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Self-organized criticality in a hierarchical model of defects development
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We suggest a hierarchical mode1 of defects development demonstrating critical behavior in a wide

range of parameters that is naturally called the self-organized criticality. The kinetic equation is
used for description of temporal evolution of the system. Conditions of appearance and healing of
defects wholly govern the system behavior. Properties of the stationary solution are investigated.
The model is found to show two kinds of behavior: stability and the self-organized criticality. The
first one corresponds to small deformations in destruction experiments, when samples contain only
the cracks of a few small ranges and there are no large cracks. The second one represents scaling
properties of the world seismicity. The slope of magnitude-frequency dependence in the region of
self-organized criticality is equal to unity for arbitrary parameters of the model. It is similar to the
slope of the Gutenberg-Richter law defined for the world seismicity.

PACS number(s): 05.45.+b, 05.40.+j

I. INTRODUCTION

Complex systems consisting of objects with a large
enough range of scales are often described by a
magnitude-fj. equency relation. A power form of the rela-
tion is observed in various fields of science. Such a kind
of relation describes, for example, a distribution of cities
by the population and value of the population income. In
seismology the magnitude-frequency relation is known as
the Gutenberg-Richter law. It determines the relation
between nuxnber of events and the energy of earthquakes
E as follows:

is suggested in Refs. [8—11]. In the hierarchical systems
considered earlier [8—10] a transition from stability to
catastrophe was observed. We propose below a hierarchi-
cal model exhibiting a stability —self-organized-criticality
transition.

Section II contains a general description of the system
and the kinetic equations determining its dynamics. The
properties of the stationary solution for different values
of parameters are investigated in Secs. III—V. In Sec.
VI the magnitude-&equency law is studied for different
parameters.

logypN —a —6 logzpE . II. GENERAL DESCRIPTION OF THE MODEL

The power form for the magnitude-&equency law was
thought to be unambiguous evidence of a critical point.
However, this explanation is not suitable in many cases.
Thus it is dificult to assume that various regions of the
Earth with different conditions of evolution reach the
critical point in the same time. Recently a power form of
the magnitude-&equency relation was widely explained
by the self-similar properties of structure and dynamics
of the lithosphere [1]. The h value in the Gutenberg-
Richter law is usually suggested as a reflection of fractal
properties of local seismicity [2]. Another approach to
the nature of power relations in complex systems was pro-
posed by Bak et aL [3]. A model of avalanches exhibiting
a power form of magnitude-&equency relation without
any connection with a critical point was suggested. This
kind of behavior was called the self-organized critical-
ity. Recently systems demonstrating the self-organized
criticality have drawn close attention in connection with
seismicity modeling [4]; see also [5] for a review.

The lithosphere has been often considered as an hi-
erarchical system of blocks [6—8]. An approach to the
description of seismicity in terms of hierarchical systems

The hierarchical system under consideration represents
a tree with the branch number equal to 3 (Fig. 1). The
state of each element of (1+ 1)th level is determined by
the state of the corresponding group of three elements
of the 1th level. There are two possible states for each
element of the system: the whole and the defect ones.
Different configurations with i defects and 3 —i whole

FIG. 1. Hierarchical system of defects. Each group of three
elements of the lower level composes an element of the upper
level.
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n (l + 1, t) = P (l, t)[3n (l, t) —2n (l, t)]
+3P (l, t)[2n(l, t) —n (l, t)] . (2)

The appearing intensity of the initial level is constant:

elements in each group form possible states of the group.
Configurations with 2 or 3 defects in one group are re-
ferred to below as the critical configurations. On the 6rst
level defects appear with constant intensity o.o. When a
critical configuration appears on the Lth level it causes
the appearance of a defect of the (l + 1)th level. The
critical configuration appearing in the time moment t is
healed in the time moment (t + 1). The other defects of
lth level are healing with the healing intensity P~. Thus
there are two healing processes in the system: the de-
terinined healing of two or three defects in a group of
elements and the stochastic healing of single defects.

Each element of the system can be in two possible
states, so for a group of three elements there are eight dif-
ferent states. All configurations with the same number of
defects have equal probabilities. The system is described
by the densities P'(l, t), i = 0, 1, 2, 3 with P'(l, t) being
the density of groups in the lth level including i defects
in time moment t. The appearing intensity of defects
n(l, t) is defined for each time moment t and number of
level I,. It depends on the probability of there appearing
a critical configuration on the previous level:

P (l, t + 1) = P (l, t) n (l, t) [1 —n(l, t)]
+P'(l t)(&(l)n'(«)
+2[1 —P(l)]n(l, t) [1 —n(l, t)]),

P (l, t + 1) = P (l, t)n (l, t)
+3P'(l t) '(l t)[I-P(l)].

These kinetic equations enable us to investigate the be-
havior of the system for difFerent parameters no, Po, c.

For t -+ oo the densities of defects P'(l, t), p(l, t) in
each level come to corresponding limiting values P*(l),
p(l). In the next section the stationary solution p(l) in
le~el l is investigated for difFerent parameters no Po, c.

III. BEHAVIOR OF THE SYSTEM FOR po ——0

I et us set P(l)—:0 in Eqs. (7)—(10). In the limiting
case t —+ oo densities of possible con6gurations satisfy
the following relations:

P (l) = P (l)[1 —n(l)] + 3P (l) [1 —n (l)] + P (l) ,

(11)

Pi(l) = P (l)[1 —n(l)] n(l) + P (l)[1 —n(l)]
+P'(l)n(l) (12)

n(0, t) = no . (3)

The healing intensity of the single defects P(l) is assumed
to be constant in time and depends on the level as follows:

P2(l) = P (l)n (l)[l —n(l)] + 2P (l)n(l)[1 —n(l)],
(13)

P(l) = Ppc, 0 & c & 1 . (4) Ps(l) = P (l)n (l)+3Pi(l)n2(l) . (14)

The density of defect elements on the lth level p(l, t) is
expressed from densities of different con6gurations as fol-
lows:

p(l, t) = P (l, t) + 2P (l, t) + P (l, t) .

The total number of defects in time moment (t + 1) is
expressed as a sum of the number of defects which existed
at time moment t and were not healing and the number
of new defects appearing in time moment (t+ 1). Hence
the temporal evolution of density of defects in the lth
level. is expressed as follows:

p(l, t+ 1) = P (l, t)[1 —P(l)]+ [1 —p(l, t)]n(l, t) . (6)

Similarly it is possible to de6ne the temporal evolution
of densities of diH'erent configurations for groups of 1th
level:

P'(l, t + 1) = P'(l, t) [1 —n(l, t)]'
+3P'(l, t)P(l) [1 —n(l, t)]'
+3P2(l, t) [1 —n(l, t)] + Ps(l, t),

P (l, t + 1) = P (l, t)n (l, t) [1 —n (l, t)]2

+P'(l t)([1-P(l)][1- (l t)]'
+2P(l)n(l t)[1 —n(l t)l)
+P'(l, t)n(l, t),

Figure 2 displays the dependence of the density of de-
fects and the appearance intensity on level /. The former
exhibits two types of behavior. For no ) n, the den-
sity of defects p(l) drops vs level number and comes to a
horizontal asymptotic p(l) = p, for large l. For no & n,
the density p(l) increases to the same asymptotic. For
no ——n, the density p(l)=p, for all levels. The fixed
point (n„p, ) is stable. For no « n, the density p(l)
remains constant (different from p, ) for some first levels

[Fig. 2(a)]. This is an unstable fixed point. This value
of the unstable 6xed point may be easily obtained &om
Eqs. (11)—(14). Expanding these equations up to the
first order of n(l), the expression for the fixed point is as
follows:

P (l) = 2P (l), P (l) = P (l) = 0, p(l) = P (l) .

The sum of probabilities P'(l) of all possible configura-
tions of one group is equal to unity:

P'(l) + 3P'(l) + 3P'(l) + P'(l) = 1 .

As a consequence the unstable fixed point is

P'(l) =
5

P'(l) =
5 p(l) =

5
.
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It follows also from Eq. (2) that for small n(l) the quan-
tity n(l + 1) is also small. Therefore the function p(l)
remains close to 1/5 for some first levels for small ap-
pearance intensities n(l).

point (0, 0) and (cr„p,), but there is no fixed point (in
contrast to Sec. III). The critical value n,„depends on
the parameters of healing Pp and c.

IV. BEHAVIOR OF THE SYSTEM
FOR l3o g 0, c g 1

The behavior of the system is more interesting in the
case of nontrivial Pp and c (Fig. 3). For np ( n „ the
density p(l) monotonically tends to zero for n ~ oo, while
for clap ) n, the density p(l) tends to a limiting value
p, just as in the case without heahng of single defects
(Fig. 2). It follows from Eq. (4) that the limiting value
p, of density p(l) for np ) cr is equal to the stable fixed
point for Pp = 0. Consequently, for l ~ oo solutions of
Eqs. (2) and (7)—(10) tend to one of two possible limiting

V. BEHAVIOR OF THE SYSTEM
FORPo QO, c= 1

For c = 1 a critical value P,„appears, dividing the
range of values of the initial healing parameter Pp into
two parts. The relations for Pp ( P„(Fig. 4) are similar
to the previous case (Figs. 2 and 3). Namely, for np
densities p(l) tend to zero when l increases, while for up )
a,„densities p(l) come to the asymptotic p(l) = p„p, (
p (Pp = 0). The value of p, drops as Pp increases. Both
functions p(l) and n(l) are monotonic (Fig. 4). There are
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FIG. 2. A relation between level and the corresponding
density (a) and appearance intensity (b) of defects. There is
no healing of single events (Po = 0). There are three kinds
of behavior for di8'erent values of initial appearance intensity
no. (1) a.o ( o.„no ——0.0001; (2) o.o ——o, —0.20591; (3)
—uo ) 0'. , up = 0.99. For all values of initial appearance
intensity no the curves tend to the same constant value when
the level grows.
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FIG. 3. A relation between level and the corresponding
density (a) and appearance intensity (b) of defects. Param-
eters of healing of single defects are Po ——0.5, c = 0.9.
There are three kinds of behavior for diferent values of ini-
tial appearance intensity no.'(1) —no ( n,„, o.o = 0.15; (2)
cap )n, no = 0.18; (3) —np ) o.', no = 0.5. For subcritical
values of initial appearance intensity no ( n,„ the curves of
stationary solution tends to 0 when the level grows. For all
supercritical values no ) n „ the curves tend to a nonzero
constant value.
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two fixed points. One point (np ——n, ) is stable, while
the other (ap ——n,„) is unstable. As Pp grows the values
of both fixed points come closer and become equal to one
another when Pp ——P,„.

For Pp ) P,„ the behavior is quite difFerent. Namely,
for arbitrary np both densities of defects p(l) and appear-
ance intensities a(l) tend to zero as l -+ oo (Fig. 5).

relation between the energy and the level of events:

E(l) = 3' . (17)

The number of events of a given level is a product of
the probability of a new defect appearance and a total
number of elements on this level.

N(l) = a3 '[i —p(l)]n(l) . (is)
VI. THE MAGNITUDE-FREQUENCY LAW AND

THE SELF-ORGANIZED CRITICALITY

For the hierarchical model of defects the magnitude-
&equency law determines a relation between number and
energy of events. It is natural to define an exponential

Here a and L are a constant defining the number of events
of the highest level and a total number of levels in the
system, respectively.

The magnitude-frequency relations of the stationary
solution for difFerent values of parameters are shown in
Figs. 6(a—d). For np ) n,„[Figs.6(a—c)] the magnitude-
&equency law is linear in a log-log plot, with the slope be-
ing equal to unity irrespective of the values of the param-
eters. The linear magnitude-&equency law in the region
0!o ) 0! means the self-organized criticality behavior of
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FIG. 4. A relation between level and the corresponding
density (a) and appearance intensity (b) of defects. Parame-
ters of healing of single defects are Po ( P, , Po ——0.1, c = 1.
There are four kinds of behavior for diferent values of ini-
tial appearance intensity no'. (1) —no ( a „, no = 0.095; (2)( o'o ( o.', cxo = 0.1; (3) —ao = n 0.189 762, (4)
ceo ) a, , cto ——0.4. For subcritical values of initial appearance
intensity o.o ( o. „ the curves of stationary solution tends to
0 when the level grows. For all supercritical values np ) o. „
the curves tend to a nonzero constant value.
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FIG. 5. A relation between level and the corresponding
density (a) and appearance intensity (b) of defects. Parame-
ters of healing of single defects are po ) I3, , po = 0.3, c = 1.
All values of initial appearance intensity o.o correspond to the
same kind of behavior: (1) —ao = 0.2; (2) —no = 0.9. All
curves of stationary solution tends to 0 when the level grows.
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FIG. 6. A magnitude-frequency relation for different values of healing parameters: (a) —Pp ——0. All curves have linear
behavior for upper levels. A slope of upper levels is equal to unity. (1) np ——0.00—01; (2) np ——0.99. (b) —Pp = 0.5,
c = 0.9. Subcritical values of initial appearance intensity correspond to an exponential downward bend. All supercritical
values correspond to a linear behavior with a slope equal to unity. (1) —op ( n,„, up = 0.05; (2) cap) o, , n'p = 0.18; (3)
—crp ——0.5.(c)—Pp ——0.1, c = 1. Subcritical values of initial appearance intensity correspond to an exponential downward
bend. All supercritical values correspond to a linear behavior with a slope equal to unity. (1) ap (n, ap ——0.05; (2)o'p ) a'

ap = 0.096; (3) —op = 0.4. (d) —Pp = 0.3, c = 1. All values of initial appearance intensity correspond to an exponential
downward bend. (1) —ap = 0.2 (2) crp —0.9. (e)—Pp = 0 for 25 initial levels. A slope of the curve corresponding to small
values of ap is less than 1 for some initial levels. A slope of the curve is more than 1 on a few initial levels for big; values of Ap.

(1) —no = 0.0001; (2) —cr = 0.20591; (3) —o. = 0.99.
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the system. For no ( a„[Figs. 6(b,c)] the considered
function iV(l) exponentially tends to zero for high values
of l. This behavior means the stability, when densities
of defects are equal to zero in upper levels of the system.
In this case the perturbation appeared on the erst level
damps on the next levels, and the appearance intensities
n(l) tend to zero, so the state of upper levels preserves.
For o. „&o.p ( o. the magnitude-frequency law difkrs
from the straight line but this di8'erence is negligible.

Let us consider the case Po ——0 in detail [Figs. 6(a,e)].
For all values o.p excluding close vicinity neighborhoods
of 0 and 1 the magnitude-frequency law is linear in a log-
log plot with a slope equal to unity. For small ap the
magnitude-&equency law exhibits two parts of straight
lines with di8'erent slopes and a kind of crossover between
them [Fig. 6(a)]. The slope of the second line is equal to
unity. The slope of the first interval is less. However, this
kind of behavior may be observed only if a suKciently
long interval of energy is considered. When a considera-
tion is restricted to a small interval of energy values the
magnitude-&equency law looks as the straight line with
a slope less than unity [Fig. 6(e)]. If no tends to I then
on a few initial levels one can see a linear behavior of the
magnitude-&equency law with a slope exceeding unity.
Thus it is possible to obtain variations of the slope for
a few initial levels, but this variation corresponds to the
limiting cases np M 0 and o.p M 1.

It is possible to change the slope of the magnitude-
frequency law by redefining the relation (17) between the
energy and level of events. However, the slope also will
be independent of the concrete values of parameters o,p,

Po, and c.

VII. CONCLUSIONS

The model considered above is one of a wide class of
hierarchical models of defects. It is described by kinetic
equations, the number of which grows logarithmically vs
the number of degrees of freedom. Just as in the hierar-
chical models in Refs. [9,10], this system has a stationary
solution and a critical point. But in contrast to previous
hierarchical models the behavior of the system demon-
strates scaling properties not only for the critical point,
but for the whole supercritical region. The subcritical
behavior of the system corresponds to the stable state

of the system, when perturbations appearing on initial
levels damp and have no influence to upper levels. The
supercritical behavior corresponds to the self-organized
criticality and has just the same properties as the Bak s
model [3]. Thus, at the critical point the system comes
from stability to the self-organized criticality. The self-
organized criticality in this model appears for all kinds
of healing conditions. Even when there is no healing of
single events (Po ——0) a nontrivial stable distribution of
defects exists.

The model described in [9] demonstrates a transition
from stability to catastrophic behavior. In contrast, the
model considered above represents a transition from sta-
bility to the self-organized criticality. It shows that the
most important kinds of magnitude-&equency relation
observed in seismicity and in destruction experiments
may be obtained in the simplest hierarchical systems.

An interesting feature of the model is that in the su-
percritical region the slope of the magnitude-frequency
law does not depend on parameters of the model and
consequently the former does not reflect the complicated
behavior of the system governed by these parameters.
The slope equal to unity in the model corresponds to the
slope of the Gutenberg-Richter law for the world seis-
micity. However, it does not reflect the variety in slopes
corresponding to diferent seismic regions. In the model
the slope of the magnitude-frequency law in small initial
range of sizes of events may di8'er slightly from the main
slope equal to unity. This deviation is not essential for
the theoretical investigation that is able to consider ar-
bitrary (large) sizes. Nevertheless this slope of the initial
part of the curve (different from unity) may be assumed
to be the slope of the magnitude-frequency law in the case
of practical simulation, when the range of possible sizes
of events is relatively small. To employ this model for
practical problems correctly one has to investigate two
questions: (i) how high may be the deviation of the slope
of the magnitude-frequency law from unity; (ii) how large
may be the range of events in which this deviation takes
place.
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