
PHYSICAL REVIEW E VOLUME 53, NUMBER 4 APRIL 1996

Lyapunov spectral analysis of a noneguilibrium Ising-like transition
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By simulating a nonequilibrium coupled map lattice that undergoes an Ising-like phase transition,
we show that the Lyapunov spectrum and related dynamical quantities, such as the dimension
correlation length (s, are insensitive to the onset of long-range ferromagnetic order. In particular,
the dimension correlation length (s remains finite and of order 1 lattice spacing while the two-point
correlation length diverges to infinity. As a function of lattice coupling constant g and for certain
lattice maps, the Lyapunov dimension density and other dynamical order parameters go through a
minimum. The occurrence of this minimum as a function of g depends on the number of nearest
neighbors of a lattice point but not on the lattice symmetry, on the lattice dimensionality, or on the
position of the Ising-like transition. In one-space dimension, the spatial correlation length associated
with magnitude fluctuations and the length (s are approximately equal, with both varying linearly
with the radius of the lattice coupling.

PACS number(s): 05.45.+b, 47.27.Cn, 05.70.Ln, 82.40.Bj

I. INTR.ODUCTION

Laboratory experiments [1] and numerical simulations
[2] can now systematically explore sustained homoge-
neous nonequilibrium systems of quite large aspect ra-
tios (I' & 1000) which possibly approximate a thermo-
dynamic limit of infinite system size. These advances
raise the theoretical question of identifying order param-
eters for analyzing and classifying spatiotemporal chaotic
states so that a quantitative comparison can be Inade
between theory and experiment [3]. The most appro-
priate order parameter for a given nonequilibrium sys-
tem is presently not well understood although numerous
possibilities have been studied. Some order parameters,
such as spatial correlation lengths obtained from expo-
nentially decaying correlation functions, emphasize the
average spatial disorder and have been widely used in
condensed matter physics [4]. Others, such as the met-
ric entropy and the Lyapunov fractal dimension [5], are
familiar &om nonlinear dynamics and emphasize the av-
erage temporal disorder or dynamical complexity arising
from the geometric structure of an attractor in phase
space.

We would then like to know whether these difFerent
kinds of order parameters are related and whether there
is a need for new order parameters. As an example, does
knowledge of an easily measured correlation length give
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h = lim D/V,I —+oo

by the equation

g
—i/d (2)

The length (s can be interpreted crudely as a characteris-

information about the fractal dimension, which is diK-
cult to estimate from experimental time series [6]? That
a relation between spatial disorder and dynamical com-
plexity may exist is suggested by the prominence in many
nonequilibrium states of defects [7] whose dynamics of-
ten determine the average spatial disorder [8]. Examples
of defects are amplitude holes in a one-dimensional com-
plex Ginzburg-Landau equation (abbreviated below as
CGLE) [9—12], domain walls and droplets of opposite spin
in coupled map lattices (CMLs) with an Ising-like tran-
sition [13,14], vortices in the two-dimensional CGLE [8],
and spirals and centers in the recently discovered spiral-
defect chaos state in thermal convection [15]. The nucle-
ation, motion, and annihilation of defects are important
features of the chaotic dynamics and so dynamical quan-
tities such as the &actal dimension may be related to
their spatial statistics [16—18]. Complicating this simple
picture is the fact that not all fluctuations are associated
with defect motion, e.g. , phase fluctuations in the CGLE
[11,19]. The fractal dimension may then be larger than
that suggested by defect statistics.

In recent work [12,17,19], Egolf and Greenside have ex-
plored the relation between temporal and spatial disorder
for the CGLE on a large periodic interval [11].Observing
that suKciently large chaotic systems become extensive
so that a fractal dimension D grows linearly with vol-
ume size V oc L (where L is the system size and d is
the spatial dimensionality) [7,17,20—24], they calculated
the dimension correlation length (s which is defined [7]
in terms of the intensive dimension density
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tic size of dynamically independent subsystems or a char-
acteristic range of chaotic Buctuations. Near a transition
from phase- to defect-turbulent states [11,25], Egolf and
Greenside found that the length (g was approximately
equal to, and had the same parametric dependence as,
the spatial correlation length given by the magnitude
fiuctuations of the Ginzburg-Landau field [12]. Over the
same parameter range, the correlation length (y aris-
ing from phase fiuctuations (and also of the Ginzburg-
Landau field itself) was found to increase to quite large
values, suggesting that the chaos Huctuations measured
by (g were short-ranged and decoupled from the phase.

In this paper, the one-dimensional investigations of
Egolf and Greenside [12,17] are extended by examining
similar questions of how spatial disorder and dynamical
complexity are related for spatial dimensionality d = 2
and d = 3. We study a class of dissipative coupled map
lattices [14] that undergoes an Ising-like ferromagnetic-
ordering transition as a lattice coupling constant g [de-
fined below in Eq. (4)] is increased through a range
of finite positive values, corresponding to a transition
from a high-temperature paramagnetic phase to a low-
temperature ferromagnetic phase. Instead of the point-
like space-time defects of the one-dimensional CGLE [12],
long-lived defects occur in the form of domain walls and
droplets involving regions of opposite sign. At a critical
transition point g = g, the usual two-point correlation
length (2 diverges to infinity while the magnetization (the
average of the signs of all lattice variables) bifurcates
&om a zero to nonzero value. The main attraction of
the Miller-Huse model [14] is that a transition with a di-
verging correlation length occurs &om one chaotic state
to another. This permits a careful comparison of differ-
ent length scales near the transition point. Others have
previously studied the variation of the Lyapunov spec-
trum across an equilibrium first-order transition (using
molecular dynamics on a cluster of particles) but did not
compute or contrast the length Q with the length (2 [26].

By calculating the Lyapunov spectrum and related
dynamical quantities such as the dimension correlation
length (g, we show that correlations in chaotic fiuctu-
ations near the ordering transition have a short range
and are decoupled &om the diverging long-range order
measured by the length (z. As was the case for the 1D
periodic CGLE [12], the length (g and the correlation
length (2 s arising from magnitude fiuctuations of the
CML variables both turn out to be short —here about
one lattice spacing —but a quantitative relation cannot
be determined since these lengths do not vary substan-
tially with parameters. In one-space dimension, a more
substantial variation in these quantities is obtained by

- increasing the radius r of the coupling from nearest to
rth-nearest lattice neighbors. With increasing radius r,
the lengths gg and (2 s then increase approximately lin-
early and with slopes related by a factor of order one.
This suggests that the two lengths may be related and
that r is important in determining the length scale of
dynamical Quctuations.

Several dynamical quantities such as the largest Lya-
punov exponent Aq, the metric entropy density
limL, ~ H/V, and the Lyapunov fractal dimension den-

sity b attain minimum values near —but distinctly not
at—the critical transition point g = g . At 6rst glance,
minima in quantities such as h or b seem counterintuitive
since the onset of ferromagnetic ordering should corre-
spond to increased correlations, i.e. , decreased dynamical
complexity and a decreased dimension density or entropy
density. Such a monotonic decrease in the metric entropy
is, in fact, observed for a nondissipative equilibrium CML
that undergoes an Ising-like transition [13]. But because
the dimension correlation length (g is quite short in the
Miller-Huse model, we argue below that dynamical quan-
tities are only sensitive to nearest neighbor dynamics. As
the coupling constant g increases, the discrete Laplacian
eventually becomes antidiffusive, magnifying rather than
reducing short-wavelength structure, and the dimension
density and entropy density start to increase.

The role of coupling lat tice neighbors is demon-
strated with calculations on periodic two-dimensional
(2D) hexagonal and three-dimensional (3D) cubic lat-
tices. For these cases, (h is again about one lattice spac-
ing in size and the extrema in dynamical quantities occur
at a value g = 1/(n + 1) determined by the number n of
nearest neighbors (n = 4 for the square lattice, n = 6
for the hexagonal and cubic lattices). The positions of
the extrema do not coincide with the bifurcation of the
magnetization and do not seem to depend on the lat-
tice symmetry and dimensionality. The origin of these
minima remains to be explained.

These results, together with previous work on the
1D CGLE and with some unpublished work on CMLs
with algebraic decay of spatial correlations [24], suggest
that the dimension correlation length will typically be
short so that chaotic Quctuations are decoupled &om
long-range spatial order as measured by correlation func-
tions. This leads to the qualitative conclusion that de-
fects, although a striking visual feature of spatiotempo-
ral chaos, are not the source of complexity that leads to
large &actal dimensions and to small dimension corre-
lation lengths. The physical meaning and utility of the
length (g remains to be understood and further studies
on different kinds of systems will be useful.

The rest of this paper is organized as follows. In Sec. II,
we de6ne the coupled map lattice and discuss some de-
tails of how its Lyapunov spectrum is calculated using a
CM-5 parallel computer [27]. In Sec. III, we discuss vari-
ous results of our simulations, especially the dependence
of order parameters on the lattice coupling constant and
on the symmetry and dimensionality of the lattice. Fi-
nally, in Sec. IV, we summarize our results and relate
them to other recent research.

II. METHODS

In this section, we define the mathematical mod-
els used in our simula, 'ions and discuss some details
about how the Lyapunov spectrum and spatial correla-
tion lengths were calculated numerically. Since a CM-5
parallel computer played an important role in our be-
ing able to explore large space-time regions for many pa-
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rameter values, we also discuss some details of how the
algorithms were adapted for parallel computation.

A. Models

As easily simulated models of spatiotemporal chaos, we
consider homogeneous coupled map lattices (CMLs) in
which the same chaotic map P(y) is associated with each
point of a finite periodic lattice and for which nearest
neighbor maps are coupled linearly by dift'usion. CMLs
have a significant advantage over partial diff'erential equa-
tions of being analytically amenable [28] and easier to
simulate on a computer. CMLs have the drawback that
their solutions cannot generally be related quantitatively
to experiment and they may not have universal critical
properties near transitions [29].

We study CMLs suggested by recent work of Miller and
Huse [14], who analyzed the long-wavelength properties
of a two-dimensional CML that orders ferromagnetically,
in analogy to the equilibrium Ising model [30]. Follow-
ing these authors, we use a lattice map P(y) = —P(—y)
with odd symmetry so that domains of opposite "spin"
or sign arise. The odd symmetry is a necessary but not
sufficient condition [31] for obtaining an Ising-like transi-
tion in which the magnetization [defined below in Eq. (8)]
bifurcates to a nonzero value as a coupling constant g is
varied. Following Miller and Huse, we choose P(y) to
be a piecewise-linear map with slope of constant magni-
tude greater than one, for which only chaotic states of
constant measure exist in the absence of lattice coupling.

If y; denotes the variable at spatial site i at integer
time t (with t = 0, 1, . . .,) then the rule for updating
each lattice variable to tiine t + 1 is given by [14]

tice d, the symmetry of the lattice (e.g. , square, hexago-
nal, or cubic), the size of the lattice L (number of sites
along an edge), the coupling constant g, the initial condi-
tion y, , and the total integration time T. In this paper,
we used an integer lattice in 1D, square and hexagonal
lattices in 2D, and a cubic lattice in 3D. Initial con-
ditions consisted of assigning a random uniformly dis-
tributed number in the interval [

—0.1,0.1] to each site;
results were not dependent on the choice of initial condi-
tions provided the integration time was sufFiciently long.
Typical integration times were T = 50000 iterations for
calculations of Lyapunov exponents and T = 150000 iter-
ations for calculations of correlation functions. %'e made
a few runs with longer integration times of T = 60000
and T = 500000 to check the convergence of the Lya-
punov exponents and the correlation functions, respec-
tively. Diff'erent lattice sizes were used depending on
which order parameters were being studied, typically
L & 32 for calculating Lyapunov exponents (which are
quite costly to compute) and L & 1024 for estimating cor-
relation lengths. Many runs were repeated using several
lattice sizes to verify the absence of significant finite-size
efFects.

For calculations of statistical averages such as the mag-
netization and correlation functions, the statistics could
often be improved substantially by averaging the results
of an ensemble of N runs each of duration T, with each
run difFering only in the choice of initial conditions. Cal-
culations indicate that this ensemble average is ergodi-
cally equivalent to a single integration of duration NT
[19,32]. For most of the results reported below, we used
an ensemble average over N = 64 runs which could be ex-
ecuted simultaneously and in parallel on the vector units
of a 16-node partition of a CM-5 computer.

y,'+' = 4 (y,') + g ):4 (y,') —4 (y,') ',
~(')

(3) B. Lyapunov exponents and associated
dynamical quantities

—2 —3y for —1 & y & —1/3
P(y) = ( 3y for —1/3 & y & 1/3

2 —3y for 1/3 & y & 1
(4)

where the parameter g is the spatial coupling constant.
The sum goes over indices j(i) that denote nearest neigh-
bors sites of site i, e.g. , the four nearest neighbors on a
square two-dimensional lattice or the six nearest neigh-
bors in a 2D hexagonal lattice or 3D cubic lattice. For
most of our calculations, we used the same local map as
in Ref. [14],

Some dynamical order parameters can be constructed
by combining in diferent ways the Lyapunov expo-
nents A; associated with a given attractor [5]. For the
CML given by Eq. (3) with a total of N = L lattice
sites, there are N real-valued Lyapunov exponents A; (la-
beled in decreasing order as Ai ) A2 ) . & Ag) that
characterize the long-time average-rate-of-separation of
nearby orbits in phase space. Prom the A, , we can calcu-
late a Lyapunov dimension D given by the Kaplan- Yorke
formula [5]

with a slope of constant magnitude equal to 3. To under-
stand the competition between local chaos and dift'usion
(which decrease and increase spatial correlations respec-
tively), we also used a more weakly chaotic map with a
slope of smaller constant magnitude equal to 1.1:

—1.1x —1.0 for x & 0
-1:1.+1.0 f...&0.

Once a local map P(y) has been chosen, a numerical
simulation is specified by the dimensionality of the lat-

(6)

and calculate an entropy defined by the sum of the posi-
tive exponents [5]

H=)
A;)O

The number K in Eq. (6) is the largest integer such that
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the sum g,. i A; of the first K exponents is nonnega-K

tive; this sum is positive for K = 1 if an orbit is chaotic
(Ai ) 0) and is negative for K = N if the dynamics is
dissipative and so the sum typically crosses zero at an
intermediate index K —D for a chaotic dissipative sys-
tem.

The exponents A; were calculated numerically by a
now-standard numerical method [33], in which K
N linearizations of the equations of motion, Eq. (3), are
evolved in time. This allows one to follow K Lyapunov
vectors in a tangent space from which local stretching in-
formation and the Lyapunov exponents can be extracted.
Together with a particular nonlinear orbit defined by the
equations of motion, a total of K+ 1 CMLs was evolved
to calculate K Lyapunov exponents.

Repeated orthonormalizations of Lyapunov vectors at
time intervals T„are needed to prevent Boating-point
overBow &om the exponentially growing values and to
prevent inaccuracies arising from the loss of linear inde-
pendence as they fold up along the direction of the fasting
growing exponent [33]. For the maps Eqs. (4) and (5),
we found empirically that values T + 30 gave reason-
able results for all lattices studied with the largest value
of T depending on the parameters g and L. Smaller
renormalization times did not change the values of the
Lyapunov spectrum (although the code was more costly
to run) while larger values led to serious errors due to
linear dependence of the Lyapunov vectors.

The orthonormalizations of tangent vectors consumed
most of the computing time on a Thinking Machines CM-
5 parallel computer. The orthonormalizations require
substantial communication between difFerent processors
since each processor evolves independently only a few of
the K linearized equations in its own local memory; this
communication decreases the eKciency of the code.

Although the communication inherent in the orthonor-
malization procedure could not be avoided, in all other
portions of the code communication between nodes was
eliminated by iterating redundantly an identical copy of
the nonlinear CML Eq. (3) with identical initial con-
ditions on each processor. In this way, information
about the underlying orbit (needed when iterating the
linearized CMLs) did not have to be communicated from
one processor to all others at each time step.

By monitoring the Lyapunov exponents and the Lya-
punov dimension as a function of time t, we found em-
pirically that an integration time T 50 000 time steps
gave an acceptable relative accuracy of better than one
percent for calculating the dimension D and entropy H
for all lattices studied (L & 32). Figure 1 shows how the
dimension D converges over time for lattice size L = 16
and for g = 0.202. The dimension curve is noisy with
fluctuations that diminish slowly over time (the A;, not
shown, have substantially noiser time series). Goldhirsch
et al. [34] have argued that the amplitude of the exponent
Quctuations should decay as 1/T where T is the total in-
tegration time and so one could fit and extrapolate to get
a better estimate [22]. Extrapolation was not needed in
plots like Fig. 1 which already give an adequate relative
accuracy of better than one percent.
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FIG. 1. Lyapuuov fractal dimension D, Eq. (6), vs iteration
number t for a periodic 2D CML on a square lattice with
local map Eq. (4), with coupling constant g = 0.202 and with
lattice size L = 16. Fluctuations in D damp out slowly with
increasing time, giving a relative accuracy of about 0.170 in
the dimension (here estimated to be D = 191.2).

By repeating plots such as Fig. 1 for difFerent system
sizes I with all other parameters held fixed, we found ex-
tensive scaling of the dimension D with the volume of the
system N = L for a wide range of parameter values g,
an example of which is given in Fig. 2. Figure 2(a) shows
that the dimension D increases linearly and extensively
with N beyond a system size of about L = 9. The Lya-
punov dimension density b could then be obtained &om
the slope of a least-squares-fitted line in the extensive re-
gion. The intercept of a least-squares-fitted line through
the four right-most points was 0.007 which is quite small
(and is also approximately zero for extensively chaotic
solutions of the 1D CGLE [19]). There is then the possi-
bility that a single dimension calculation for a sufBciently
large system may sufIice to estimate its dimension den-
sity. By compariiig the dimension per volume D/L2 with
the dimension density h, Fig. 2(b) shows how the exten-
sive regime is approached rapidly and achieved for fairly
small system sizes L & 9.

We finish this subsection with two comments about the
meaning of the Lyapunov dimension D and about why
we chose to calculate D from Lyapunov vectors rather
than from time series measurements. The reader should
recall that there is an infinity of fractal dimensions Dq
(often called the Renyi dimensions) associated with a
strange attractor with the parameter q varying over the
real numbers [5]. Since each dimension D~ will be ex-
tensive for a homogeneous extensively chaotic system,
the particular values only reBect the system size and are
not interesting themselves. Instead, one should define a
continuum of corresponding intensive dimension densi-
ties b~ = liml, ~ Dz/V to provide a partial characteri-
zation of such systems.

For large fractal dimensions (D ) 5), present com-
puters and algorithms only allow the calculation of the
Lyapunov fractal dimension Eq. (6) and its correspond-
ing density. The Lyapunov dimension is conjectured to
be the same as the Renyi dimension with q = 1 (i.e. ,
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impractical computational demands of time series algo-
rithms [37]. While the computational complexity of the
method based on the Lyapunov spectrum scales alge-
braically with system volume V or dimension D [38],
it is well known that the computational complexity of
classical time series algorithms such as that proposed by
Procaccia and Grassberger grows exponentially with D,
imposing severe restrictions on the largest dimension that
can be estimated from experimental data. Although it
remains controversial what is the practical upper bound
for clean time series of less than a million points (there
are claims froin 6 to 20 [6]), existing time series methods
cannot treat extensively chaotic systems whose fractal
dimensions may be in the hundreds (see Fig. 2).

C. Magnetization and correlation lengths
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In addition to the dynamical quantities described in
the previous section, we quantify the evolution of the
CMLs by a "magnetization" M and by length scales
measured from two-point and mutual information cor-
relation functions. We describe these brie8y to indicate
the method and errors involved.

Following Miller and Huse [14], the average magneti-
zation M of the CML is defined by a space-time and
ensemble average of the signs +1 of the lattice values y;,

FIG. 2. Lyapunov fractal dimension D vs the number of
lattice points N = L (which is also the system volume)
for a 2D periodic CML on a square lattice with local map
Eq. (4) and coupling constant g = 0.199. Each dimension
value was obtained from a plot similar to Fig. 1 over a time
scale of T = 50000 iterations. (a) The Lyapunov dimension
increases linearly and so extensively with N for N ) 100.
A least-squares-6tted line through the four right-most points
gives a Lyapunov dimension density (slope) of 8 = 0.746
and an intercept of 0.0077. (b) The normalized deviation

(D/L —8)/8 of the dimension density 6 from the dimension
density predicted from the dimension D per volume L il-

lustrates the rapid onset of extensive chaos for small system
sizes L ) 9.

the information dimension Di [5]) and it is not known
to what extent the corresponding density bi character-
izes the unknown function of densities bq, e.g. , whether
it is close to the mean value of the bq. There are one-
dimensional maps for which the ratio of Di to D2 (the
two most commonly calculated fractal dimensions) can
be arbitrarily large [36], and so the variation of the func-
tion bq around its mean value can be large. A perhaps
even more important question is whether the diferent
dimension densities bq each have a similar dependence
on model parameters, e.g. , all increasing or decreasing
together. Until this issue is resolved, the dimension den-

sity Si and the corresponding length (g = Si need to
be interpreted with caution.

The dynamical quantities D and H are calculated in
terms of the Lyapunov spectrum A;, and not in terms
of time series y,- at a given lattice site i, because of the

M = (sgn(y,'))—: ) sgn[y,'. (p)],NTp
(8)

where X; denotes the position of lattice point i and where
the brackets () denote the averaging process of Eq. (8).
Given the periodicity of the lattice and the availabil-
ity of efficient parallel fast Fourier transforms (FFTs)
on the CM-5, we calculated Eq. (9) via the Wiener-
Khintchin theorem [40], first obtaining the time-averaged
magnitude squared of the Fourier coeKcients, from which
Eq. (9) was obtained by an inverse FFT. In most cases,

where the index p labels a particular CML running on
processor p. An average over 64 independent CMLs run-
ning on a 16-node partition of a CM-5 was typically used.
For the local maps Eq. (4) and Eq. (5), M undergoes a
pitchfork bifurcation from a zero to finite value as the
lattice coupling g is increased from small values. The
critical value g at which M bifurcates to a nonzero value
is unchanged if the values of the site variables y; are used
instead. of their signs in Eq. (8). The bifurcation of M to
a nonzero value defines the onset of ferromagnetic order
at g = g, [14] as illustrated in Fig. 3.

To characterize the average spatial disorder, we exam-
ined two of many possible definitions of spatial corre-
lation lengths, one from an exponentially decaying two-

point correlation function, another from an exponentially
decaying mutual information function [39]. (Some other
correlation lengths are discussed on pages 945—947 of
Ref. [7].) The two-point correlation function was defined

in the usual way:
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FIG. 3. Average magnetization M [Eq. (8)] vs the lattice
coupling strength g for a two-dimensional CML with local
map Eq. (4) on a square lattice of size L = 128 after an
integration time of T = 3 x 10 . The magnetization bifurcates
from a nonzero value at the critical value g = 0.205.

FIG. 5. Plot of the two-point correlation function Eq. (9)
for the magnitudes ]y,'] of the field for the 2D periodic CML
with local map Eq. (4) on a square lattice with g = 0.200. A
system size L = 64 and an integration time of T = 5 x 10
were used. The correlation length (2 s = 1.4 is smaller than
the length (2 6 based on the values y,'.

there was a substantial region of exponential decay from
which the two-point correlation length (2 was obtained
by a least-squares fit of the form a exp( —x/(2); a repre-
sentative plot is given in Fig. 4. The correlation functions
and corresponding values of (2 do not change if Eq. (9)
is defined in terms of the sign of the variables, sgn(y, .).

The two-point correlation functions decay more rapidly
as shown in Fig. 5 if the signs of the Beld values y,- in
Eq. (9) are replaced by their magnitudes ~y,'~. The cor-
relation length (2 obtained from the initial rapid ex-
ponential decay is approximately one lattice spacing and

changes little when the coupling constant g is varied over
a large range, including near the bifurcation point g = g, .
For dimensionality d = 1, we show below that this short
length scale (2 s is related to the dimension correlation
length (g and that both vary linearly with the radius r

of neighboring lattice sites that are coupled together spa-
tially.

As a possible alternative for characterizing the spatial
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FIG. 4. Log-linear plot of the exponentially decaying
two-point correlation function Eq. (9) of the two-dimensional
CML Eq. (3) with local map Eq. (4) on a square lattice
for lattice sizes of L = 64, . . . , 1024. The coupling constant
was g = 0.199 and the integration time was T = 3 x 10 . A
reasonably accurate estimate of the correlation length (2 6
is found only for sizes L & 256. The arrows indicate the range
over which a least-squares linear fit was used to extract the
length (2.

h,x

FIG. 6. Log-linear plot showing the exponential decay
of the mutual information function I(&z) as a function
of the spatial separation Ax for the 2D periodic CML
on a square lattice with local map Eq. (4), coupling con-
stant g = 0.204, system size L = 256, and efFective integration
time T = 128 000 (following a transient time of 100 000). The
arrows indicate the range over which a linear least-squares
fit was used to calculate the correlation length (r 11.7. A
simple binning procedure with 32 bins was adequate so that
the more sophisticated algorithms of Fraser et al. [39] were
not needed.
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tigate how these order parameters vary near the nonequi-
librium transition point g = g at which the magnetiza-
tion bifurcates to nonzero values (Fig. 3).

Results for the 2D square lattice are given first, fol-
lowed by results for lattices with different symmetries
and dimensionalities. We do not address issues related
to critical exponents of these different models which have
been discussed by Miller and Huse [14] and more recently
by Marcq and Chate [29]. Related interesting results on
similar CMLs have also recently been reported by Boldri-
ghini et al. [31].

0
0 10 15

A. Results for two-dimensional square lattices

FIG. 7. Two-point correlation length (2 vs the mutual
information correlation length (I for a 2D periodic CML
on a square lattice with local map Eq. (4). Lattices sizes
of L = 1024 and L = 256 and integration times of T = 300 000
and T = 128 000 were used, respectively, when calculat-
ing (2 and (I. The points correspond to the parameter range
0.1900 & g & 0.2045 with the smaller g values occurring to
the left. The values of (2 and (I were obtained from plots
similar to Figs. 4 and 6.

disorder of a nonlinear system, we also calculated a corre-
lation length (I based on the exponential decay of the mu-
tual information function I(EX) [39] of the variables y~.

Figure 6 shows the exponential decay of a mutual infor-
mation function I(EX) for two-dimensional square lat-
tice of size I = 256 and for the parameter g = 0.204.
Again if the magnitudes of the field variables are used
when calculating I(AX), the exponential decay is much
more rapid, with (I being approximately one lattice
spacing for a wide range in g.

Although there is not yet a compelling theoretical rea-
son to prefer (I over other correlation lengths such as (z
[7], the former has the distinction of depending nonlin-
early on the dynamics and so may depend on details that
are missed by (z. For this reason, an increasing number of
scientists have reported correlation lengths in terms of (I
[41,23,42]. As shown in Fig. 7 for the two-dimensional
Miller-Huse CML on a square lattice, the length scales (z
and (I are linearly related over a substantial dynamical
range near the ferromagnetic transition. At least for the
present models, these lengths are equivalent measures of
spatial disorder and we report values only for (z below.

III. RESULTS AND DISCUSSION

In this section, we discuss our calculations of the Lya-
punov spectrum and of correlation lengths. Our goal is
to explore how spatial disorder (as characterized by the
two-point correlation length or by the mutual informa-
tion correlation length) is related to dynamical complex-
ity [as measured by the intensive dimension density and
by the dimension correlation length Eq. (2)] and to inves-

For the two-dimensional periodic square lattice with
map Eq. (4), Fig. 3 shows that there is a bifurcation
at g 0.205. This bifurcation corresponds to the
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FIG. 8. (a) Divergence of fz for the 2D periodic CML on
a square lattice with local map Eq. (4). The lattice size
was L = 1024 and the integration time was T = 3 x 10 based
on an ensemble average over 64 realizations. The correlation
length diverges with critical exponent —1.0 at the extrapo-
lated point g = 0.2054 which coincides within numerical accu-
racy with the pitchfork bifurcation of the magnetization. (b)
The dimension correlation length (g [Eq. (2)] vs parameter g
for the same parameter values, based on dimension densities
calculated from extensive chaos curves like Fig. 2. This length
scale is roughly one lattice size, varies smoothly with g, and
attains a maximum value for g 0.200.
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onset of long-range order of the lattice variables y,'. as
demonstrated by the divergence of the two-point cor-
relation length (2 as g approaches g, [Fig. 8(a)]. Over
this same parameter range, the dimension correlation
length (g varies smoothly [Fig. 8(b)], deviating by less
than 4% from a value of one lattice spacing and attaining
a maximum value close to where the correlation length di-
verges. The Lyapunov spectrum of exponents also varies
smoothly from one side of the transition to the other as
shown in Fig. 9. We conclude that chaotic fluctuations
have a short range, are decoupled from the onset of long-
range order measured by (2, and that the spectrum of
exponents is at most weakly dependent on the onset of
long-range spatial order.

To understand further how various dynamical quanti-
ties change near the transition point, we have plotted in
Fig. 10 the variation of the Lyapunov &actal dimension
density b, of the metric entropy density 6, and of the
largest Lyapunov exponent Aq across the ferromagnetic
transition for a lattice of size I = 16, which is already
extensively chaotic according to Fig. 2. As was the case
for the length (g in Fig. 8(b), these quantities change by
only a small amount through the transition (at most by
20/p) and all go through a minimum close to, but dis-
tinct from, the ferromagnetic transition at g = 0.205.
This result was surprising to us since one consequence
of coupling neighboring maps more strongly (increasing
the parameter g) would intuitively be to increase corre-
lations between their dynamics, which should decrease
both h and h. Figure 10(a) indicates that roughly one
quarter of the maximum number of degrees of freedom
disappear when the lattice attains its minimum dimen-
sion density of h = 0.746. (An upper bound of 8 = 1 is
set by the integer lattice spacing. )
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It is not clear why the &actal dimension density and
other dynamical quantities have extrema near g = 0.20.
For an equilibrium nondissipative CML of Ising dynamics
on a two-dimensional square lattice, Sakaguchi [13] did
not find a local minimum in the entropy H but instead
found a monotonic decrease consistent with the analyti-
cal solution of the spin-I j2 Ising model on a square lat-
tice [30]. One explanation for the extrema may be that
the dissipative linear coupling in Eq. (3) becomes anti-
diffusive for g ) 1/5, enhancing rather than damp-
ing short-wavelength fluctuations and so decorrelating
nearby lattice variables.

The issue is somewhat more subtle than this because
the existence of the minimum depends also on details of
the local map P(y) in Eq. (3). For the less chaotic lat-
tice map Eq. (5) with slope of constant magnitude 1.1,
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FIG. 9. Lyapunov exponents A, vs the intensive in-
dex x = i /L for the 2D periodic CML on a square lattice with
local map Eq. (4) for the lattice size L = 24, for an integra-
tion time T = 50000, and for lattice coupling values g = 0 ~ 19
and g = 0.22 which straddle the transition at g = 0.205. The
exponents form an approximately continuous function that
changes smoothly with parameter g. Only the 6rst 512 of
the 576 possible exponents are shown.

FIG. 10. (a) The Lyapunov fractal dimension density b,
(b) the entropy density h, and (c) the largest Lyapunov ex-
ponent Ai vs the coupling constant g in the vicinity of the
ferromagnetic transition of g = 0.205 according to the mag-
netization curve in Fig. 3 for the 2D CML on a square lattice
with local map Eq. (4). System sizes of at least L = 16 were
used with a fixed integration time T = 5 x 10 and an en-
semble average over p = 64 systems. The quantities b and h
have local minima (although at slightly difFerent g values) to
the left of where the magnetization bifurcates. The error bars
of each data point are about the size of the points themselves
except for those of AI which are much larger.
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an Ising-like transition still occurs as shown by the bifur-
cation of the magnetization near g = 0.168 in Fig. 11.
Figure 12 now shows that the Lyapunov dimension den-
sity b and entropy density h decrease monotonically as
the parameter g is increased, with the largest exponent Aq

remaining constant.

0.20 B. Results for other lattices
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FIG. 12. Lyapunov dimension density 8 and entropy den-
sity h vs coupling constant g for the 2D periodic CML with
local map Eq. (5), for lattice size L = 32 and for an integration
time T = 10 . The largest Lyapunov exponent Ag ——0.095
remains constant in the range 0.160 & g & 0.180 and so is not
plotted. For this substantially less chaotic local map, extrema
in the dynamical quantities do not occur.

FIG. 11. Magnetization M [Eq. (8)] vs coupling strength g
for the 2D periodic CML on a square lattice but with the
less chaotic lattice map given by Eq. (5). Other parameter
values were the sizes, I = 64 and I = 128 and the total
integration time, T = 3 x 10 . The bifurcation occurs at
approximately g 0.168.

Figures 3, 8(a), and 10 suggest that the extrema of dy-
namical quantities may be related to the ferromagnetic
transition. On the other hand, the short dimension cor-
relation length in Fig. 8(b) contradicts this by implying
that chaotic fiuctuations occur over a length scale that
is short compared to the ferromagnetic ordering. To un-
derstand this further, we have explored CMLs of di8'erent
symmetry and dimensionality and found that the near-
proximity of the extrema with the transition is a coinci-
dence for the two-dimensional lattice with square symme-
try. More generally, the positions of extrema seem to be
determined simply by the number of nearest neighbors n,
and not by the symmetry or dimensionality of the CML
or by the position of the magnetization bifurcation point.

Figure 13 summarizes calculations for a two-
dimensional periodic hexagonal lattice by plotting the
dependence of magnetization M and of dimension corre-
lation length (p on the coupling constant g. The magne-
tization bifurcates to a nonzero value at g, = 0.120 which
is a smaller value than that for the square lattice since
the larger number of nearest neighbors (six versus four)
increases the effective strength of the diffusive coupling.
The relative difference between the transition at g = g
and the positions of the extrerna in (s and in related dy-
namical quantities is substantially larger than was the
case for the 2D square lattice. For the hexagonal lattice,
extrema in quantities like the length (g occur at a value
close to g = 1/(n+ 1) = 0.143 where n = 6 is the number
of nearest neighbors.

A similar result is found for the same CML on a 3D cu-
bic lattice, as shown in Fig. 14. The transition at g = 0.11
occurs at a value close to but smaller than the value on
the hexagonal lattice. Extrema in the dynamical quan-
tities like (g again occur at a value close to 1/(n + 1)
with n = 6.

That the positions of the extrema of dynamical quan-
tities is dependent primarily on the number of nearest
neighbors is a consequence of the nearest-neighbor dif-
fusive coupling in Eq. (3) and of the fact that, for the
local map Eq. (4), the chaos is sufFiciently strong to
make the dimension correlation length (g quite small,
about one lattice length. That the positions of the ex-
trema seem to be given quantitatively by the specific for-
mula g = 1/(n + 1) is more delicate to understand but
may be related to the fact that the discrete Laplacian
operator changes from diffusive to antidiKusive behavior
at this value. The value g = 1/(n+ 1) is the value for
which the weight of each of the neighbors is equal to the
weight of the central lattice site to be updated.

For all CMLs that we studied, the dimension correla-
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tion length (b was about one lattice spacing in size and
this was also the "radius" of the diffusive coupling in
Eq. (3). This suggests that the length (g may be de-
termined by the spatial extent of the diffusive coupling,
becoming larger as more sites are coupled to a given site.
This conjecture was tested in one-space dimension by
coupling together, with equal weight g, all lattice vari-
ables within a radius r of a given site i:

For this one-dimensional periodic CML with the lattice
map Eq. (4), the dynamics varies in a complicated way
with radius r. For most initial conditions, chaos was
found for smaller radii (r ( 6). For larger radii r & 6, the
transients lasted much longer and the asymptotic dynam-

ics was periodic. As an example, for r = 10 the dimension
as a function of time initially reached a value D = 50 even
after 5000 transient iterations were skipped; however, the
dimension then decreased steadily to zero over the next
30000 iterations. We believe that this asymptotic peri-
odic behavior is a 6nite-size efFect. For a sufBciently large
system size L, with the crossover length increasing with
the radius r, the asymptotic state should be chaotic.

For dimensionality d = 1, the dimension correlation
length (g varies more strongly with increasing radius r
than with coupling constant g, which allows several dif-
ferent length scales to be compared. Figure 15 shows that
the two-point correlation length (2 s obtained using the
magnitudes [y~

~

of the field values has approxiinately the
same linear dependence on the coupling radius r as the
dimension correlation length (g. In addition, these two
length scales are the same order of magnitude. The two-
point correlation length (2 obtained using the actual field
values is larger than (g and does not have the same sim-
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FIG. 1&. (a) Magnetization M [Eq. (8)j vs coupling
strength g for 2D periodic CML on a hexagonal lattice with
local map Eq. (4), with integration time T = 1 x 10 time
units, for a system size L = 64, and for an ensemble av-
erage of p = 64 elements. A ferromagnetic transition oc-
curs at g = g —0.12. (b) Dimension correlation length gg
vs the lattice coupling constant g for the same parameters
except with a system size L = 16 and integration time
7 = 5 x 10 . The maximum in t'g does not coincide with
the bifurcation of the magnetization in (a). Over this range,
the Lyapunov dimension decreases from a value of 106 to a
minimum of D 100 at g = 0.14.
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FIG. 14. (a) Magnetization M [Eq. (8)j vs lattice coupling
strength g for the 3D periodic CML with local map Eq. (4)
on a cubic lattice. A system size of L = 16, a total integra-
tion time of T = 1 x 10 time units, and an ensemble average
of p = 64 realizations were used. The magnetization bifur-
cates to a nonzero value at g = g, 0.11. (b) The dimension
correlation length (g vs g for the same parameters, calculated
on a lattice of size L = 6 and for a time of T = 1 x 10 time
units. The corresponding dimension D varies from 120 down
to a minimum of about 105 at g = 0.15.
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FIG. 15. Variation of the correlation length (2, the correla-
tion length of magnitude fluctuations (~, and the dimension
correlation length (q with the radius of spatial coupling r for
the 1D periodic CML Eq. (10) with local map Eq. (4). The
system sizes ranged from I = 64 to I = 1024 with larger
systems being used for larger radii. The integration time
was T = 300000 for all systems. The length (z = 5.3 for r = 5
is substantially larger than the maximum value of (z = 1.2
found for the 2D Miller-Huse CML with nearest neighbor cou-
pling.

pie linear dependence on r. The situation is then similar
to results found for spatiotemporal chaotic solutions of
the 1D periodic CGLE [12] in that the spatial correla-
tion length of fluctuations in the magnitude of a Geld
provides a way of estimating the length (p.

IV. CONCLUSIONS

In this paper, we have extended recent calculations
[17,12,19] concerning the relation between spatial disor-
der and dynamical complexity of a sustained homoge-
neous nonequilibrium system from dimensionality d = 1
to dimensionalities d = 2 and d = 3. This was accom-
plished by choosing a coupled map lattice, Eq. (3), that
underwent an Ising-like transition with diverging two-
point correlation length as a parameter g was varied [14].
By comparing various length scales such as the two-point
correlation length (2, the dimension correlation length (g,
and the two-point correlation length of magnitude Huc-
tuations (2 near the transition point, we were able to
show that the lengths (h and (P g were short, of order
one lattice spacing, even as the length (2 diverged to in-
finity. In agreement with previous work [12], the chaotic
fluctuations are decoupled from the average long-range
spatial order. The correlation length of magnitude Huc-
tuations seems to provide an e6'ective way to estimate
the size of the length (g.

Our calculations of the Lyapunov spectrum and related
quantities such as the Lyapunov dimension density b,
metric entropy density 6, and the largest Lyapunov ex-
ponent Aq show that the onset of long-range spatial or-

der (diverging (2) does not affect dynamical invariants,
which vary smoothly and weakly through the transition
point g = g, . Thus the average spatial disorder (mea-
sured by (2) does not determine dynamical complexity
(measured by (g). Rather surprisingly, the intensive den-
sities b and h, go through a minimum near the transition
point so that the onset of long-range order does not corre-
spond to a decrease in complexity. By examining CMLs
of difFerent symmetry and of di8'erent dimensionality d,
we showed that the positions g of the extrema were de-
termined by the number n of neighbors nearest to a given
lattice site [with g 1/(n+1)] but not by the symmetry
or by d. This result can be understood as a consequence
of the extremely short dimension correlation length (g,
about one lattice size, so that lattice variables are inde-
pendent except when they are nearest neighbors. We be-
lieve that the minima in b and. in 6 occur approximately
when the discrete Laplacian in Eq. (3) becomes anti-
dift'usive with increasing parameter g. Short-wavelength
fluctuations are then magnified instead of damped, de-
creasing correlations between neighboring sites.

Some of our results concerning extrema in dynam-
ical quantities have been independently obtained by
Boldrighini et aL [31]although these authors worked with
extensive, rather than intensive, quantities and they did
not determine whether their calculations corresponded
to extensively chaotic regimes. Boldrighini et al. investi-
gated CMLs of the form Eq. (3) for dimensionalities d = 1
and d = 2 but with some new local maps P(y). Besides
also finding extrema in the Lyapunov fractal dimension,
Boldrighini et al. showed that the odd symmetry of the
map P(y) was not a sufficient condition for the magneti-
zation to bifurcate to a nonzero value. Using a strongly
chaotic local map with slope of constant magnitude equal
to 5, they also showed that the magnetization M did not
bifurcate to a nonzero value if the local map were made
sufBciently chaotic compared to the ordering caused by
difFusion. In Sec. III B, we used the less-chaotic local map
Eq. (5) with slope of constant magnitude 1.1 to show
that the dimension density b can decrease monotonically
without a minimum even when the magnetization M bi-
furcates to a nonzero value. The dependence ~f these
minima on details of the local map is not yet understood
and should be pursued with further studies.

The small values of (g in the present CMLs, in the
1D CGLE [12], and in a nonequilibrium CML with al-
gebraic decay of spatial correlations [24] have several in-
teresting implications. One is that many previous lab-
oratory experiments [1] and numerical simulations [2]
concerning spatiotemporai chaos are likely already ex-
tensive so that it is meaningful to talk about dimension
and entropy densities (see also the earlier paper by Bohr
[35]). A second implication is that the dimension cor-
relation length (g may not be a useful order parameter
for future studies of spatiotemporal chaos since it de-
pends only weakly on parameters. A third implication
is that the short value of (g suggests the nonexistence
of macroscopic chaotic states for dynamics with local in-
teractions, a point already made by several researchers
[43]. Finally, we speculate that (g is the length scale
below which one can replace chaotic fluctuations by a
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white noise source when trying to develop a hydrody-
namic (long wavelength) description of spatiotemporal
chaos (see the discussion on pp. 953—954 in Ref. [7]).

The short values of (s raise the question of what deter-
mines this length scale. Our calculations on the 1D CML
Eq. (10) with a variable radius of coupling r suggest that
the length (s is determined partly by the length (2
characterizing magnitude fluctuations although the rea-
son for and the generality of this correspondence is not
understood [12]. The length (s is also related to the ra-
d.ius r over which nearby lattice sites are coupled. together
(Fig. 15). Further calculations with different kinds local
maps and of difFusive operators and for diferent values
of r should provide further insight.

It is appropriate to finish with a discussion about the
relevance of these results for laboratory experiments. As
discussed at the end of Sec. IIB, it does not seem pos-
sible in the near future to calculate the Lyapunov spec-
trum, the &actal dimension, or the fractal dimension den-
sity of a high-dimensional extensively chaotic experimen-
tal system for which only time series measurements are
available [6]. Our success in calculating these quantities
was a result of having explicit knowledge of the dynami-
cal equations which could then be integrated numerically
on a powerful parallel computer using algorithms whose
complexity only grew algebraically with the dimension D
[38]. For many laboratory experixnents, a quantitative
mathematical description is either lacking (e.g. , for chem-
ical reactions) or, if known, is too difficult to work with

numerically (e.g. , the five three-dimensional Boussinesq
equations describing buoyancy-induced convection in a
large-aspect-ratio container [7]).

Our calculations in Sec. III suggest that one possible
way to estimate the dimension correlation length (s may
be to calculate the correlation length of some function
of the physical fields, e.g. , the field magnitude. Another
possibility will be to discover and to validate algorithms
that can calculate the intensive dixnension density Eq. (1)
directly from time-series measurements that are localized
in space [44], in lieu of calculating a large extensive frac-
tal dimension D and then dividing by the extensive sys-
tem volume V. Several steps have been taken in this
direction [44], but a theoretical foundation has not yet
been established nor have the numerical algorithms been
adequately tested.
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