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Maximal Lyapunov exponent at crises

Vishal Mehra and Ramakrishna Ramaswamy
School of Physical Sciences, Jatvaharlal Nehru University, Nets Delhi 110067, India

(Received 13 October 1995)

We study the variation of Lyapunov exponents of simple dynamical systems near attractor-
widening and attractor-merging crises. The largest Lyapunov exponent has universal behavior,
showing abrupt variation as a function of the control parameter as the system passes through the
crisis point, either in the value itself, in the case of an attractor-widening crisis, or in the slope,
for an attractor-merging crisis. The distribution of local Lyapunov exponents is very diferent for
the two cases: the fluctuations remain constant through a merging crisis, but there is a dramatic
increase in the fluctuations at a widening crisis.

PACS number(s): 05.45.+b, 05.70.Fh

I. INTRODUCTION

In this paper, we study the behavior of the Lyapunov
exponent in systems where there are abrupt changes in
the dynamics as a parameter is varied. Our interest is
in exploring the typical dependence of the maximal Lya-
punov exponent (MLE) on the control parameter so as
to elucidate the signature of a transition in the nature of
the dynamics.

In the context of dynamical systems, abrupt changes
in the phase space most commonly occur at the so-called
crises [1], which are caused by the collision of a chaotic
attractor with the stable manifold of an unstable peri-
odic orbit. The three major types of crises are distin-
guished by the nature of discontinuous change they in-
duce in the chaotic attractor. At a boundary crisis, the
chaotic attractor is suddenly destroyed and replaced by
a chaotic transient as the parameter passes through its
critical value. This occurs when the attractor collides
with the stable manifold of an unstable periodic orbit
that lies on its basin boundary. At an interior crisis, a
sudden increase or decrease in the size of the attractor
occurs when the stable manifold of an unstable periodic
orbit lying within the basin of attraction of the chaotic
attractor collides with it. At an attractor-merging cri-
sis two or more chaotic attractors simultaneously collide
with the stable manifold of an unstable periodic orbit
lying on their common basin boundary, which results in
the merging of the attractors.

The qualitative change in the dynamics at a crisis is re-
flected in the Lyapunov exponents. The case of a bound-
ary crisis is not very interesting since the Lyapunov ex-
ponent is either zero (if the transient leads to a periodic
attractor) or takes a value characteristic of the chaotic at-
tractor onto which the trajectory ultimately lands. The
variation of the MLE at typical interior and merging
crises is more dramatic, and in this paper we study these
phenomena in a variety of simple model systems [2—5]. In
all the crises, there is a similarity in the dependence of the
Lyapunov exponent on the control parameter. Our ma-
jor observation is that MLE has a characteristic behav-
ior, which is, however, distinct for the attractor-widening

and attractor-merging cases. For interior crises that ter-
minate a periodic window the dependence of MLE on
the control parameter is sigmoidal, with a large increase
in fluctuations subsequent to the crisis. This abrupt in-
crease in the MLE at interior crises has been observed be-
fore [6—10] in some studies of one-dimensional (1D) and
2D maps and Bows. In contradistinction the MLE only
has a "knee" at attractor-merging crises: after the crisis,
the rate of change of the Lyapunov exponent decreases
significantly. Again, in contrast to the attractor-widening
case, there is no attendant increase in the Huctuations of
the local Lyapunov exponents subsequent to the crisis.

In the next section we describe the phenomenology of
the behavior of the MLE at crises in simple maps and
other low-dimensional dynamical systems. Our results
have relevance to studies of systems at phase transitions,
especially as a number of recent simulations of realis-
tic systems have looked at the Lyapunov exponent, K
entropy, and related quantities as a function of tempera-
ture or other control parameters [11—13]. These consid-
erations are discussed in relation to the present work in
the concluding Sec. III.

II. THE LYAPUNOV EXPONENT AT CRISIS

The Lyapunov exponent, which is used to character-
ize the degree of chaoticity of a dynamical system gives
the average rate of exponential divergence of two nearby
trajectories [14]. In an n-dimensional dynamical system
there are n Lyapunov exponents and the system is chaotic
if at least one of them is positive while for regular dynam-
ics all Lyapunov exponents are zero or negative. We focus
on the largest of these, which is most simply defined as

= lim A (t) = lim — lim ln
d(t)

taboo taboo t d(0)-+0 d(0)

where d(0) is the initial separation between two trajecto-
ries, and d(t) is their separation after time t. A number of
methods have been proposed in the literature to compute
one or more of the Lyapunov exponents [11,15,16]. Here

1063-651X/96/53(4)/3420(5)/$10. 00 53 3420 1996 The American Physical Society



53 MAXIMAL LYAPUNOV EXPONENT AT CRISES 3421

we use the tangent space method [15], which is sufficient
since @re are interested primarily in the largest Lyapunov
exponent.

To study transient objects like repellers or semi-
attractors one can also analyze the Gnite-time exponents
A (t), which are also defined in Eq. (1). The instabil-
ity Huctuations on an attractor can also be studied by
dividing a long ergodic trajectory in segments of size t
and calculating the Lyapunov exponent A (t) for each
of these. The probability density P(A (t)) of the distri-
bution of local Lyapunov exponents has the scaling form,
for t —+ oo,

P(A (t)) exp[ —t@(A (t))], (2)

where @(A (t)) is a concave function with its minimum
equal to zero at A = A (oo) [17,18]. In a highly mixing
system, the time correlations of A (t) can be ignored and
then by the central limit theorem P(A (t)) is a Gaus-
sian and @(A ) is parabolic. However, at crisis points
the Gaussian distribution breaks down and g(A (t)) de-
velops a cusp at its minimum [17,19].

A. Interior or widening crises

We first consider the logistic map

z„+i ——rx„(l —x„).
It is well known [2] that as the paraineter r is increased
the logistic map undergoes a period-doubling cascade ter-
minating at the accumulation point r 3.5699, . . . .
Beyond that the dynamics is mainly chaotic, punctuated
at various intervals by periodic windows of arbitrarily
high period. A period-n window is created at a saddle-
node bifurcation together with an. unstable period-n or-
bit. As r is increased there is a sequence of period-
doubling bifurcations creating periodic attractors of pe-
riod 2n, 2 n, 2 n, . . . . Beyond the accumulation point
of the period-doubling bifurcations the attractor is made
up of n distinct pieces. The trajectory hops among these

pieces in a regular manner but the distribution of points
within each piece is random on the so-called semiperiodic
attractor [20]. At the right end of the window there is
an interior crisis when each piece of the semi-periodic at-
tractor meets a point of the unstable period-n orbit that
was created in the saddle-node bifurcation, leading to an
abrupt increase in the accessible phase space volume [1].

Shown in Fig. 1 is the variation of A with r —r
near the n = 3, 5, and 7-band crises, which occur at pa-
rameter r = r, , respectively. We observe that for all
interior crises the MLE vs r —r, curve is sigmoidal. The
standard deviation in the local Lyapunov exponent (cal-
culated from % = 10 with 50 difFerent initial condi-
tions) increases dramatically at the crisis. It is easy to
see why the Huctuation in the local exponents should in-
crease abruptly at the interior crises: the attractor gains
large volume, which may have entirely different stability
properties [10,20]. The MLE increases at the crisis be-
cause the attractor engulfs the coexisting repeller. This
repeller is the remnant of the chaotic attractor, which had
ceased to exist at the saddle-node bifurcation. Computa-
tion of a finite-time Lyapunov exponent near crisis shows
that the repeller has larger finite-time Lyapunov expo-
nent than the semiperiodic attractor [9]. The spectrum
of local Lyapunov exponents of the postcritical attractor
just before and after the three-band crisis is shown in
Fig. 2(a). The linear segments indicating nonhyperbol-
icity at the crisis are present on both sides of r . After
the crisis a kink at large A is visible which corresponds
to the distribution on the repeller [17].

Pompe and Leven [9] argued that the increase in MLE
is proportional to the probability density on the repeller,
and model it by the power law

PR (r —r,)". (4)
We confirm that the increase in MLE is proportional to
the probability density on the repeller. A power-law fit
to MLE data gives the exponent p = 0.51 + 0.04 for
three-band crisis and p, = 0.52 + 0.04 for 5 and 7 band
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FIG. 1. Variation of the maximal Lyapunov exponent, A, vs r —r around interior crises. The error bars show the magnitude
of the Quctuation in the local Lyapunov exponent. Beyond the crisis, the solid line through the data is the power law (r —r )",
with p, = 0.5 for (a), (b), and (c), and p, = 0.44 for (d) and 0.37 for (e). 3-band crisis in logistic map at r, = 3.8568007. (b)
5-band crisis in the logistic map at r = 3.744 7104. (c) 7-band crisis in the logistic map at r, = 3.70279404. (d) 5-band crisis
in the Kariotis-Suhl-Eckmann map at r, = 5.250 5109. (e) 7-band crisis in the Henon map at r, = 1.271 6856, b is fixed at 0.3.
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crises. Indeed, Grebogi, Ott, and Yorke [21] obtained an
approximate scaling near r,

P~ - (r —r, )' g(ln(r —r, )), (5)

where g is a periodic function. It therefore appears that
this scaling relation is valid at all other band crises as
well.

Other 1D maps also show the same phenomenology.
We have studied a map originally introduced by Kariotis,
Suhl, and Eckmann [3] in order to numic the dynamical
behavior of intramolecular processes and isomerization.
This map is given as
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FIG. 2. Spectrum of local Lyapunov exponents, g(A(n)),

just before and after a crisis, for logistic map (a) the 3-band
crisis r = r, + br . (b) The m = 2 band merging r = r + 8r.
Here n = 60 and the number of iterations of the map is 3 x 10 .
br = 1 x 10 . Crosses refer to data before crisis and circles
to data after crisis.

x~ei = 'Px~((d —2caIx + x ). (6)

We fix u = 0.8 and consider r as the control parameter.
The above map shows both attractor-merging (discussed
below) and attractor-widening crises. At the 5-band cri-
sis at r, = 5.2505109. . ., as shown in Fig. 1, it is clearly5

shown that the behavior of the Lyapunov exponent is es-
sentially identical to that observed for the logistic map.

Higher-dimensional systems also show the same behav-
ior: for example, the well-known Henon map,

XI+1 = y~ + 1 —PX2

y„+1 ——bX„, (7)
which has a well-characterized. , complex structure of bi-
furcations and crises [14]. Fixing 6=0 3and v. arying r, the
7-band crisis occurs at r =1.2716856. Again (cf. Fig. 1)
it is seen that the maximal Lyapunov exponent shows
the by now familiar characteristic sigmoidal behavior as
the function of r —r".

B. Attractor-merging crises

Attractor-merging crises typically occur because of
some symmetry in the underlying dynamics, for exam-
ple, in the logistic map, beyond the accumulation point
of the period-doubling cascade r there is a successive
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FIG. 3. V r' ' f h~ . a iation of the maximal Lyapunov exponent, A, vs r —r around attractor-merging crises. As in Fig. 1 the
error bars show the magnitude of the fluctuation in the local Lyapunov exponent. The straight lines through the data are a
least-square fit constrained to pass through the critical point. (a) m = 2 band merging in the logistic map at r = 3.678486.
( ) m = 1 band merging in the logistic map at r = 3.59256296. (c) Attractor merging in Kariotis-Suhl-Eckrnann map at
r = 5.74009035. (d) Henon map merging crisis at r = 1.084404, b is again fixed at 0.3. (e) Well merging in the forced DufFing

equation at r —0.853.
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merging of chaotic bands. Thus, for r ( r the chaotic
attractor consists of 2 chaotic bands. If we take a point
in any one of these 2 bands the trajectory will come to
that band after 2 iterations, so that the band can be
considered as an attractor for the 2 -times iterated map
and the band-merging phenomenon can be regarded as
an attractor-merging crisis [1] for the 2 -times iterated
map.

We show results for the m = 1 merging at r
3.678 486. . . and the m = 2 merging at r
3.5925663. . . in Fig. 3. For band-merging crises the
MLE vs r —r curve has a sharp knee precisely at r = r
i.e. , the derivative of MLE is discontinuous at r, . How-
ever, the knee angle is not the same for all band merg-
ings. The local Lyapunov exponents are more uniform
here, and we do not see any significant change in the
fiuctuation properties after the crisis. This is not difBcult
to understand as the co-merging attractors are symme-
try related. Similar behavior was observed for attractor
mergings in the other maps studied [3,4] [Fig. 3]. The
spectrum of local Lyapunov exponents near the attractor-
merging crisis [Fig. 2(b)] shows the linear segments in-
dicative of the nonhyperbolicity at the crisis [19].

'We also consider a merging crisis in the forced DuKng
equation [1]:

d x/dt + vdx/dt + ax —Px = r sin ~t. (8)

We take v = 1, n = 100,P = 10,u = 3.5, and study
Eq. (8) near its crisis value r = 0.853. Below r there
are two chaotic attractors, one confined to the well in
x ) 0 and another confined to the well in x ( 0. These
attractors merge at r = r, where the MLE near r = r
again shows a knee (Fig. 3).

III. CONCLUSIONS

In this work we have studied the variation of the largest
Lyapunov exponent MLE near interior and attractor-
merging crisis for some simple and. well-known systems.

We observe that around an interior crisis, the MLE vs
the control parameter curve has a sigmoidal dependence,
with the fiuctuations increasing dramatically at the crisis.
For the 3-band crisis in the logistic map (Fig. 1), for
example, the average fiuctuation just before the crisis is
4.2 x 10, while after the crisis it is 1.2 x 10 . On
the other hand, a knee-shaped curve is observed for the
attractor-merging crises with no increase in fluctuations
beyond crisis.

In recent work Fan and Chay [22] have studied the Lya-
punov exponents of Rose-Hindmarsh system (consisting
of three coupled differential equations), and report that
Lyapunov exponents are not good indicators of an inte-
rior crisis. They prefer the use of topological entropy,

which showed an abrupt increase at the crisis. How-
ever, in contrast to the present systems where the interior
crises terminate a periodic window the interior crisis they
studied was caused by collision of two period-adding bi-
furcation processes traveling in opposite directions in the
parameter space. This may be one reason why they did
not observe an increase in the MLE at the crisis.

The observations made above are of relevance to recent
simulation studies of systems undergoing a change in bulk
phase. In recent years it has become possible to study
the detailed dynamics of mesoscopic systems undergo-
ing phase change, and a number of studies [11—13] have
therefore focused on the relation between phase transi-
tions and the Lyapunov exponents that characterize the
dynamics. For example, in a study of a large number of
coupled planar rotors, Butera and Caravati [12] found a
discontinuity in the slope of the maximal Lyapunov expo-
nent (MLE) at the precise temperature of the Kosterlitz-
Thouless transition. More recently, it has been seen in
molecular-dynamics simulations of small Lennard-Jones
clusters [13] that the largest Lyapunov exponent also in-
creases dramatically as the system makes a transition
from a solidlike to a liquidlike phase. This abrupt change
characterizes the phase transition in a manner exactly
analogous to the Lindemann criterion, and indeed overs
an alternative connection between the phase space dy-
namics and. the phase change.

This abrupt increase in the MLE corresponds to an
increase in the available phase space volume and con-
sequently in the local rate of divergence of trajectories
[15]. Berry and co-workers [11] have looked at a variety
of dynamical indicators, including the Kolmogorov-Sinai
entropy, i.e. , the sum of all positive Lyapunov exponents.
This quantity increases smoothly with temperature or en-
ergy as the phase changes although information can be
obtained regarding underlying potential-energy surfaces
[11].

The present study further underscores the utility of
the MLE as an indicator of phase transformation since
the band crises between difFerent chaotic phases are, in a
sense, dynamical system analogues of phase transitions.
Prior to the crisis there is long-time correlated noisy pe-
riodicity while after the crisis, dynamics lacks long-time
correlation since motion is chaotic within a single-band
attractor.
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