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Intermittent chaos and multifractal systems
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On the basis of statistical thermodynamics we represent the free energy and the partition function
of intermittent multifractal systems. It is pointed out that even in the case of the chaotic system in

which the value of minimum free energy cannot be determined because of thermal fluctuations, we

can obtain the partition function by using the e8'ective free energy defined in the dominant region

of power law indices. We analyze the one-scale Cantor set in the Auctuation mode to show a typical
example of this system.

PACS number(s): 05.45.+b, 05.70.—a, 13.85.Hd

I. INTRODUCTION

Intermittent phenomena have been investigated to
make clear critical phenomena of nonlinear systems [1—5].
Intermittency is characterized by the singular power law
behavior of the moment with respect to the event prob-
abilities. Since the index of the moment plays the role of
the critical exponent, intermittent phenomena are con-
sidered to manifest the characteristic features of critical
phenomena of nonlinear systems.

Intermittent phenomena are well accounted for by the
&actal geometry based on the properties of self-similarity
with the constant scaling index. As for nonlinear chaotic
systems, however, the multifractal theory is used instead
of the fractal geometry because of fluctuations of scaling
indices n. Hitherto, several authors [6—9] have explored
intermittent phenomena of nonlinear systems, taking ac-
count of the multi&actal structure of these systems.

In the rnultifractal analysis [6] the qth moment of
the event probabilities Z(q) is assuined to be given by

Z(q) = A~i ), where f (n) =—qn —D(n) and D(n) is the
fractal dimension, according to the power law behavior
of Z(q) in terms of the size of subpieces A. This formula
is obtained on the assumption that the dominant value of
Z(q) must be determined by the minimum value of f (o.).
However, in nonlinear chaotic systems generally we can-
not determine the minimum value of f(a) definitely.

In the formulas of statistical thermodynamics Z(q) and

f (n) play the role of the partition function and the free
energy, respectively. Because of Huctuations of the free
energy in nonlinear open systems, its lowest value cannot
be determined uniquely. This is the same condition that
in the field theory [10] the energy density of the quantum
vacuum fluctuates according to the vacuum states.

The aim of this paper is to propose a method to obtain
a useful formula of the qth moment of multifractal sys-
tems in analogy with statistical thermodynamics. In this
formula the fluctuation eÃect of the free energy is taken
into consideration, and hence we can get the available
partition function. The partition function, i.e., the qth

II. STATISTICAL- THERMODYNAMICAL
FORMALISM OF MULTIFRACTAL SYSTEMS

In multifractal systems the event probability p, in the
region of A, labeled by i(i = 1, 2, . . . , n) is given by

(2.1)

like the order parameter near the critical point with the
critical parameter o.. It is not necessary that o. should be
constant in these systems. In terms of p, we define the
qth moment as

Z(q) = ) p,'. (2.2)

In the limit of n ~ ao, we rewrite the summation of Eq.
(2.2) into integration with respect to n as follows:

Z„(q) = dnrl(n) p(A ) A~ (2 3)

where p(A ) A is the density of the number of
subpieces in the fractal dimensionality D(o.), and the
weight function rl(n) is normalized as J dcrrl(n) = l.

In the case where rl(cr) is the 8 function at n = n, Eq.
(2.3) yields

(2.4)

moment, is given by the effective values of Af~ ) in the
dominant region of o..

In the next section, we will present a statistical-
thermodynamical formalism of multifractal systems, in
which the partition function and the free energy are de-
fined in a convenient way. In Sec. III, we show the way to
calculate the qth moment of chaotic multifractal systems
in contrast with the method based on the assumption of
the minimum free energy condition. Section III is our
conclusion.

1063-651X/96/53(4)/3330(3)/$10. 00 53 3330 1996 The American Physical Society



53 INTERMITTENT CHAOS AND MULTIFRACTAL SYSTEMS 3331

Z (q) = Z (q) = exp [ f—(q) n] . (2.5)

where we put f (q) = qn, —D (o(,) .If we set
exp( —n), we obtain from Eq. (2.4)

Therefore, we get

P, p~lnp;
Pf(~-(~)) l P

(3 5)

This is the same partition function that is assumed in
Ref. [9] by using Renyi entropy [11]. It is reasonable to
identify f(q) with the free energy per site. The partition
function of this system is given by Z(q) = exp( —f) in
the unit of kT = 1, where T is temperature and k is the
Boltzmann constant.

The convolution relation of Z(q) [12] yields the config-
uration sum in terms of n as follows:

Z- ( ) =).P( ( ))Z( ), (2.6)

where Z~ ~(q) is the partition function of the whole sys-
tem and P(n, (n)) is the normalized weight function. In
the thermodynamic limit of the infinite average value of
n, i.e. , (n) ~ oo, the b function P(n, (n)) = b(n/(n) —1)
provides

because we have

(3.6)

n(a) = f'(a)
f (a2) —f (a~)

(3.7)

where f'(n) = df(a)/dn and g(n) is normalized asj ' dng(n) = 1. It follows from Eqs. (3.7) and (2.3)
that the partition function is given by

As for the case where g(n) is dominant in the region of
= o;2 —o.q, where the minimum free energy condition

is not valid because of free energy fluctuations, we set
[14] in comparison with the b function for weight density
rj(n) as follows:

Z~.~ (q) = Z(q)'"' = exp( —f (q) (n)). (2.7)
pf (~2) pf (~1)

Z„(q) =
in%„[f (n2) —f (n~)]

(3.8)

Therefore, we get the free energy of the whole system
such as

F (q, (n)) = —lnZ~ ) (q) = (n) f (q) . (2.8)

The proportional relation between F(q, (n)) and f(q)
represents self-similarity of multifractal systems at o. =

c.

If we put n2 ——n, +(An/2) and nq ——a, —(Aa/2), where
0 ( An ( 1, Eq. (3.8) yields

(3.9)

III. THE qTH MOMENT OF CHAOTIC
MUI TIFHACTAI SYSTEMS

n =a'c
= 0. (3.1)

It turns out from Eqs. (3.1) and (2.3) that we have

Z„ (q) = ~f~-.l. (3.2)

This is the same partition function as Eq. (2.4), which is
obtained by using the h function for weight density g(n)
at n = a, such as g(a) = b(n —a,).

Since f(o() = qa —D(a), at n = n, Eq. (3.1) leads to

D (n) = qn —C (q),

where f (a(q)) = C(q) = (q —1)Dq because of f (a) = 0,
i.e. , Z (q) = 1 at q = 1. Equations (3.2) and (2.2)
provide

Various soluble strange sets have been investigated [6,
13] to comprehend dynamical structure of multi&actal
systems under the minimum free energy condition at o. =

in the limit of A ~ 0 as

f (a2) =(q —1) D~(a2) = qa2 —D(a2).
(3.10)

It turns out &om Eq. (3.10) that at q = 0, D~(aq), and
D~(n2) are written by the fractal dimension D(nq) and
D(n2), respectively, like

Equation (3.9) leads to Z„A„' for Ao( -+ 0 as in Eq.
(3.2).

In order to comprehend the validity of the weight den-
sity (3.7), we analyze the one-scale Cantor set in the fluc-
tuation mode as a simple example of multi&actal sys-
tems. In the process of dividing the interval [0, 1] into
small segments, we get this Cantor set. The size of each
segment A, (i = 1, 2, . . . , n) is assumed to fluctuate in the
region of Aq & Aq & A2 so as to hold the weight density
g(a) as in Eq. (3.7) with parameters nq ——1npq/1nAq
and n2 ——inp2/inAz. The fluctuation effect is assumed
to decrease in accordance with the progress of construc-
tion of this Cantor set.

In this example two values of &ee energy f(a) with
respect to two boundary indices o.~ and o.2 are given by

dZ„(V)
y ~ dj(a(V) )

)
&1(,

(3 4)

D() (ng) = D(ng) and Do (n2) = D(n2) . (3.11)

In this Cantor set we have different values Do(nq) and
Do(n2) at q = 0 in contrast with the ordinary example
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Dq SE D(n) &&

D(ni)-

FIG. 1. Plot of Dq = f/(q —1) vs q. Dq approaches n in
accordance with increasing the absolute value of q.

in which the minimum free energy condition is assumed.
In the case of pq + p2 ——1, this Cantor set is consid-

ered a two-scale Cantor set with two rescaling param-
eters Aq and A2. However, in our example, since the
Huctuation efFect decreases according to advancing con-
struction of segments, we obtain Dp(ni) g Dp(n2) and
D = D = o., as shown in Fig. 1, which is remark-
ably difFerent from the ordinary two-scale Cantor set. We
present the characteristic feature of the fractal dimension
D(n) of our example in Fig. 2.

IV. CONCLUSIONS

We have shown a method to make correspondence be-
tween the qth moment of chaotic rnultifractal systems
and the partition function of statistical-thermodynamical
systems. In this method f(a) = qn —D(n), where cr is
the power law index and D(a.) is the multif'ractal dimen-
sion, plays the role of the free energy. In contrast with
the ordinary partition function, which is given by the as-
sumption that the system has the unique minimum free

FIG. 2. Plot of the fractal dimension D(n) vs n So.lid
lines show that Dq approaches to n in accordance with de-
creasing the fractal dimension D(n)

energy value, we have obtained the partition function in
the dominant o. density region in the case where the min-
imum free energy fluctuates. To show a typical example
we have presented the characteristic feature of the one-
scale Cantor set in the Huctuation mode.

our formulas should be useful especially for nonlinear
chaotic multifractal systems, which dominate in the lim-
ited o. density region Lo.. If Lo. & 1, we can comprehend
that these systems behave like fractal systems even if the
minimum free energy condition is not valid.
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