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Using the method of symbolic dynamics, we show that a large class of classical chaotic maps ex-
hibits ezponentiat hypersensitivity ta perturbation, i.e. , a rapid increase with time of the information
needed to describe the perturbed time evolution of the Liouville density, the information attaining
values that are exponentially larger than the entropy increase that results from averaging over the
perturbation. The exponential rate of growth of the ratio of information to entropy is given by the
Kolmogorov-Sinai entropy of the map. These findings generalize and extend results obtained for the
baker's map [R. Schack and C. M. Caves, Phys. Rev. Lett. 69, 3413 (1992)].
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I. INTRODUCTION

Chaos in Hamiltonian systems is usually defined in
terms of trajectories of phase-space points. The Lya-
punov exponent describes how initially close trajectories
diverge exponentially [1]. The Kolmogorov-Sinai (KS)
entropy measures the rate at which information about
the initial phase-space point must be supplied in order
to predict the coarse-grained behavior of a trajectory at
a later time [2,3].

Signatures of chaos are less obvious if attention is
shifted &om the time evolution of phase-space points to
the time evolution of probability densities, governed by
the Liouville equation. If the distance between two den-
sities is defined in terms of an overlap integral, there is
no exponential divergence of initially close densities since
the overlap integral is constant in time ("Koopman's the-
orem" [4,5]). Furthermore, as a direct consequence of
Koopman's theorem, if one is given the Hamiltonian and
the initial density to a certain accuracy, then no addi-
tional information is needed to predict the density at all
later times t to the same accuracy, except for a negligi-
ble amount of information needed to specify the time t
[6,7]. This means that the popular information-theoretic
interpretation [3] of chaos via the KS entropy does not
apply to Liouville densities.

In this paper we show that there is an information-
theoretic way to characterize chaos for Liouville densi-
ties in systems with a positive KS entropy. In particular,
we show that a large class of Hamiltonian systems with
positive KS entropy displays an exponential hypersensi-
tivity to perturbation. We have investigated hypersensi-
tivity to perturbation previously [8—12), both for clas-
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sical and quantum systems, and have characterized it
as a rapid increase with time of the information needed
to describe the perturbed time evolution of the system
state (Liouville density for classical systems, state vector
for quantum systems), the information attaining values
much larger than the entropy increase that results from
averaging over the perturbation.

Here we formulate the concept of hypersensitivity to
perturbation more precisely. We consider the amount of
information needed to keep track of the perturbed time
evolution to a level of accuracy that keeps the increase of
system entropy below a certain "tolerable" level. This in-
formation should be compared to the entropy reduction it
buys, i.e., to the difFerence between the entropy increase
that results from averaging over the perturbation and the
tolerable entropy increase. We characterize hypersensi-
tivity to perturbation in terms of the ratio of information
to entropy reduction. A system displays hypersensitivity
to perturbation if the ratio grows rapidly with time, be-
coming much larger than unity, for almost all values of
the tolerable entropy; a system displays exponential hy-
persensitivity to perturbation if the ratio grows exponen-
tially. We show that a large class of Hamiltonian systems
with positive KS entropy displays exponential hypersen-
sitivity to perturbation, with the exponential growth rate
given by the KS entropy. This result establishes a direct
connection between measures of chaos based on trajec-
tories and our information-theoretic characterization for
Liouville densities.

There are at least two important motivations for in-
vestigating signatures of chaos in Liouville densities. One
motivation comes from the tricky question of how to char-
acterize quantum chaos. In quantum mechanics, trajec-
tories of state vectors show no sensitivity to initial condi-
tions because the Schrodinger equation is linear and pre-
serves the inner product. This argument does not prove,
however, that there is no chaos in quantum mechanics
[13],because the Liouville equation, like the Schrodinger
equation, is linear and preserves the overlap between den-
sities, yet any chaotic classical Hamiltonian system can
be described by a Liouville equation. Furthermore, the
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classical analog of a quantum state vector is not a point in
classical phase space, but a Liouville density [5,9]. In con-
trast to the above-mentioned characterizations of classi-
cal chaos in terms of phase-space trajectories, a charac-
terization of classical chaos in terms of Liouville densities
can be expected to have a straightforward generalization
to quantum systems [8]. We have indeed found that hy-
persensitivity to perturbation is present in quantum sys-
tems [11,12].

The other main motivation for studying chaos in Li-
ouville densities lies in the central role Liouville den-
sities play in statistical mechanics. The connection of
the present work with statistical mechanics is outlined in
Sec. II. In Sec. III we give a precise definition of hypersen-
sitivity to perturbation. Section IV reviews the method
of symbolic dynamics. In Sec. V, the heart of the pa-
per, we apply the method of symbolic dynamics to prove
that a large class of perturbed chaotic systems displays
exponential hypersensitivity to perturbation. In Sec. VI
we distill the essence of the symbolic-dynamics analysis
to develop a simple, heuristic picture of hypersensitiv-
ity to perturbation, which explains why chaotic systems
exhibit exponential hypersensitivity to perturbation and
regular, or integrable systems do not. A reader not in-
terested in the details of the symbolic dynamics might
profitably skip Secs. IV and V and proceed directly to
Sec. VI.

II. CONNECTION WITH STATISTICAL
MECHANICS

In statistical mechanics the exact point a system occu-
pies in phase space typically is not known. The predic-
tions of classical statistical mechanics are derived from a
Liouville probability density p(z) on phase space, which
describes incomplete knowledge of the system's phase-
space point z and which is the mathematical representa-
tion of a system state. The entropy (in bits) of a system
state p(x), also called the Gibbs entropy or fine-grained
entropy, is defined as

H= — dr( )p( (2.1)

where I'(x) is the standard phase-space measure. (The
use of base-2 logarithms here and throughout this pa-
per means that entropy and information are measured
in bits. ) Since the Gibbs entropy is formally identical
to Shannon's [14] statistical measure of information, en-
tropy can be interpreted as the amount of information
missing toward a complete specification of the system.
The classical entropy is defined up to an arbitrary addi-
tive constant, reflecting the fact that an infinite amount
of information is needed to give the exact location of a
point in phase space.

As a consequence of Liouville's theorem, the entropy
remains constant under Hamiltonian time evolution. We
adopt here the Bayesian, or information-theoretic, ap-
proach to statistical mechanics [15—17], according to
which the constancy of the Gibbs entropy is an expression

of the fact that no information about the initial Liouville
density is lost under Hamiltonian time evolution.

The Bayesian approach to statistical mechanics is con-
nected with thermodynamics in the following way: As-
sume there is a heat reservoir at temperature T, with
which all energy in the form of heat must ultimately be
exchanged, possibly by using intermediate steps such as
storage at some other temperature; then each bit of miss-
ing information about the system state reduces by the
amount k~T ln2 the energy that can be extracted from
the system in the form of useful work. The Bayesian ap-
proach can thus be summarized in two statements: (i) en-
tropy is missing information a mathematical statement;
(ii) each bit of missing information costs k~T ln 2 of use-
ful work —this is the physics.

Since entropy is a measure of missing information, en-
tropy increases if information about the system is lost.
There are two main mechanisms leading to information
loss (as noted above, Hamiltonian time evolution is not
such a mechanism): deliberate discarding of information
and loss of information through interaction with an in-
completely known environment.

Deliberate discarding of information was used by
Jaynes [15—17] to derive traditional thermodynamics.
Jaynes showed how equilibrium thermodynamics follows
effortlessly from the Liouville equation if the only infor-
mation retained is the values of the macroscopic vari-
ables defining a thermodynamic state. In Jaynes's ap-
proach, irrelevant information is discarded by means of
the principle of maximum entropy. Another example is
the derivation of the Boltzinann equation [18];here infor-
mation about correlations between particles is discarded
as irrelevant.

In contrast to these examples where information is dis-
carded deliberately, an actual loss of information can oc-
cur in a system that, rather than being perfectly isolated,
interacts with an incompletely known environment. The
interaction with the environment leads to a perturbed
time evolution of the system. Predictions for the system
alone are made by tracing out the environment —i.e. , by
averaging over the perturbations which generally leads
to an entropy increase. This approach was pioneered by
Borel [19,20]. The entropy increase of the system due
to the interaction with the environment is a result of
the environment's being in an at least partially unknown
state. If suitable information about the environment is
obtained, the increase in system entropy can be reduced
or, if sufhcient information is obtained, prevented en-
tirely. Averaging over the perturbing environment is usu-
ally justified by arguing that it is impossible in practice
to control the environment.

In this paper we go beyond the pragmatic argument
that controlling the interaction with the environment is
impossible in practice. We show how the information-
theoretic approach to statistical mechanics leads natu-
rally to a quantitative measure of how hard it is to keep
the entropy of the system from increasing by gathering
information about the environment. The key to quan-
tifying the diKculty of controlling the interaction with
the environment is Landauer s principle [21,22], which
assigns a thermodynamic cost to information. According
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to Landauer's principle, in the presence of a heat reser-
voir at temperature T, not only does each bit of missing
information have a &ee-energy cost of k~T ln 2, but each
bit of information that is acquired has the same free-
energy cost of k~Tln2. This cost, called the Londauer
erasure cost, is paid when the acquired information is
erased. Acquired information can be quantified by al-
gorithmic information [6,7,23—25]; roughly speaking, the
algorithmic information in an observational record is the
length in bits of the shortest record having the same in-
formation content.

The question of how hard it is to reduce the system
entropy by controlling the environment can now be given
a quantitative form: "How big is the Landauer erasure
cost of the information about the environment which is
needed to reduce the increase of system entropy by a
certain amount'?" In the next section we give a mathe-
matical formulation of this question. The later parts of
this paper are devoted to showing that the answer can
be used to characterize chaos.

III. HYPERSENSITIVITY TO PERTURBATION

Consider a classical Hamiltonian system initially de-
scribed by a Liouville density p(z, t = 0) on phase space.
The initial entropy is

H() ——— dI'(z) p(z, t = 0) log2[p(z, t = 0)], (3.1)

where I'(z) is the standard phase-space measure. By
solving the Liouville equation, one obtains the density
p(z, t) at time t. According to Liouville's theorem, the
entropy remains unchanged —the information about the
initial density is preserved under Hamiltonian time evo-
lution.

Now assume that the system is coupled to an incom-
pletely known environment in such a way that the in-
teraction can be described as an energy-conserving, typ-
ically time-dependent perturbation of the system Hamil-
tonian. The system's interaction with the environment is
thus described by a stochastic Hamiltonian. We denote
the perturbed system state at time t by p„(z, t) where

y labels the particular realization of the stochastic per-
turbation or perturbation history. The possible perturba-
tion histories y are distributed according to a probability
measure p(y).

This description in terms of a stochastic system Hamil-
tonian is by no means general; it applies when the system
is coupled to conserved quantities of the environment.
The values of the conserved environment quantities label
the perturbation histories y, and the probability measure
p(y) is the probability measure for the conserved environ-
ment quantities. If the system is not coupled to conserved
quantities of the environment, then there is generally no
way to label perturbed system states by perturbation his-
tories, because the system and the environment become
"entangled. " The main effect of our assumption that the
interaction is equivalent to a stochastic Hamiltonian is to
restrict the class of measurements for gathering informa-

tion &om the environment. The only sensible measure-
ments under this assumption are those that determine
which perturbation history actually occurred or, given
a grouping of the perturbation histories, determine in
which group the actual history lies. We restrict attention
to these measurements in the symbolic-dynamics analysis
of perturbed chaotic maps in Sec. V.

For each perturbation history y, the entropy of the
density p„(z, t) is equal to the initial entropy Ho. Aver-
aging over all possible perturbation histories leads to an
average density

P(x, t) = f dy(P) P„(x,t), (3.2)

with entropy

H = — dI' x p x, t log2 p x, t —= Ho+ QHg, 3.3

where LHg & 0 is the entropy increase due to averaging
over the incompletely known environment. That LHg )
0 follows from the concavity of the entropy: the entropy
of an average distribution is greater than or equal to the
average entropy of the distributions that contribute to
the average.

Now assume, in accord. ance with the discussion of
Sec. II about gathering information &om the environ-
ment, that an arbitrary measurement, with discrete pos-
sible outcomes labeled by integers b, is performed on the
environment. The outcome b has conditional probabil-
ity pb)y given the perturbation history y, and hence has
unconditioned probability

Pb = "Y 9 Pb~y. (3.4)

The Liouville density for the system state conditional on
outcome 6 we denote by

where p(y~b) is the probability measure for the perturba-
tion histories conditional on outcome b. It follows imme-
diately that

O.PBP~(* ~) = fA(P) P, (*&) = P(*,&), (3.6)

We denote by

AHb = — dl (z) pb(z, t) log2[pb(z, t)] —H() ) 0 (3.7)

the change in system entropy conditional on the mea-
surement outcome 6, where the inequality follows from
applying concavity to Eq. (3.5), and by

bH = ) PbAHb ( AH~
b

(3.8)

1
Ph(*, &) = — ~~(P) P.(*,~)Pbly = / ~~(Pl~) P.(*,~)

Pb

(3.5)
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the average conditional entropy change, where the in-
equality follows from applying concavity to Eq. (3.6).
Finally, we denote by

(3 9)

the average information needed to specify the measure-
ment outcome b Ac.tually, Eq. (3.9) is only a lower bound
to the average algorithmic information needed to specify
the measurement outcome b, but it can be shown to be
an extremely tight lower bound [25]. An immediate con-
sequence of the definition of entropy is that

(3.10)

with equality holding if and only if the densities p&(x, t)
are disjoint.

Suppose now that one wants to limit the entropy in-
crease of the system to a certain tolerable amount AHt i.
Then the minimum amount of information about the per-
turbing environment needed to keep the system entropy
&om increasing by more than LHt ~ can be written as

(3.11)

ZI;„&aH~ —aa,.i . (3.12)

In the presence of a heat reservoir at temperature T, the
information LI;„has an energy cost k~ T ln 2 LI;„on
erasure, which should be compared to the gain in ex-
tractable work due to the observation, k~T ln 2 (AHg-
aH,.i).

We are now in a position to de6ne hypersensitivity
to perturbation. We say a system is hypersensitive to
perturbation if, for almost all values of LHt ~, the infor-
mation AI;„ is large compared with the corresponding
entropy reduction LH~ —AH& ~, i.e.,

(3.13)

where the in6mum is taken over all possible measure-
ment schemes for which the average conditional entropy
increase does not exceed AHt i. In other words, LI
is the information about the environment that it takes to
lower the entropy increase of the system from AHg (the
increase due to averaging over the perturbation) down to
LHt ~, i.e., LI;„is the minimum information about the
environment needed to reduce the system entropy by an
amount AHg —AHt i. As a consequence of Eq. (3.10),
it is a general theorem and an expression of the second
law —that

inequality (3.13) tends always to hold for sufliciently
small values of LHq ~. The reason is that for these
small values of AHt ~, one is gathering enough informa-
tion from the perturbing environment to track a partic-
ular system state whose entropy is nearly equal to the
initial system entropy Ho. In other words, one is essen-
tially tracking a particular realization of the perturbation
among all possible realizations. Thus, for small values of
LHt~~, the information LI;„ is a property of the per-
turbation, being the information to specify a particular
realization of the perturbation. The important regime for
assessing hypersensitivity to perturbation is thus where
LHq ~ is near to AHg, and it is in this regime that one
can hope that AI;„reveals something about the system
dynamics, rather than properties of the perturbation.

In earlier publications [8,10—12], we have conjectured
that chaotic Hamiltonian systems, classical or quan-
tum, show hypersensitivity to perturbation. For classical
chaotic systems, this can be made plausible in the fol-
lowing way. Under chaotic time evolution, the Liouville
density develops structure on finer and finer scales. This
highly structured pattern is not itself complex in the al-
gorithmic sense —it is completely specified by the initial
density, the Hamiltonian, and the elapsed time but it
can be perturbed in an enormous number of ways [8].
This means that the unperturbed pattern lies very close
to a large number of highly complex patterns and that
the information about the perturbation needed to specify
the perturbed pattern can be very large. In Sec. V we
go beyond this heuristic argument and give a proof that
a large class of classical chaotic Hamiltonian systems ex-
hibits an exponential hypersensitivity to perturbation, in
which the ratio (3.13) of information to entropy reduc-
tion grows exponentially with time, with the exponential
rate of growth given by the KS entropy of the chaotic
dynamics. We And that for this class of chaotic systems,
the exponential hypersensitivity to perturbation is to a
large extent independent of the exact nature of the per-
turbations and, in particular, of the strength of the per-
turbations.

In the following sections we limit our investigation to
discrete maps. There are two natural ways in which a
Hamiltonian flow Pi . X ~ X on the phase space X in-
duces a discrete map. For an arbitrary time step w, a mapf:X -+ X is defined by fx = P x for all x E X. Since
PqP, x = Pt+, x for all times t and s and all x C X, the
map 1 and the flow P~ are closely related by f"x = P„x
for all x E X and all integer n. Alternatively, a discrete
map can be defined via a Poincare surface of section [1].
The stochastic perturbation of the Bow induces a stochas-
tic perturbation of the map at each step.

In terms of energy this definition says that, for a sys-
tem displaying hypersensitivity to perturbation, possi-
ble gains in system free energy through observations of
the environment are negligible compared to the Landauer
erasure cost of the observational records.

Hypersensitivity to perturbation requires that the in-
equality (3.13) hold for almost all values of AHt i. The

IV. SYMBGLIC DYNAMICS

The basic idea underlying the method of symbolic dy-
namics is to simplify the analysis of dynamical systems
by representing points in phase space by symbolic se-
quences. Parts of the following discussion closely follow
[2].
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A discrete abstract dynamical system (M, y, , f) con-
sists of a measurable space M with a normalized mea-
sure p and a measure-preserving automorphism f on M,
i.e. , p(M) = 1 and p(f,A) = p(A) for all measurable
A [26,27]. A measurable partition 8 of M is defined as
a collection E = (Ei, . . . , E ) of measurable sets such
that

tition, then all refinements of E' are also generating par-
titions. Furthermore, if E' is generating, then the cr alge-
bra generated by all refinements of 8 coincides with the
cr algebra of all measurable subsets of M [28—30]. The
measure p induces a measure on the o. algebra generated
by the set of all symbolic words via

7n m

Q~E; =M and ) p(E) =1.
i=1 i=1

s(~-, " ~-.) =1(E-., -., ).
(4 1) Let us also define a conditional measure

(4.7)

Consider an m-letter alphabet 8 = (1, . . . , mj where
each letter corresponds to one of the m sets in the parti-
tion f. We denote by u = . . ~ u 1&pcdict)2 ' a bi-infinite
sequence of letters ~„~ 8 and by Z the set of all such
symbolic sequences.

For each x g M we define the set Z C Z as follows:

P(~ ~ .+ )
p(~nq ' ~ng ~~n +l~n +2 ' ") = »m~~~ P(~n, +1 ~n, +n)

(4.8)

whenever the limit on the right-hand side exists, which
is the case for K systems (see below).

The entropy H(Z ) of the refinement F~ is defined by

Z = (u xe E (4.2) H(F ) =—
~ ~ ~ ™

u(E-. -,)

Equivalently, one can say that u E Z -::-f"x C E
for all n. The set

x log2 p,(E, , ) . . .. (4.9)

z, =
[ /z. c-z (4.S)

The metric entropy or Kolmogorov Sinai (K-S) entropy
of the map f is defined as

of all symbolic sequences corresponding to at least one
point in M is called the set of admissible sequences. The
partition E' is called a generating partition if for each
w E Zg the intersection

h„(f) = suph„(fiF), (4.10)

where the supremum is taken over all measurable parti-
tions E' and where

(4.4)
h„(f~f) = lim

H(Z")
(4.11)

n2

(4.5)

We denote by E~ "~'~ the set of all symbolic words
The symbolic word ~, ~, is admissi-

ble if E ... contains at least one point; we denote by
Z&"" ' the set of admissible symbolic words u,
The Nth refinement FN of the partition F, defined by

= (E,...„~, ~
~o ~~ i admissible), (4.6)

is also a measurable partition. If E' is a generating par-

consists of only one point, i.e., if each admissible sym-
bolic sequence defines a unique point in M. In general,
even for generating partitions, Z may have more than
one element, which means that a point x E M may be
represented by several symbolic sequences u p Z . For
a generating partition, the picture one should have is
that the set Zp of all admissible sequences is the union
of disjoint subsets Z, which may have more than one
member.

Let us further define symbolic ~ops as finite symbolic
sequences u, . u, where n1 & n2. In analogy with
Eq. (4.4), we define the set of points corresponding to
the symbolic word ~, ~ ~, by

If E' is generating, then h„(f) = h„(f~E) [28—30]. Systems
with a positive KS entropy are called K systems. Despite
its name, the KS entropy is quite different &om the Gibbs
entropy, for two reasons: (i) H(t ) has nothing directly
to do with probabilities on the phase space M, but is
the Shannon information of the ensemble of sets in E'

when the probability of each set is given by its measure;
(ii) h„(f~f) is not an entropy at all, but rather is the
asymptotic rate of increase of H(S~).

A dynamical system i.s called ergodic if time averages
equal ensemble averages, i.e. , if

1
N —1

lim —) P(f"x) = dye for almost all 2: E M,
n=p

(4.12)

(~~)„=~„+, for all n; (4.13)

i.e., 0 shifts the entire symbolic sequence to the left. The
shift map can be extended to a map cr: E~ " 2~ —+

for any p-integrable function P [26]. All K systeins are
ergodic [26].

The map f induces a particularly simple so called shift-
map 0: Z ~ Z on the set of symbolic sequences. The
shift map is defined as
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~ that acts on symbolic words u 1 M g E
Z ~ ' i Via

[0'(ld ld )] = ~ +y for fig —1 ( n ( 77,2 —l.

sets II and T satisfying

) p(cd) ( e

~gH
(4.19)

(4.14)
and

The set of admissible sequences is invariant under the
shift map, i.e.,

2 "+' & p(tD) & 2 " for all w 6 T. (4.20)

o(Ze) = Ze . (4 15)

Furthermore, for a generating partition t, the map ~:
Zg —+ M defined by

~((u)=
i i

f E „ (4.16)

[i.e., vr(~) = x -.''.- cu 6 Z ] is single-valued and con-
tinuous [2]. If the sets E; forming the partition E are
not mutually exclusive, then the map vr is not one-to-
one. The overlap between difFerent sets E, , however, is
of measure zero. The relation between f and o can be
summarized in the following commutation diagram:

V. PERTURBED CHAOTIC MAPS

p'(x, n) = p(f 'x, n —1) . (5.i)

I et (M, p, f) be a discrete abstract dynamical system
that is derived from a Hamiltonian phase-space flow as
described at the end of Sec. III. This means, in particu-
lar, that the measure p is the standard phase-space mea-
sure, in units such that the accessible volume of phase
space is unity. At the nth step the efFect of the un-
perturbed system dynamics is to change the phase-space
density from the density p(x, n —1) that emerges from
the (n —1)th step to a new density

M ' M
(4.17)

1 ifxeE-,
0 .th., '.,', (4.is)

one sees that Ze is an ergodic source since f is ergodic.
According to the Shannon-McMillan theorem, station-

ary ergodic sources have the asymptotic equipartition
property [31]. This means crudely that for suKciently
large n and arbitrary nq, the set Z&

" '+ of ad-
missible symbolic words of length n consists of approxi-
mately 2 " symbolic words, each approximately of mea-
sure 2 ", whereas each of the remaining symbolic words
has negligible measure. The choice of nq is irrelevant be-
cause the source is stationary. Formally, a source has
the asymptotic equipartition property if and only if for
any e ) 0 there is a positive integer no(e) such that, for

n ) no(e) and arbitrary nz, the set Ze " '+ of ad-
missible symbolic words of length n decomposes into two

The action of f on measurable subsets of M is faithfully
represented by the action of o. on measurable sets of sym-
bolic sequences. In the following section, we use this rep-
resentation to study hypersensitivity to perturbation for
K systems.

For the remainder of this section, we assume that f is
a K system with KS entropy h, and that S is a gener-
ating partition. Since the set Zg of admissible symbolic
sequences is invariant under the action of the shift map o
according to Eq. (4.15), Ze is a stationary source in the
language of information theory [31]. Moreover, by chaos-
ing the function P in Eq. (4.12), for an arbitrary symbolic
word w = u, w, , to be the indicator function of the
set E [see Eq. (4.5)]-corresponding to w, i.e. ,

We model a measure-preserving stochastic perturba-
tion by alternating unperturbed time steps with appli-
cation of measure-preserving perturbation maps. More
precisely, we do the following. We have available a col-
lection of measure-preserving perturbation maps. At the
nth step we select randomly a particular perturbation
map (:M ~ M from this collection and apply it to
the density p'(x, n) that is produced by the unperturbed
time step. This yields a new density

p(x, n) = p'(( x, n) = p(f '(( x), n —1), (5.2)

which depends on the map ( and which is the input to
the next step.

We characterize the perturbation maps in terms of two
quantities: (i) the "strength" of the perturbation, which
is roughly the size of the phase-space displacements pro-
duced by the maps, and (ii) the "correlation cells, " which
are roughly the phase-space regions over which the dis-
placements produced by the maps remain correlated. We
pause here to give a more precise general definition of
perturbation strength, because it highlights an essential
feature of chaotic dynamics. We defer de6ning the con-
cept of correlation cells precisely till it emerges naturally
in the context of the symbolic dynamics of perturbed
chaotic maps. We return to both concepts in Sec. VI,
where they are used to develop a heuristic picture of hy-
persensitivity to perturbation.

To characterize the "strength" of a perturbation, we
let b(xq, x2) denote the Euclidean distance between the
two points xq, x2 g M relative to some fixed set of
canonical coordinates. An e-perturbation map is a per-
turbation map ( for which 8((x, x) & e for all x C M.
An ~-perturbation map describes a perturbation whose
strength is smaller than the scale set by e.

Now suppose that the initial density p(x, n = 0) is
well behaved in the sense that there is a scale on which
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p(x, n = 0) varies little; i.e. , there is an eo & 0 such
that p(xi, n = 0) p(x2, n = 0) for any pair of points
xi, xq C M with 8(xi, x&) ( eo. Then, for any integer
n & 0, there is an e & 0 such that p(x, n) varies little
on the scale of e. We say that the system is ejjectively
shielded against perturbation8 at the nth step if there is
an e ) 0 such that the perturbation is described by e-

perturbation maps and the density p(x, n) varies little
on the scale of e.

One of the defining properties of chaotic dynamics is
that the scale e on which the density varies little decreases
exponentially with the number of time steps n. This en-
tails that chaotic systems cannot be eBectively shielded
against perturbations, except for a small number of time
steps. We use this fact below as the starting point for de-
veloping an essentially universal description of perturbed
chaotic dynamics. Regular, or integrable systems have no
exponential relationship between e and n and thus cannot
be fitted within the analysis of this section. We thus de-
fer discussion of regular systems until we have developed
a heuristic picture of hypersensitivity to perturbation in
Sec. VI.

We now proceed to show that all K systems for which
there is a generating partition exhibit hypersensitivity
to perturbation. This includes all K systems that have
a Markov partition [2]. Assume that the discrete ab-
stract dynamical system (M, p, , f) has a finite KS entropy
h = h„(f) & 0, and let E = (Ei, . . .E ) be a generating
partition of M. As explained in Sec. IV, f can be rep-
resented by a shift map 0. on the set of admissible sym-
bolic sequences Zp, each admissible symbolic sequence
corresponding to a single point in M. In the following,
we identify symbolic sequences with the corresponding
points and symbolic words with the corresponding sub-
sets of M, writing, e.g. , "the symbolic word u„, .
when we really mean the set of points corresponding to
the symbolic word u„, ~, . The set of admissible sym-
bolic sequences has the asymptotic equipartition prop-
erty; i.e. , for n )) 1, M is partitioned by the admissible
symbolic words u~ . .u in such a way that there are ap-
proximately 2 " symbolic words each approximately of
measure 2 ", whereas each of the remaining symbolic
words has negligible measure.

Let us first look at the unperturbed evolution of a sim-
ple initial state on M. We assume that the initial density
p(x, n = 0) is constant on the set of points corresponding

to the symbolic word

O=(d~ +i ' (d~ +q, g)) 1 (5.3)

and zero elsewhere. Here u o+$ M~o+q is one of the
symbolic words that has measure

~—qh
p0 = p(~no+1 +no+q J —2 (5.4)

Ho ——log2 po log2(2 ") = qh . — (5.5)

The condition q )) 1 means that the initial entropy Ho
is much smaller than the negative of the KS entropy of
the map, —h.

Applying the shift map o for n steps leads to a uni-
form density on 0' = 0. 0 = u' +i . ~„' + „where

The entropy of the shifted pattern remains
unchanged. As was stressed in Sec. II, the entropy does
not change under unperturbed Hamiltonian evolution.
Moreover, the method of symbolic dynamics makes it
utterly obvious that no additional information beyond
the initia/ pattern and the number of steps n is needed to
give a complete description of the evolved pattern. As was
pointed out in Sec. III, this means that the evolved un-
perturbed density, though highly structured when viewed
in phase space, is not complex in the algorithmic sense.

We now turn to perturbed evolution. At each step, in-
stead of applying just the map f, we now apply first f and
then a measure-preserving map ( selected randomly from
our collection of maps. We make two major assumptions
about the perturbation maps ( and their probabilities,
the erst assumption having to do with the perturbation
strength and the second with the perturbation correla-
tion cells. The first assumption is that below some scale
on phase space, a single application of the perturbation
randomizes the pattern completely. In symbolic language
this scale is characterized by some negative integer —n„,
and our assumption can be written as

In the following, we refer to a subset of M on which the
density is constant as a pattern.

We choose the (arbitrary) zero of the entropy such that
the entropy of a uniform density constant on the entire
set M vanishes. This is a natural choice because it cor-
responds to choosing units such that p, (x) is the measure
in the Gibbs entropy (2.1). The entropy of the initial
density is thus

for all n ( n„, w E. Zs, and—s . . tu F Z&
' ', (5.6)( t (n, —np)

where Prob stands for probability with respect to the ran-
dom selection of the perturbation map. The integer n„
is a measure of the strength of the perturbation, large n„
meaning a weak perturbation. Another way of describing
this assumption is the following: take a point on phase

space i.e., a symbolic sequence u—and perturb it to get
a new point (w; Eq. (5.6) means that it is unpredictable,
relative to the random selection of perturbation map (,
in which partition element E, the n&th backward iterate
and all further backward iterates of the perturbed point
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(~ fall.
Our second major assumption concerns the perturba-

tion correlation cells. We assume that the perturbation
maps ( are not completely arbitrary, but that a particu-
lar map displaces neighboring points in a similar way and
that, averaged over the random selection of perturbation
maps, the displacements become uncorrelated for points
sufBciently far away from each other. We model this be-
havior by assuming that the space M is partitioned into
perturbation cells u +,+~ -. u +,+„, where r )) 1
and 8 & 0 are integers, such that, erst, the perturbations
are uncorrelated for points in diferent perturbation cells
and, second, knowing how a typical point in a perturba-
tion cell is perturbed determines how all points in that
cell are perturbed. These perturbation cells are a precise
realization of the notion of correlation cells.

In addition to our two major assumptions, we make
several simplifying assumptions or approximations about
the perturbation maps. These simplifying assumptions
always tend to reduce the information LI;„required
to reduce the entropy increase to the tolerable amount
LHt ~. Since we want to prove that AI;„ is large, such
simplifying assumptions do not limit the validity of our
results. As our first simplifying assumption, we ignore all

features of the perturbation maps beyond what is needed
to satisfy Eq. (5.6); i.e. , we choose perturbation maps (
that satisfy

(((u)„=~„ for all n ) n„a—nd ~ g Zg, (5.7)

in addition to Eq. (5.6). This assumption means that the
perturbation maps have no effect at all on scales larger
than the scale set by n„. Allowing the perturbation maps
to act on scales larger than that set by n„would lead
to more distinguishable perturbed patterns and thus to
higher LI;„—which would have to be tracked to keep
the entropy increase to some tolerable amount.

Since it is impossible to shield a chaotic system against
perturbations in the sense defined above, we are justified
in choosing the zero of time (n = 0) such that the pertur-
bation becomes effective at the first time step (n = 1).
This amounts to choosing the initial symbolic word (5.3)
so that no ———n„, where n„ is the integer that char-
acterizes the strength of the perturbation. This initial
symbolic word, which defines the pattern on which the
initial density p(x, n = 0) is nonzero, can thus be written
as

~l =
I
~—,+i . ~-,+ I

~—„+ +i ~-,+.+. I
~— „+~. (5 8)

Since the perturbation inaps satisfy Eq. (5.7), the pertur-
bation leaves the pattern of Eq. (5.8) unchanged. After
one time step, however, the leftmost symbol moves into
the perturbation region, located to the left of the leftmost
vertical bar in Eq. (5.8), where it is randomized by the
perturbation according to Eq. (5.6). The perturbation
region is separated by 8 letters from the decision region,
located between the middle and rightmost vertical bars
in Eq. (5.8). This decision region, r letters wide, defines
the perturbation cells. Since we assume that r )) I, there
are approximately 2"" typica/ perturbation cells, each of
size 2 "",whereas the total size of the remaining per-
turbation cells can be neglected. Even though the as-
sumption q ) r + 8 is implicit in the way we write the

initial word in Eq. (5.8), this assumption is not necessary
for our analysis.

Focus attention now on the phase-space density p(x, n)
after n time steps, where we assume that

q —s & n &) max(1, q —s —r) . (5.9}

These assumptions assure us that the leftmost letter of
the initial word (5.8) has moved deep into the pertur-
bation region and the rightmost letter has moved far to
the left of the right boundary of the decision region, but
not more than one position beyond the left boundary of
the decision region. After n unperturbed steps the ini-
tial pattern 0 given by Eq. (5.8) evolves into the pattern
0' = o."0, which has the form

gl / /—n~ —n+i —np I
—n~+l —n~+s I

—n~+ +i —np —n+q (5.10)

where wl,
——u@+

I

Consider now what happens when the pattern of
Eq. (5.10) is perturbed. According to Eq. (5.6), all n
letters in the perturbation region [to the left of the left-
most vertical bar in Eq. (5.10)] are randomized by the
perturbation. We can therefore ignore the eKect of per-
turbations applied at previous steps. The density that
arises from averaging over the perturbation is made up of

all the patterns that come from randomizing the letters in
the perturbation region. As a consequence of the asymp-
totic equipartition property and assumption (5.6), there
are approximately 2 " such patterns, all of which have
approximately the same probability and all of which have
approximately the same measure as the unperturbed pat-
tern (5.10). Thus averaging over the perturbation leads
to an entropy increase
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AHg log2(2 ") = nh . (5.11)
We now turn to estimating the minimum information

LI;„about the perturbation needed to limit the entropy
increase to a tolerable value AHt ~. Consider again the
word (5.10) that describes the unperturbed pattern after
n steps. Due to the asymptotic equipartition property,
the n —(q —s —r) )) 1 unspecified letters at the right
side of the decision region correspond to the pattern's
extending over

2[n (q s v') jh ) 1 (5.12)

typical perturbation cells. This exponential increase in
the number of typical perturbation cells occupied by the
pattern continues only until all the typical perturbation
cells are occupied, i.e. , until 'R = 2"" or n = q —s. The
occupied perturbation cells partition the unperturbed
pattern into 'R subpatterns of the form

I I I—np —n+1 —np I —np+1 —np+s I
—np+s+1

I
n n+—q~—n„n+—q+i— .~—n, +s+rp

(5.13)

where the n —(q —s —r) letters w; deterinine an occupied perturbation cell.
These subpatterns, all of approximately the same size, are perturbed independently. We describe the perturbed

subpattern in each perturbation cell by a symbolic word

I I—np —n+& —np I
—n +X ~—n +s I

~—n +s+Xp
—

p
—

p

I
n+q~ n n+q—+i —' ' ~ n, +s+r-p

(5.14)

where the letters u,. are chosen at random according to
Eq. (5.6). Again invoking the asymptotic equipartition
property, we can say that in each of the 'R occupied
perturbation cells, there are

D—:2n" )) X (5.15)

typical perturbed words, or typical perturbed subpat-
terns, of the form (5.14), all having approximately the
same probability and all having approximately the same
measure as the unperturbed subpattern (5.13).

These considerations give a total of D " typical per-
turbed patterns, all produced with approximately the
same probability by the perturbation and all having ap-
proximately the same entropy as the unperturbed pat-
tern (5.10). The information needed to specify a partic-
ular perturbed pattern and thus the information needed
to keep the tolerable entropy increase essentially to
zero—is given by

It should be emphasized that the exponential increase of
this LI;„continues only until all the typical perturba-
tion cells are occupied, i.e., until n = q —s; for n ) q —s
the information continues to increase, but the form of the
increase is more diKcult to determine.

What is going on here has a simple interpretation.
Within each perturbation cell, the perturbed subpat-
terns have essentially no overlap. The overall perturbed
patterns, however, can have considerable overlap, since
two perturbed patterns are di8'erent even if they dier
in only a single perturbation cell. The entropy increase
LH~ nh, that comes &om averaging over the pertur-
bation [Eq. (5.11)] is the logarithm of the number D of
nonoverlapping patterns that are required to make up
the average density. The number of nonoverlapping pat-

AI;„'Rnlog2D = 2" q ' " "LH~ for AHgo) 0.

(5.16)

terns is the same as the number of perturbed. subpatterns
in each perturbation cell, and hence LH~ nh is also
the information required to specify a particular subpat-
tern within a perturbation cell. To specify a particular
overall pattern, however, one must say which perturbed
subpattern is realized in each of the X occupied per-
turbation cells; this requires giving LHp nh bits per
occupied perturbation cell, for a total amount of infor-
mation AI;„'R AHg [Eq. (5.16)]. The information
LI;„is much bigger than the average entropy increase
LHg because the information counts overlapping pat-
terns, whereas the entropy d.oes not.

Now suppose that one allows a nonzero tolerable en-

tropy increase AHt ~. This means that one does not
have to specify exactly which of the D " perturbed
patterns is realized. Instead, one can group the typi-
cal perturbed patterns and specify only to which group
the perturbed pattern belongs. Suppose the typical pat-
terns are grouped into N groups, which are labeled by
an integer b = 1, . . . , ¹ In analogy to Sec. III, we
denote by Nb the number of patterns in the bth group

(Pz i Ns = D~" ), by ps(x) the probability density one
obtains by averaging over all the patterns in the bth
group, by LHp the corresponding conditional entropy
increase, and by AH = Pp&AHg the average condi-
tional entropy increase. Since all the patterns are ap-
proximately equiprobable, the probability of obtaining
the measurement record b, which specifies that the per-
turbed pattern is in the bth group, is pg ——NbD

To obtain LI;„ for a given LHq ~, one would have
to find a grouping of the patterns that is optimal in
the sense of minimizing LI;„under the condition that
AH & LHq ~. Since we do not know how to find an
optimal grouping, we construct a nearly optimal group-
ing as follows. We start with a particular pattern, or
fiducial pattern, and form our first group out of all the
patterns that diR'er in at most d perturbation cells &om
the fiducial pattern. Such a group we call a d-group. The
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grouping into d-groups is motivated by the fact that the
entropy increase AH is minimal for groups of patterns
that differ in the smallest number of perturbation cells
[see Eq. (5.27) below). There being

(5.17)

patterns that differ in exactly k cells from an arbitrary
fiducial pattern, the number of patterns differing in at
most d cells &om an arbitrary fiducial pattern and there-
fore the size of a d-group is

(5.18)

A particularly simple way to proceed would be to pick
a second fiducial pattern from among the patterns not in
the first group, forming a second d-group about this sec-
ond pattern, and then to continue to form d-groups until
all patterns were grouped. Unfortunately, this strategy
fails because if we proceed in this way, some groups over-
lap. The problem of finding a grouping into nonover-
lapping d-groups is equivalent to the problem of find-
ing a perfect error-correcting code in information theory
[31] and generally has no solution. In the following, we
nevertheless assume that the D " patterns are perfectly
grouped into a number X = D "/Gg of d-groups. We
can make this simplifying assumption because it lowers
our estimate of LI

We now turn to the computation of the entropy in-
crease LHd for a d-group, i.e., a group consisting of a
fiducial pattern and all the patterns differing in at most

dIJ(x) Pd = Pdf
I|Jo pf (5.19)

where py is the probability obtained by integrating pd
over the entire fiducial pattern. Similarly, for any of the
other subpatterns, the probability obtained by integrat-
ing pd over the subpattern is

(5.2O)

where p = 1 —pf is the probability obtained by inte-
grating pd over all the subpatterns outside the fiducial
pattern.

The entropy increase of a d-group can now be written

d perturbation cells from the fiducial pattern. The av-
erage density pg(x) for a d-group is the average of the
densities for the Gd patterns in the group, all patterns
contributing with the same probability 1/Gg. Alterna-
tively, we can break each contributing pattern into its 'R

subpatterns —i.e., symbolic words of the form (5.14)—
and view pg(x) as being made up of contributions &om
the D'R subpatterns, all of which have approximately
the same measure po/R„.

We distinguish two types of subpatterns, namely the
'R„subpatterns belonging to the fiducial pattern and the
other (D —1)R„subpatterns. The average density pq(x)
is uniform on each subpattern. We denote its value on
subpatterns belonging to the fiducial subpattern by pdf
and its value on the other subpatterns by pd . For a sub-
pattern belonging to the fiducial pattern, the probability
obtained by integrating pd over the subpattern is

AHg = — dp(x) pg(x) log2[pg(x)] —Ho

g. I I (D 1)7Z log2 I D I

—log2 po
(@or

py log 2 pf —p—- log2 p-+ p- »g2(D —1) . (5.21)

To evaluate LHd, we must find the integrated proba-
bilities p and pf. Each pattern that differs in exactly
k cells from the fiducial pattern contributes the amount
A, /R„G~ to p and the amount (R„—k)/'R'„Gq to pf. It
follows that

d = 'R, we have G~ = D ", p = 1 —1/D, py = 1/D,
and thus 4H~„——log2 D = 4'.

Under the assumption of perfect grouping into N =
D~" /Gd d-groups, the average entropy of the d-groups is
LH = LHd, and the information to specify a particular
d-group is

'R„Gd (kr) Ald —log2 N
'R„ log2 D —log2 Gd

= 7Z„LHg —log2 Gd . (5.24)
'R„—k»=)- RG '"

k=o n d

(5.23)

Under our further simplifying assumption that optimal
grouping is well approximated by perfect grouping into
d-groups, we can approximate the minimum information
LI;„required to keep the entropy increase to a tolerable
amount LHt~~ by

Notice that p = 'R BlnGg/Bln(D —1) and that when LI;„AId for AH&or LH (5.25)
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('R„i ~ d 'R„—d
~
(D —1)', S.=, py -—

(5.26)

In this approximation the entropy increase of a d-group
is

R~ d K~ d

log2(D —1) .
n

d CL

log2

(5.27)

Using the same approximation and applying Stirling's
formula, one Ands that

(R„)
log2 Gd log2

~ I
+ dlog2(D —1)0")

R~ —d R~ —dR„—"
log 2

+ log2 (D —1)

X 4'. (5.28)

At this point we could plot AI;„as a function of
LHq ~ by using the common dependence on d. Given the
assumptions (5.12) and (5.15) that 'R and D are large,
however, we can introduce further approximations that
allow us to write an explicit expression for LI;„as a
function of LHq ~, valid over nearly the entire range of
AH& ~. The key to these approximations is that gk in-
creases exponentially for k « k, —:(R + l)(1 —1/D).
This means that each of the sums for Gg, p, and py
can be approximated by its largest term (k = d), pro-
vided 'R —d &) R —k, R /D —1. The resulting
approximations are

Combining Eqs. (5.24), (5.25), and (5.28) yields

LI;„=AIg
'R„(AH~ —AHg)

= X„(aH~ —ZH, )) . (5.29)

(5.30)

in case (ii), Eq. (5.29) is valid as long as R —d )&
»(eD/R ) ) 1 & 'R /D, which translates to

This expression, the key result of this paper, shows that
to reduce the entropy of a perturbed chaotic map by an
amount AHg —LHq i, one must acquire an amount of
information LI;„about the perturbation which is much
larger than the contemplated entropy reduction. Indeed,
the ratio of information to entropy reduction grows expo-
nentially as X„=2~ ~ ' "~I" with the number of time
steps, the exponential rate of growth being determined
by the KS entropy h, of the map. This is what we mean
by exponential hypersensitivity to perturbation.

We should investigate the validity of the approxima-
tions that lead to our key result (5.29). This result
agrees with what we have already derived in Eq. (5.16)
for AH& ~ 0. Thus we are mainly interested in knowing
where the approximations fail as LHq ~ approaches LHg.
A more careful analysis, which keeps track of the errors
introduced by the approximation (5.26) and by the use
of Stirling s formula in Eq. (5.28), indicates that we must
consider separately two cases: (i) R & D (r+s & q), i.e. ,

there are more occupied perturbation cells than there are
perturbed subpatterns per cell; (ii) R & D (r + s & q),
i.e. , there are fewer occupied perturbation cells than
there are perturbed subpatterns per cell. In case (i),
Eq. (5.29) is valid as long as R„—d &) R /D & 1, which
translates to

1 (eD)'R„& D: AH~ —AH~~) && ln~
R~ (R~

- 2

:- AI;„&& ln~
(eDI
(R~)

- 2

(5.31)

These restrictions arise because of approximations made
in evaluating LIg and LHg.

There is a separate question of whether perfect d-

grouping is a good approximation to optimal grouping.
The restrictions contained in Eqs. (5.30) and (5.31) are
probably not the most important restrictions on the va-
lidity of our key result, because the very idea of perfect
d-grouping as an approximation to optimal grouping is
suspect when LI;„is as small as a few bits. Our hesi-
tancy in defining exponential hypersensitivity to pertur-
bation, where we require the information-to-entropy ra-
tio (3.13) to grow exponentially for "almost all" values
of LH& ~, can be traced to this inability to approximate
the optimal grouping when AH& ~ is very close to LH~.
We are left uncertain about the precise behavior of LI

D/2&Hoop 2bHg —AHeo) (5.32)

coarse-grained subpatterns in each occupied perturbation
cell. A coarse-grained pattern consists of coarse-grained

when LH& ~ is very close to LH~.
We can interpret our key result by hearkening back

to the interpretation given to Eq. (5.16). We first need
to describe what it means to to specify the phase-space
density at a level of resolution defined by a tolerable en-
tropy increase AHq ~. To do so, imagine that the sub-
patterns within each occupied perturbation cell are ag-
gregated into groups, which we call coarse-grained sub-
patterns, each group consisting of 2+ ' ' subpatterns so
that there are
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subpatterns, one for each of the 'R occupied perturba-
tion cells. Since a coarse-grained pattern has a measure
that is approximately 2 ' ' times as big as a pattern, a
coarse-grained pattern represents an entropy increase

In terms of phase space, this long-time limit means that
the size of the initial pattern, the size of a typical pertur-
bation cell, and the strength of the perturbation all go
to zero at the same rate as n goes to infinity.

log2 (2 '") = b,H, i . (5.33)
VI. 13ISCUSSlON

Thus, specifying the system state at a level of resolution
set by LIIt, ~ amounts to specifying a particular coarse-
grained pattern.

The further entropy increase that results from aver-
aging over the coarse-grained patterns is given approxi-
mately by

log2P LH~ —LHt ) . (5.34)

This entropy increase is the logarithm of the number of
nonoeerIappi ng coarse-grained patterns that are required
to make up the density that comes from averaging over
the perturbation. This number of nonoverlapping coarse-
grained patterns is the same as the number of coarse-
grained subpatterns in each perturbation cell, and hence
the entropy increase (5.34) is also the information re-
quired. to specify a particular coarse-grained subpattern
within a perturbation cell. There being 'R perturbation
cells, the information needed to specify an entire coarse-
grained pattern becomes

ZI;„=X„(aH~ —aH, .i) = X„log, V, (5.35)

log, Z.„)lim —log2 llm = 6.
n (b,H~ —b,H~ i) -+ n )

(5.36)

an amount of information that corresponds to a total of
'V " coarse-grained patterns, all produced with approx-
imately the same probability by the perturbation.

The exponential hypersensitivity to perturbation that
we have demonstrated here for maps with positive KS
entropy is an asymptotic property for large times. By
spelling out precisely the character of the n —+ oo limit,
we can see how exponential hypersensitivity to pertur-
bation provides an alternative definition of the KS en-
tropy. In discussing the limit, it is helpful to have in
mind the form (5.8) of the initial symbolic word and the
form (5.10) of the unperturbed symbolic word after n
time steps. The assumptions (5.9) indicate that as n
goes to infinity, we should let n —(q —r —s) go to infinity
in the same way as n—this allows the limit to explore
the long-time exponential growth of 'R —while keeping
q —8 —n & 0 constant —this prevents the exponential
growth of 'R &om being halted at the time when there
is more than one subpattern per perturbation cell. Thus
an appropriate limit is to let n, q, and r go to infinity,
while keeping 8, q —n & 8, and r —n constant. In think-
ing about how this limit is mapped onto phase space, it
is convenient also to let n„go to infinity while keeping
—n& + q constant; this keeps the rightmost letter of the
initial symbolic word in the same place as we take the
limit. With this understanding of the limit, we can write

In this final section we do not aim for rigor; unlike the
symbolic-dynamics analysis of Sec. V, the statements in
this section are made without formal proof. Instead, we
try to provide an intuitive understanding of the condi-
tions that lead to our key result (5.29). Our objective
is to extract the important ideas from the symbolic dy-
namics and to use them to develop a heuristic physical
picture of why chaotic systems display exponential hy-
persensitivity to perturbation. For a simple illustration
of this picture in a system where exact solutions exist,
the reader is referred to Ref. [10].

Consider then a classical Hamiltonian system whose
dynamics unfolds on a 2E-dimensional phase space, and
suppose that the system is perturbed by a stochastic
Hamiltonian whose efI'ect can be described as dift'usion on
phase space. Suppose that the system is globally chaotic
with KS entropy K. For such a system a phase-space
density is stretched and folded by the chaotic dynamics,
developing exponentially fine structure as the dynamics
proceeds. A simple picture is that the phase-space den-
sity stretches exponentially in half the phase-space di-

mensions and contracts exponentially in the other half of
the dimensions.

The perturbation is characterized by a perturbation
strength and by correlation cells. We can take the per-
turbation strength to be the typical distance (e.g. , Eu-
clidean distance with respect to some fixed set of canon-
ical coordinates) that a phase-space point difFuses under
the perturbation during an e-folding time, E/Kln2, in
a typical contracting dimension. The perturbation be-
comes efI'ective, in the sense described in Sec. V, when the
phase-space density has roughly the same size in the con-
tracting dimensions as the perturbation strength. Once
the perturbation becomes efI'ective, the eff'ects of the dif-
fusive perturbation and of the further exponential con-
traction roughly balance one another, leaving the average
phase-space density with a constant size in the contract-
ing dimensions.

The correlation cells are phase-space cells over which
the efI'ects of the perturbation are well correlated and
between which the efI'ects of the perturbation are essen-
tially uncorrelated. We assume that all the correlation
cells have approximately the same phase-space volume.
We can get a rough idea of the efI'ect of the perturba-
tion by regarding the correlation cells as receiving inde-
pendent perturbations. Moreover, the difFusive efI'ects of
the perturbation during an e-folding time E/Kin 2 are
compressed exponentially during the next such e-folding
time; this means that once the perturbation becomes ef-
fective, the main efI'ects of the perturbation at a particu-
lar time are due to the dift'usion during the immediately
preceding e-folding time.

Since a chaotic system cannot be shielded forever from
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the effects of the perturbation, we can choose the initial
time t = 0 to be the time at which the perturbation
is just becoming effective. We suppose that at t = 0
the unperturbed density is spread over 2 ' correlation
cells, to being the time when the unperturbed density
occupies a single correlation cell. The essence of the KS
entropy is that for large times t the unperturbed density
spreads over

2Kt
26Ht ol

2&H~ —AH«l (6.3)

A coarse-grained density is made up by choosing a coarse-
grained subdensity in each occupied correlation cell. A
coarse-grained. density occupies a phase-space volume
that is bigger than the volume occupied by the unper-
turbed density by the factor 2 ' ' of Eq. (6.3) and hence
represents an entropy increase

2Ic(t —t ) (6.1)

correlation cells, in each of which it occupies roughly the
same phase-space volume. The exponential increase of
7Z(t) continues until the unperturbed density is spread
over essentially all the correlation cells. We can regard
the unperturbed density as being made up of subdensi-
ties, one in each occupied correlation cell and all having
roughly the same phase-space volume.

After t = 0, when the perturbation becomes effective,
the average density continues to spread exponentially in
the expanding dimensions. As noted above, this spread-
ing is not balanced by contraction in the other dimen-
sions, so the phase-space volume occupied by the average
density grows as 2, leading to an entropy increase

AH~ log2(2 ') = Kt . (6.2)

Just as the unperturbed density can be broken up into
subdensities, so the average density can be broken up
into average subdensities, one in each occupied correla-
tion cell. Each average subdensity occupies a phase-space
volume that is 2 times as big as the volume occupied
by an unperturbed subdensity.

The unperturbed density is embedded within the
phase-space volume occupied by the average density and
itself occupies a volume that is smaller by a factor of
2 . We can picture a perturbed density crudely by
imagining that in each occupied correlation cell the un-
perturbed subdensity is moved rigidly to some new po-
sition within the volume occupied by the average sub-
density; the result is a perturbed subdensity. A perturbed
density is made up of perturbed subdensities, one in each
occupied correlation cell. All of the possible perturbed
densities are produced by the perturbation with roughly
the same probability.

Suppose now that we wish to hold the entropy increase
to a tolerable amount LHq ~. We must first describe what
it means to specify the phase-space density at a level of
resolution set by a tolerable entropy increase DH& ~. An
approximate description can be obtained in the following
way. Take an occupied correlation cell, and divide the
volume occupied by the average subdensity in that cell
into 2 "nonoverlapping volumes, all of the same
size. Aggregate all the perturbed subdensities that lie
predominantly within a particular one of these nonover-
lapping volumes to produce a coarse-grained subdensity.
There are 2 ~ + "coarse-grained subdensities within
each occupied correlation cell, each having a phase-space
volume that is bigger than the volume occupied by a per-
turbed subdensity by a factor of

log2(2 ")= AH (6 4)

Thus to specify the phase-space density at a level of res-
olution set by LHq j means roughly to specify a coarse-
grained density. The further entropy increase on averag-
ing over the perturbation is given by

log, (2~".-~~-
) = ~H, —~H, » (6.5)

What about the information LI;„required to hold
the entropy increase to LHt ~? Since there are
2+ +0" coarse-grained. subdensities in an occupied
correlation cell, each produced with roughly the same
probability by the perturbation, it takes approximately
AHg —AHt ~ bits to specify a particular coarse-grained
subdensity. To describe a coarse-grained density, one
must specify a coarse-grained subdensity in each of the
'R(t) occupied correlation cells. Thus the information re-
quired to specify a coarse-grained density and, hence,
the information required to hold the entropy increase to
LHt~I is given by

AI;„-R(t) (AH~ —AH, ») (6.6)

[cf. Eq. (5.35)j, corresponding to there being a total
of (2~~~ +~")~~~) coarse-grained densities. The en-
tropy increase (6.5) comes from counting the number of
nonoverlapping coarse-grained densities that are required
to fill the volume occupied by the average density, that
number being 2 ~ '". In contrast, the information
LI;„comes from counting the exponentially greater
number of ways of forming overlapping coarse-grained
densities by choosing one of the 2 ~ ' ' nonover-
lapping coarse-grained subdensities in each of the 'R(t)
correlation cells.

The picture developed in this section, summarized
neatly in Eq. (6.6), requires that AHt i be big enough
that a coarse-grained subdensity is much larger than a
perturbed subdensity, so that we can talk meaningfully
about the perturbed subdensities that lie predominantly
within a coarse-grained subdensity. If AHq ~ becomes
too small, Eq. (6.6) breaks down, and the information
AI;„, rather than rejecting a property of the chaotic
dynamics as in Eq. (6.6), becomes essentially a property
of the perturbation, rejecting a counting of the number
of possible realizations of the perturbation.

The boundary between the two kinds of behavior of
AI;„ is set roughly by the number E of contracting
phase-space dimensions. When AHt i/Ii + 1, the char-
acteristic scale of a coarse-grained subdensity in the con-
tracting dimensions is a factor of
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(2bHt~()1/F 2AHt~(/F & 2 (6.7)

(6.8)

Once the chaotic dynamics renders the perturbation ef-
fective, this exponential hypersensitivity to perturbation
is essentially independent of the form and strength of the
perturbation. Its essence is that within each correlation
cell there is a roughly even trade-off between entropy re-
duction and information, but for the entire phase-space
density the trade-ofF is exponentially unfavorable because
the density occupies an exponentially increasing number
of correlation cells, in each of which it is perturbed inde-
pendently.

As noted above, the behavior of LI;„for LHt ~
+ E

deviates from the universal behavior of Eq. (6.8) and tells
one about the number of realizations of the perturbation
that produce densities that differ on scales finer than the
finest scale set by the system dynamics. For a diffusive
perturbation of the sort contemplated in this section,
LI;„diverges as DHt ~ goes to zero, because a diffu-
sive perturbation has an infinite number of realizations
on even the tiniest scale. If the difFusive perturbation is
replaced by a similar perturbation, but with a finite num-
ber of realizations, then the growth of AI;„ is capped

larger than the characteristic size of a perturbed sub-
density in the contracting dimensions. In this regime the
picture developed in this section is at least approximately
valid, because a coarse-grained subdensity can accommo-
date several perturbed subdensities in each contracting
dimension. The information LI;„quantifies the effects
of the perturbation on scales as big as or bigger than the
finest scale set by the system dynamics. These effects, as
quantified in LI;„,tell us directly about the size of the
exponentially fine structure created by the system dy-
namics. Thus LI;„becomes a property of the system
dynamics, rather than a property of the perturbation.

In contrast, when AH& ~/F & 1, we are required to
keep track of the phase-space density on a very fine scale
in the contracting dimensions, a scale smaller than the
characteristic size of a perturbed subdensity in the con-
tracting dimensions. Subdensities are considered to be
distinct, even though they overlap substantially, provided
that they differ by more than this very Gne scale in the
contracting dimensions. The information AI;„ is the
logarithm of the number of realizations of the pertur-
bation which differ by more than this very fine scale in
at least one correlation cell. The information becomes
a property of the perturbation because it reports on the
effects of the perturbation on scales finer than the finest
scale set by the system dynamics i.e. , scales that are, at
the time of interest, irrelevant to the system dynamics.

We are now prepared to put in final form the expo-
nential hypersensitivity to perturbation of systems with
a positive KS entropy:

at the logarithm of the number of realizations, corre-
sponding to the finest scale on which the perturbation
acts. The perturbation used in the symbolic-dynamics
analysis of perturbed chaotic maps in Sec. V is of this
latter sort, with a finite number of realizations, the num-
ber being D~" = (2 ") ". Indeed, the major simpli-
fying assumption about the perturbation in Sec. V is
that the subpatterns produced by the perturbation are
all different on the finest scale set by the system dy-
namics; i.e. , there are no overlapping perturbed subpat-
terns. This means that the cap on AI;„, which occurs
at AI;„ log2(D ") = 7Z nh [cf. Eq. (5.16)], is just
such that the universal behavior of Eq. (5.35) extends
right down to AHt ~ 0.

What about systems with regular, or integrable dy-
namics? Though we expect no universal behavior for
regular systems, we can get an idea of the possibilities
from the heuristic description developed in this section.
Hypersensitivity to perturbation requires, first, that the
phase-space density develop structure on the scale of the
strength of the perturbation, so that the perturbation be-
comes efFective, and, second, that after the perturbation
becomes effective, the phase-space density spread over
many correlation cells.

For many regular systems there will be no hypersen-
sitivity simply because the phase-space density does not
develop fine enough structure. Regular dynamics can
give rise to nonlinear shearing, however, in which case
the density can develop structure on the scale of the
strength of the perturbation and can spread over many
correlation cells. In this situation, one expects the pic-
ture developed in this section to apply at least approx-
imately: to hold the entropy increase to AH& I requires
giving LHp —AHt ~ bits per occupied correlation cell;
AI;„ is related to AHq ~ by Eq. (6.6), with 7Z(t) be-
ing the number of correlation cells occupied at time t.
Thus regular systems can display hypersensitivity to per-
turbation if 7Z(t) becomes large (although this behavior
could be eliminated by choosing correlation cells that are
aligned with the nonlinear shearing produced by the sys-
tem dynamics), but they cannot display exponential hy-
persensitivity to perturbation because the growth of 7Z(t)
is slower than exponential.

A more direct way of stating this conclusion is to re-
iterate what we have shown in this paper: Exponen-
tial hypersensitivity to perturbation is equivalent to the
spreading of phase-space densities over an exponentially
increasing number of phase-space cells; such exponential
spreading holds for chaotic, but not for regular systems
and is quantified by a positive value of the Kolmogorov-
Sinai entropy.
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