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Exact solutions of the monomer-monomer reaction:
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The dynamics of the monomer-monomer surface reaction can be defined by an exact, closed set
of difFerential rate equations in the limit of infinite adsorption rates. We use these equations to
obtain numerically converged "exact" solutions to this model for a variety of situations that have
previously been treated with Monte Carlo simulations. In particular, we derive a number of results
for spatially inhomogeneous systems that involve an evolving reactive interface.
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I. INTRODUCTION

Chemical reactions that take place on catalytic sur-
faces exhibit many fascinating and complex behaviors.
One approach towards developing an understanding of
these reactions that has attracted significant attention
in recent years is to investigate highly simplified lattice
gas (LG) models of surface reactions [1,2]. These models
are typically investigated using Monte Carlo (MC) sim-
ulations or by using approximate mean field techniques.
MC simulations are attractive since a large enough calcu-
lation is expected to converge to the true LG result. Un-
fortunately, many important quantities cannot be com-
puted in practice since the MC simulations required are
simply too computationally intensive. For example, ex-
tracting exponents for scaling behavior, determining fi-
nite size effects, or distinguishing between a stable and
metastable configuration can easily become too dificult
with MC techniques. On the other hand, a mean field
treatment is much more computationally tractable since
a modest set of coupled ordinary differential equations
can be accurately solved using efEcient numerical algo-
rithms. The problem with the mean field approach is that
the treatment is generally an approximation and quanti-
ties such as scaling exponents often are not found accu-
rately. In this paper we consider a surface reaction model
where a mean field treatment is exact: the monomer-
monomer reaction [3—12]. Our main result is that it is
possible to exactly calculate a number of physically rele-
vant quantities for spatially inhomogeneous distributions
of adsorbates. In particular, we consider the evolution
of an initially sharp interface between regions covered by
different species. This situation has been the subject of
two recent MC studies [9,10]. We also show how exact
solutions of the model can yield useful insights into the
case when the surface is initially randomly covered by
adsorbates.

The monomer-monomer model, also known as the
A + B reaction model, is one of the simplest examples
of a model surface reaction. In this model, monomers of

species A or B may adsorb onto empty surface sites,

A(g) + E -+ A( ),
B(g)+EBB( ),

(1)
(2)

and unlike species on adjacent sites may react and desorb,

A( ) + B( )
-+ AB(g) + 2E.

An unoccupied surface site is represented by E, and the
subscripts (a) and (g) denote species in the adsorbed and
gaseous states, respectively. A surface site may be occu-
pied by at most one particle and the lattice is assumed
to be square. We will only consider the case when the
adsorption rates are infinitely faster than the surface re-
action rate. In this limit, every surface site is occupied
by either an A or a B monomer at all times. As we will
see below, this property makes it possible to express the
dynamics of the model in a closed form. However, we em-
phasize that, while exact solutions are only possible when
this condition is met, MC simulations strongly suggest
that the phenomena observed in this model are shared
by more general models with finite adsorption rates [3,8].
As with other studies of this model, we also restrict our
attention to the case when the adsorption rates of A and
B are equal. If the adsorption rates are not equal, the
surface is rapidly poisoned by the species with the faster
adsorption rate [8]. All of the solutions we develop below
are for two-dimensional square lattices, but our meth-
ods could also be applied to other dimensions or lattice
geometries.

In Sec. II, we outline the derivation of the exact
rate equations for the monomer-monomer reaction. This
derivation closely follows previous work [5,6,8]. We
present rate equations in two different representations.
The first is useful for considering spatially averaged quan-
tities, while the second is necessary to treat spatially
inhomogeneous situations. These equations are used in
Sec. III to reconsider the issue of how the reaction rate
and cluster sizes of the segregated domains that form on
surfaces with random initial conditions behave for large
times [8,10].
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In. Sec. IV, we consider how simulations of the
monomer-monomer reaction on finite lattices may dif-
fer &om infinite lattice results. As well as examin-
ing the desorptionless monoiner-inonomer reaction (de-
fined above), we consider the reaction kinetics of the
monomer-monomer reaction when adsorbed particles of
either species are allowed to desorb with rate p. Intro-
ducing desorption into the model allows the formation
of nontrivial steady states and the occurrence of more
coinplicated reaction kinetics [5—7].

In Secs. V and VI, we derive a number of exact results
for a problem that has been studied using MC simula-
tions by Kang and Weinberg: the evolution of a reac-
tive interface [9,10]. If the surface is initially divided
into regions covered solely by one species of particles, a
reactive interface forms that broadens and roughens as
time progresses. In Sec. V, we derive an analytic ex-
pression for the site densities and width of this interface.
We also brieQy discuss another model examined by Kang
and Weinberg: a lattice gas of noninteracting diffusing
monomers [9]. In Sec. VI we derive the reaction rate of
a broadening interface as a function of time, and discuss
the roughening of such interfaces.

II. EXACT RATE EQUATIONS

The exact dynamics of any LG model with finite range
interaction. s may be formally expressed as an infinite hi-
erarchy of differential rate equations [13,14]. These rate
equations describe the evolution of the probabilities for
finding clusters of arbitrary size and composition. on the
lattice. In general, these hierarchies are dificult to treat,
because the evolution of each type of cluster is coupled
to the evolution of all other clusters. When this is the
case, the rate equations can usually only be solved by
introducing simplifying assumptions which break the hi-

erarchy [14,15], although there are some examples where
information can be found by direct analysis of the exact
hierarchy [13,16]. One of the reasons that the monoiner-
monomer model has attracted the attention it has is that
its hierarchy of rate equations can be exactly closed at
each order [5,6,8]. In this section, we briefiy review the
derivation of these closed exact rate equations.

We define a set of time-dependent variables a;~ to
be the probability that any pair of sites separated by
i sites along one principal lattice direction and j sites
in the other direction are simultaneously occupied by A
monomers. The variable aoo is the probability that a
randomly chosen individual site is occupied by an A par-
ticle, and a1 0 represents the probability that an adjacent
pair of sites both contain A monomers. Prom the defini-
tion of a, z, it can be seen that ai &

——a~i ~z. Following
the methods of Refs. [5], [6], and. [8], it can be shown that
the evolution of the pair variables a; ~ for the monomer-
monomer reaction without desorption is governed by the
following set of equations which are un. coupled to higher
cluster sizes:

a0, 0
dt

—a10
dt

=0
1 7

a20+ 2ai i+ a00 ai0

—a, , = kE;,.a, , for (i~2+
~

j~2 & 2.

In the last of these equations, L; ~ is a spatially discrete
Laplacian operator that is defined by

'+i,i + ' i.i +-',i+i + '.i i--'.i ( )

on a two-dimensional square lattice. These equations can
easily be generalized to lattices with other geometries and
dimensions [5].

It is important to note that, if a; z is specified for all i
and j, then all of the other site and pair densities for the
system are defined. For example, the probability that an
adjacent pair of sites is occupied by one A monomer and
one B monomer (denoted ab) can be expressed as

ab = ao, o —a1,0. (6)

d k—A;~ = —L, ~A;~,

where E;~ is defined by Eq. (5). As above, if A;~ is
known for all i and j, then all of the site densities are
known. In this case, this is a consequence of the fact
that A;~ + B;~ = 1. The evolution equations for the
spatial pair variables can also be derived and are closed,
but we will not use them below. The variables in the
averaged rate equation hierarchy [Eqs. (4)] are simply
the spatial averages of the variables in the hierarchy that
has Eq. (7) as its lowest order equation. For example,
on a finite lattice with N sites,

N N

a00 = ) ) A. ', .
i=1 j=1

(8)

The closed forms above for the evolution of the site and
pair probabilities of the monomer-monomer reaction only
exist in the special circumstance that the impingement

This is an example of a lattice summation identity. All
site and pair densities can be expressed as linear combi-
nations of a; i s using similar identities [8].

We emphasize that the a; ~ are spatially averaged prob-
abilities. It is also possible to form rate equation hierar-
chies in which the variables are the probabilities of finding
certain clusters in specific positions on the lattice [6,8,14].
For example, we define A; z to be the probability that the
site at position (i, j) is occupied by an A monomer [no-
tice that the indices (i, j) now denote the location of a
specific lattice site rather than the separation between
two sites as in the averaged theory]. In this case, A;~
is found by performing an average over an ensemble of
systems with identical initial conditions. As with the av-
eraged equations above, the evolution of A, z is governed
by a closed set of equations [6,8]:
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rates of the two species are equal and infinitely faster
than the surface reaction rate. If either of these condi-
tions is not satisfied, the model can still be described by a
hierarchy of rate equations, but the evolution of clusters
of all sizes must be considered simultaneously if exact
solutions are to be found.

Evans and Ray have noted that some other surface
reaction models, notably the monomer-dimer and dimer-
dimer reactions, can be described by closed, exact rate
equations in the limit of infinite adsorption rates [8]. The
rate equations and behaviors of these models are very
similar to the monomer-monomer model. There are also
a small number of other LG models that may be treated
exactly, including the Glauber model [17], the randomly
hopping lattice gas model [18], the equilibrium single-
step model [19],and one-dimensional coagulation growth
[20].
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FIG. 1. The reaction rate between an adjacent pair of sites
for the monomer-monomer reaction when k = 1. Both axes
are logarithmic.

the results below are independent of the details of the
integration method.

We have integrated the averaged pair equations with
k = 1 for t & 20000. These computations required values
of rp as large as 1000. The average reaction rate,

III. CLUSTER GROWTH
FROM RANDOM INITIAL CONDITIONS

The most well studied initial condition for the
monomer-monomer reaction is the case when the lattice
is initially covered with an equal number of A and B
monomers that are randomly distributed. This situation
has been treated both in MC simulations [4,8,10] and
by analyzing the averaged pair equations [6,8]. Qualita-
tively, the initially random adsorbate distribution forms
segregated clusters containing only a single species which
grow as time progresses. As these segregated domains
grow, reactions only occur around their boundaries, so
the overall reaction rate decreases monotonically with
time and approaches zero as t -+ oo. In this section
we want to brieBy reconsider the question of how the
reaction rate and domain sizes scale at large times.

The best way to resolve the long time behavior of this
system would be to find an analytic solution to the aver-
aged pair equations [Eqs. (4)]. Unfortunately, it has
not been possible to find such a solution. A contin-
uum limit of the pair equations that is valid on length
scales much greater than one lattice spacing has been
analyzed [6], but nothing can be concluded from these
results about the reaction rate. A method that can yield
a great deal of useful information is the numerical solu-
tion of the pair equations [8]. The initial conditions for
the pair equations are ap p(0) = 1/2 and a, ~(0) = 1/4
for (i, j) g (0, 0). Because of the symmetry properties
of' a; ~, it is only necessary to solve the pair equations
for i & 0 and 0 & j & i. The key fact that makes the
numerical solutions feasible is that at any fixed time T
(on an infinite lattice) there is a distance rp(e, T) such
that Ia, ~

—1/4I & e for all IiI2 +
I
jI2 & rp. By choosing

a nonzero but very small e, the domain of computation
can be made finite. The solutions of the pair equations
on this truncated domain are identical to the solutions
of the pair equations of an infinite lattice for all t & T
[8]. The pair equations on the truncated domain are nu-
merically integrated using standard methods for systems
of ordinary difFerential equations. We have verified that

R = k(ap p —ai p),

is shown as a function of time in Fig. 1. As mentioned
above, R decreases monotonically with time and ap-
proaches zero as t m oo. Kang and Weinberg measured
R(t) Rom MC simulations and suggested that R
with u = 0.084 6 0.005 for large t [9]. Since the re-
sults f'rom integrating the exact rate equations do not
contain the Quctuations that are inherent to MC simula-
tions, which can only be averaged over a finite number
of runs, this scaling hypothesis can be directly assessed
[8]. One useful way to test if R t is to define a
time-dependent exponent u(t) by

tdR/dh
ld (10)

If R obeys the scaling postulated above, ip(t) will be
independent of time as t -+ oo. The value of u(t) for
t & 20000 is shown in Fig. 2. It can be seen that u(t)
decreases monotonically with time in this time range [8],
and it is difEcult to conclude that it approaches a nonzero
value as t ~ oo. However, it is clear that the value of ~
derived by Kang and Weinberg represents a mean value
of the variable exponent. Evans and Ray suggested that
the reaction rate may obey the scaling R (ink) . This
hypothesis may be checked by defining

(t 1nt)dR/dt
o t
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FIG. 2. The scaling exponents m and o as a function of
time for the monomer-monomer reaction.
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FIG. 3. The pair variables a(r) = a o plotted vs r /t at
t = 2500, 5000, 7500, and 10000 (top to bottom) for the des-
orptionless monomer-monomer reaction.

The time dependence of 0(t) is also shown in Fig. 2.
Note that it is not possible for both u(t) and o(t) to
be nonzero and finite as t -+ oo [8]. As with ur(t), it
is difficult to deterxnine what the behavior of 0 (t) is as
t + oo IIrom Fig. 2. At this stage, the true asymptotic
scaling of R(t) remains an open problem.

The growth rate of the segregated. clusters can also
be examined using numerical solutions of the exact pair
equations. This issue has been examined by Krapivsky
using an approximate continu»m limit of the pair equa-
tions [6] and by Kang and Weinberg using MC methods
[10]. Both of these studies concluded that the average
cluster size grows as +t for large t. As with the reaction
rate, the results previously generated with MC simula-
tions can be computed exactly using the averaged. pair
equations. In Fig. 3, the pair densities a„o(t) are plot-
ted versus r2/t for several values of t. The pair densities
approximately collapse onto a single curve, in. agreement
with the MC results of Kang and Weinberg [10]. If this
collapse was exact, then the cluster size mould be grow-
ing exactly as Qt for the t values shown. The results in
Fig. 3 suggest that this scaling is being approached at
large times.

IV. FINITE SIZE EFFECTS

Because all MC simulations must be performed on fi-

nite lattices, it is important to be able to understand. how
these simulations differ &om LG models on infinite lat-
tices. The monomer-monomer reaction provides a rare
example in which the infinite lattice result may be di-
rectly obtained. We showed above that the averaged.
pair equations can directly yield information about the
behavior of the monomer-monomer reaction on infinite
lattices. In this section we show that similar results may
be obtained for finite lattices, and. the differences betmeen
these systems are discussed.

First we consider the desorptionless monomer-
monomer reaction on finite lattices. It is mell known
that this model reaches a poisoned state in finite time, in
contrast to the infinite lattice system, which exhibits a
nonzero reaction rate for all finite times [5,6]. Krapivsky
has shown that finite lattices become completely poi-
soned by either A or B on a time scale t NlnN,
where N is the total number of lattice sites. The details

1.0000
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0.001 0

0.000 I

10 100 1000 10000

FIG. 4. The reaction rate as a function of time for the
monomer-monomer reaction with random initial conditions
on a 21 x 21 lattice, a 41 x 41 lattice, and an in6nite lattice
(lovrer to upper curves, respectively).

of this poisoning can easily be elucidated by integrating
the averaged pair equations. To represent a lattice with
(2M+ 1)2 sites and periodic boundary conditions, we use
the pair equations as above with 0 & i & M, 0 & j & i,
and aM+$ j —aM,j. This choice of indices reduces the
number of equations that need to be solved by exploiting
the symmetry of the equations.

The reaction rates for lattices with M = 10, 20, and oo
and k = 1 are compared in Fig. 4. In each case, the initial
condition was a random distribution of equal numbers of
A and B monomers. The reaction rates are identical
for small t, but at large enough t the finite lattice reac-
tion rates plunge precipitously to zero. This occurs when
the size of the segregated clusters in the system becomes
comparable to the size of the lattice. This is an example
of the well known principle that MC simulations on. fi-
nite lattices are equivalent to infinite lattice simulations
if all the length scales of correlations are much less than
the size of the finite lattice [21]. These observations once
again demonstrate the validity of the MC simulations of
Kang and Weinberg [10].

Now we will consider the monomer-monomer reaction
with desorption on finite lattices. When desorption is
introduced into the model, nontrivial steady states can
exist that have nonzero reaction rates [5,6]. In these
steady states, the tendency of the reaction to form seg-
regated clusters is balanced by desorption kom within
the clusters. Clement et al. derived an analytic expres-
sion describing these steady states on finite lattices [5].
This expression shows that when the desorption rate p is
sufBciently large, the steady states consist of segregated
clusters that are considerably smaller than the lattice
[5]. This behavior also occurs on infinite lattices for any
nonzero value of p. When p is sufBciently small, however,
the finite lattice steady states are quite different from the
infinite lattice states. In this case the segregated domains
grow to cover the entire lattice, so the lattice becomes
saturated [5]. The lattice cannot become completely poi-
soned when Jj & 0, but the reaction rate of the saturated
states can be made arbitrarily small by letting p be very
small. The transition between the existence of segregated
and saturated equilibrium states occurs around a critical
value of p, d.enoted p„which satisfies
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where N is the total number of sites on the lattice [7].
Flament et al. have shown that the kinetics of reactions

that approach a segregated steady state have a different
character &om reactions whose final state is a saturated
steady state [7]. They derived asymptotic expressions for
the reaction rate at short times, and performed MC simu-
lations to describe the general behavior. Once again, the
general behavior of the system can be elucidated much
more accurately by integrating the pair equations. The
averaged pair equations for the monomer-monomer reac-
tion with desorption can be expressed as

on finite lattices [4,5,12]. This occurs because the satu-
rated states can be dominated by either A or B particles,
and over sufficiently long periods of time the system can
Qip between these two states. The averaged rate equa-
tion hierarchy cannot be used to study this phenomenon,
because it deals only with correlations between sites at
equal times [5]. We emphasize that this bistability is
purely a finite size effect: it can only occur on finite lat-
tices when p is small enough to allow saturated states
to form. The existence of this type of bistability in fi-
nite systems is a well known feature of other similar LG
inodels such as the Ising model [21].

—Qp, p
dt
d—+x,odt

7
+2,0 + 2&1,l + oo,o ~il, o

+p(~o, o —2oi,o),

V. THE BROADENING
OF REACTIVE INTERFACES

—a;, . = A:E;, a;, + p(ao, o —2a; .) for ~z~ + [j~ ) 2.

We have calculated R(t) for a 61x61 lattice with k = 1
and with various values of p: the results are shown in
Fig. 5. For this lattice, p, 2.5 x 10 [using Eq. (12)].
When p )) p, (for example, when p = 1.0 x 10 s in Fig.
5), the reaction rate decays in a simple manner to its
steady state value. The steady state value can be calcu-
lated exactly [5]. This simple decay to a steady state is
the qualitative behavior of the monomer-monomer reac-
tion with desorption on an infinite lattice for any p ) 0.
When p ( p (e.g. , p = 1 x 10 in Fig. 5) the kinetics
are considerably more complicated. The initial decay is
much like the infinite lattice result. However, as the size
of the segregated clusters on the lattice becomes com-
parable to the total size of the lattice, the reaction rate
decays more rapidly before leveling off to a steady state
value. This crossover behavior was also seen in the MC
simulations of Flament et aL [7]. The steady state re-
action rate of the saturated states is considerably lower
than the equilibrium rate on an infinite lattice with the
same value of p [5]. Figure 5 also shows that when p p,
the long term behavior of R(t) is dominated by finite size
effects.

The monomer-monomer reaction with desorption also
exhibits a noise induced bistability when it is simulated

d Ic—A;~ = —A;~A;~, (14)

and the conservation law A, ~ + B;~ = 1. The initially
linear interface can be defined by the initial condition
A;, = 1 (0) for i ( 0 () 0).

Krapivsky [6] showed that the general solution of Eq.
(14) is

A;~(w) = e ) ) 0 I; (r)I~ „(7), (15)

where w = kt, I are modified Bessel functions, and the
coefficients 0 are defined by the initial conditions as

In addition to surfaces with random initial conditions,
Kang and Weinberg have studied how an initially lin-
ear interface separating regions poisoned by A and B
inonomers evolves [9,10]. They found that the reactive
interface broadens and roughens as time progresses. In
particular, they found that the interface width grew as
Qt. Iii this section we derive an exact expression for the
site densities and interface width that is valid for all time,
which proves that this scaling is correct.

The broadening of the reactive interface is an intrinsi-
cally spatially inhomogeneous phenomenon, so it is ap-
propriate to examine it using the spatial rate equation
hierarchy [14]. As described in Sec. II, the evolution of
the spatial site densities A; ~ and B;~ is exactly governed
by

o „=A „(t=0). (16)

0. 10

0.05

0.00
'l 0 '] 00 ~000 10000

For the interfacial initial conditions described above, this
solution can be greatly simplified. The initial conditions
are 0 = 1 (0) for m ( 0 () 0). Then, since [22]

(17)

FIG. 5. The reaction rate as a function of time for
the monomer-monomer reaction on a 61 x 61 lattice with

p = 1 x 10,1 x 10, and 1 x 10 (upper to lower curves,
respectively).

A;(~) = e ) I; (~). (18)

the sum over n in Eq. (15) may be evaluated explicitly,
yielding
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Because the site variables are independent of j, the no-
tation in this expression has been simplified by setting
A.; = A, ~ for all j. By using Eq. (17) and the fact that
I (z) = I (z) (when n is an integer) [22], this solution
may be further simplified:

A;(7) = —[1+e Ip(v)]+ e ) I„(7),
1

n=1

for i & 0. The symmetry of the initial conditions mean
that A;(t) = 1 —A;+q(t) for i ) 0. Thus the expression
above exactly defines the site densities A, ~ and B,~ for
any i and j and for t & 0.

Kang and Weinberg measured the width of the reactive
interface, u„, by defining g; = A;+q —A;, and setting

)
g n2g„(~)
Eg-(~) ' (20)

g, = -e I (~). (21)

By using Eq. (17) it can be seen that the denomina-
tor in the definition of u„ is equal to —1. The sum in
the numerator can be evaluated by using the recurrence
relation [22]

nI (z) = —[I i(z) —I +i(z)]. (22)

Substituting this into the numerator of Eq. (21) and
collecting all terms that contain Bessel functions of the
same order yields

where both of the sums over n are &om —oo to oo. Sub-
stituting the explicit solution for A; into the definition of
g; shows that

1
A; ~A; ~

= —(A;+g ~ + A; q ~ + A; ~+q

+A; ~ g
—4A; .).

If we now consider A to be a spatially continuous variable
of x = ih and y = jh and take the formal limit 6 ~ 0,
we find

A;~A;~ m AA, (26)

where L is the spatially continuous Laplacian operator.
Thus, in this formal limit, the exact spatial site equations
for the monomer-monomer reaction become the spatially
continuous difFusion equation

BA k

Ot 2
(27)

Thus, if 2k' ——k, any property of the monomer-monomer
reaction site densities, for any initial conditions, also
holds for the monomer difFusion model. The exact clo-
sure of the monomer difFusion site equations also yields
a simple proof that the chemical difFusion coef5cient of a
noninteracting lattice gas is coverage independent [23].

The evolution equations for the pair densities of the
monomer-monomer reaction and the monomer difFusion
model are not identical. Hence any observable of these
models that is a function of pair (or higher order) proba-
bilities will have difFerent values for the two models. One
example of this property is the fact that the interface
roughnesses of broadening interfaces in the two models
are not equal [9].

Although the spatial site equations are spatially dis-
crete, it is possible to derive approximate rate equations
that are spatially continuous. One way to do this is to
notice that if h = 1

Thus the exact value of u is ~kt for t ) 0.
Kang and Weinberg also simulated the evolution of

an interface for a noninteracting lattice gas of difFusing
monomers [9]. In this model, the number of monomers
on the lattice is fixed, and monomers hop into adjacent
empty sites at rate kh. The initial interface divides a re-
gion covered by particles (A; ~

= 1) &om an empty region
(A, ~

= 0). It was found that the width of the interface
obeyed the same scaling as the monomer-monomer re-
action, and a combinatorial argument proving this was
given [9]. A more straightforward way to demonstrate
this equivalence is to consider the spatial rate equations
of the difFusing monomers. Deriving the exact spatial site
equations as for the monomer-monomer reaction yields

(24)

We emphasize that this equation represents only an ap-
proximation to the exact equations. When the spatial
rate of change of A is small over length scales of a few
lattice spacings, the evolution of A in Eq. (27) and A, ~

in Eq. (7) is very similar. On the other hand, if A varies
rapidly over the same length scales, the solution of the
spatially continuous equation may deviate significantly
&om the true (spatially discrete) solution.

VI. REACTION RATE
OF BROADENING INTERFACES

We now turn our attention to calculating the time-
dependent reaction rate of a broadening interface for the
monomer-monomer reaction. The key to this calculation
is that the reaction rate is a spatially averaged quantity,
even though the underlying lattice configuration is spa-
tially inhomogeneous. Thus the simpler averaged rate
equations may be used if appropriate initial and bound-
ary conditions are defined. To define these conditions,
we consider a finite lattice with periodic boundary con-
ditions and the initial conditions shown in Fig. 6. Be-
cause the evolution of an interface is localized around
the center of the interface, the evolution of the lattice in
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FIG. 6. The initial condition used to calculate the reaction
rate of a broadening interface.

FIG. 8. The scaling exponent ~y as a function of time for
the monomer-monomer reaction with the interface initial con-
ditions.

Fig. 6 is identical to that of an infinite lattice provided
the interface width satisfies u„«L/2. Thus, if the re-
action rate of the finite lattice described above can be
calculated, the interface reaction of an infinite lattice is
known up to some 6nite time.

The initial conditions for the lattice pictured in Fig.
6 are a;~ = 1/2 —(i + j)/2L for 0 ( i ( L/2 and
0 ( j ( L/2. The pair variable a, i is averaged over
all spatial orientations of sites separated by i sites in one
direction and j sites in the other direction, so a; ~ is syrn-
metric with respect to the interchange of i and j. The
pair variables for other values of i and j are de6ned by
symmetry conditions such as a;+L,gq ~

——a;+L,gq ~. The
averaged pair equations [Eqs. (4)] can be integrated with
the same techniques that we used in Sec. IV.

We compute the average reaction rate per row,

R(t) = L[ao.o(t) —ai,o(t)] = L
I

——ai, o(t)
l

.
E2

(28)

100

When t = 0, R = 1/2 for any L. The average reaction
rate per 8ite on the in6nite lattice is trivial: it is identi-
cally zero. The time dependence of B for a lattice with
L = 2000 and k = 1 is shown in Fig. 7. We have veri-
6ed by computing this curve for various values of L that
R(t) is independent of L when u„( L/20 Hence the.
data in Fig. 7 represent the average reaction rate per
row for a broadening interface on an infinite lattice with
t & 10000.

To test if R(t) has a power law time dependence, R
we de6ned

tdR/dt
~s t

[as in Eq. (10)]. The time dependence of uy(t) is shown
in Fig. 8. As in Sec. II, it is possible that R asymptot-
ically approaches a power law scaling, but it is dificult
to unambiguously conclude this &om our data.

It is also possible to determine R(t) by solving the spa-
tial pair equations. Such solutions simultaneously yield
information about how the reactions are spatially dis-
tributed. However, the computational resources neces-
sary to solve the spatial pair equations are enormous,
because each spatially distinct pair (on all length scales)
must be included individually. We have performed some
calculations of this type, but due to the number of equa-
tions that must be integrated they have been limited to
quite short times.

One of the issues investigated by Kang and Weinberg
in their MC simulations was the roughening of the reac-
tive interface [9,10]. The roughness 0 is defined as the
root-mean-square position of particles that form the ex-
ternal perimeter. A particles in the external perimeter
can be connected by nearest neighbor A (B) particles
to i = —oo (+oo). The external perimeter is a fractal
curve with &actal dimension d 1.33 [9]. Kang and
Weinberg showed that the data from their MC simula-
tions suggested that the interface roughness obeyed the
scaling 0 t~, with P = 0.455 + 0.005 [9]. Unfortu-
nately, it is not possible to calculate o &om the exact
rate equations. To perform this calculation, it would be
necessary to track the correlated evolution of connected
clusters of all sizes up to at least the width of the in-
terface. Although this is possible in principle because
the rate equation hierarchy is closed at each order, there
seems to be no practical way to realize such a calculation.

VII. SUMMARY

1

10 100 1000 10000

FIG. 7. The reaction rate per row for the
monomer-monomer reaction with the interface initial condi-
tions.

We have shown that the exact rate equations are
a powerful tool for investigating both translationally
invariant and spatially inhomogeneous states of the
monomer-monomer surface reaction. These rate equa-
tions have been used to derive a variety of exact results
for this reaction, including the reaction rate and cluster
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growth rate of surfaces with random initial conditions, fi-
nite lattice e8'ects for the reaction both with and without
desorption, and the width and reaction rate of a reac-
tive interface. It is clear &om our numerical calculations
that we can greatly improve computational capabilities
compared to MC simulations. We also showed how the
exact, discrete equations that define the evolution of the
site densities of spatially inhomogeneous states can be
used to derive approximate spatially continuous equa-
tions. This procedure can also be used to derive ap-
proximate reaction-diffusion equations for more general
surface reaction models [14].

We emphasize that, although the results presented here
rely heavily on the exact closure of the rate equations,
the general strategy of using the averaged and spatial
rate equation hierarchies can be very useful in the study
of more general surface reaction models. In general, the

rate equations can be analyzed only after some type of
approximation is made that closes the hierarchies. This
approach has been used to examine, among other issues,
the evolution of chemical waves and interfaces on perfect
surfaces [14] and the kinetic phase diagrams of surface
reactions on stepped surfaces [24).
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