(2.36)

p VI 2 cos 0—cos
R= ~;„dO cos 0

m'y c '"] J p (cos 0—cos y)" '

(2.35)

Since cos y=c '"/V, Eq. (2.35) can be rewritten as

R=4 d0cos 0 2 [ ],
3o 2~ '7 (2.30)

where the function f(x) is defined by

where

[ ]= lim
~-o~ o

[kG(k)]

[k —k~(0)][k—k (0)]+
2i epV

cos 0

f Arccos(1/x) 2 cos 0—x
d0 cos 0 4 4 i(2 (2.37)

cos 8—xf(x) =
Jo

and is sketched in Fig. 4 [note that f(x) is only defined for
x ~ 1].Expanding f(x) near x = 1, we find

(2.31)

and k (0) and k+(0) are given by Eq. (2.14). The pole
k=k (0) [k=k+(0)] in (2.31) gives a contribution

f(x) = 11+ -', (x —1)+O[(x —1) ]j.
2v2

For x—&+~, f(x) reaches a constant value

(2.38)

tk (0)G[k (0)]j I 1k~(0)G[k+(0)]j ~

k (0) —k~(0) I k+(0) —k (0)
(2.32)

I' vr/2

lim f(x) =2 d0 coss 0=4l3.
Jp

(2.39)

Hence
The behavior of the wave resistance Eq. (2.36) as a func-

tion of V/c '" is depicted in Fig. 5. As the disturbance ve-
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20 and let us assume that V(c '". Since v =Beg/Bx, thex com-
ponent of the velocity can be written as [cf. Eqs. (2.5) and
(2 9)]

dk dkY
v, (x,y, z, t) = U, (k, , k,,)expi[k, (x+ Vt)

J 2 '7T 2 7T

+k y]exp[kz], (3.2)

10
where

U",(k, ky) = ik,A(k„,ky) = ——V((k, k ). (3.3)

Substituting (3.2) into Eq. (3.1) and integrating with respect
to z, we obtain

dk dkY 4 fg= pV
' —,j(k, , k, ) dx dy expi[k, x

0 0.5 2 2.5 3 3.5 4 + key]exp[kgb(x, y)]. (3.4)

V/c

FIG. 5. R*=7ry(p v) R as a function of V/c '", with R
being the wave resistance Eq. (2.36).

locity V approaches c '" from above, R takes the value

p It/(2 '
y) [see Eqs. (2.36) and (2.38)]. Since R must be

zero for V(c '" (no steady waves being generated by the
disturbance in that case), we find that the wave resistance is
discontinuous at V=c '". In the limit V))c '", Eq. (2.36)
reduces to

dk dk
g=pV —~((k, , kY)~ . (3 5)

Inserting Eq. (2.10) into Eq. (3.5), and assuming that P(x,y)
is of the form of (2.28), we obtain

We now expand exp[kg(x, y)] in powers of kj(x,y). It is
important to realize that the zeroth order term does not con-
tribute to g. This point can be checked by using periodic
boundary conditions along the x coordinate and noticing that
no velocity field is associated with the k=O mode [see Eq.
(3.3): U (k=0) =0]. Going to the next order, we find

@2pV2
R V)) mill

3 ~Y'' (2.40)
pVK "+ u G ( Ku)g= du
47ry J o (u +1)"[u —2(V/c '") u+1] ' '

(3 6)

and the wave resistance is independent of gravity [13]. Finally, the fluid momentum Eq. (3.6) can be rewritten as

III. CONCLUDING REMARKS

$+cc I'+cc f

dx dy dz pv~—CK& J —~ —cc
(3.1)

(1) We would like to stress that our study was done within
the framework of the linear theory of capillary gravity
waves. When the response of the liquid becomes unbounded,
it is clear that the linearized theory cannot be valid. For
example, in the 2D case studied in Sec. I B, various correc-
tions to the results (1.12) and (1.13) should show up when V
tends to c '". For the very small objects considered here, we
suspect that the cutoff will be due to viscosity, rather than to
nonlinear effects; but this shall require a separate study.

(2) Our discussion was mainly concerned with case
V~ c '". The opposite case V( c '", for which no steady
waves are generated (the disturbance of the level being con-
fined around the coordinates x = —Vt and y =0), is neverthe-
less interesting. Consider, for example, the momentum g of
the IIuid along the direction of motion (i.e., along the nega-
tive x direction)

pV+ A 4
dB~Jo
u' (G(u~)~'

X
(u +1)"[u —2(V/c '") u+1] '

I G(0)
/

(3.7)

F= md Vldt+ d gldt (3.8)

by virtue of Eq. (2.25). Equation (3.7) describes the varia-
tions of the fiuid momentum g with the disturbance velocity
V. For V(&c '", the fluid momentum varies linearly. For
larger values of V, however, g deviates from linearity and
diverges like [1—(V/c '")] ' as V approaches c '" [see Sec.
ill, (1)].

Suppose now that the disturbance is accelerated by some
external force F (along the negative x direction) [14].In this
process, the liquid momentum will also be increased. Hence,
the force F must be equal to the time derivative of the total
momentum of the system, which is the sum of the momen-
tum m V of the disturbance (m being the mass of the distur-
bance) and the momentum g of the liquid:
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Equation (3.8) can be rewritten as

F= [m+ g'(V)]d V/dt, (3.9)

where Q'(V) denotes the derivative of Q [Eq. (3.7)] with
respect to V. The coefficient of dV/dt is called the effective
mass of the disturbance. It consists of the actual mass of the
disturbance m and the induced mass, which, according to Eq.
(3.9), is

4 "+ u [u +4(V/c '") u+1]
2+ 1)1/2[ 2 2(V/ min)2 + 1]5/2

/G(u/c)~'

1 G(0) i
(3.1 1)

For V(&c '", the induced mass is constant [15]. For larger
values of V, Q'(V) becomes velocity dependent and di-
verges like [1—(V/c '")] as V approaches c '" [see Sec.
m, (1)].

where

p~ A
g'(V) = [ ], (3.10)
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