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Universal behavior of the amplitude ratio of percolation susceptibilities
for ofF-lattice percolation models
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We study the amplitude ratio of percolation susceptibilities, A = C /C+ (C and C+ being
the amplitudes below and above the percolation threshold), which is supposed to be universal but
has been found to be difFerent for certain continuum models from that of the ordinary lattice
percolation. We specifically consider two o8'-lattice percolation models, the continuum percolation
of the penetrable-concentric-shell model and the randomly bonded percolation model, for both of
which B was found to be difFerent from the lattice value while various critical exponents remain
the same. By numerical investigation we find that B depends on the size of the system for both
models; after a finite-size efFect is carefully taken into account, B is consistent with the lattice value,
indicating a strong universality between lattice and o8'-lattice percolation models. We also discuss
some subtleties of the finite-size scaling analyses.

PACS number(s): 05.20.—y, 05.70.Fh, 64.60.Ak, 64.60.Fr

I. INTR, GDUCTIQN

Percolation models have served well as theoretical tools
to investigate many interesting physical phenomena. Ex-
ample phenomena include the transport, mechanical,
and electromagnetic properties of disordered media [1—3].
The simplest percolation model is ordinary lattice (site)
percolation, in which each lattice site is either occupied
with probability p or unoccupied with probability 1 —p;
any two occupied neighbor sites are assumed to be con-
nected and belong to the same cluster. The statistical
properties of this simple model have been investigated
during the past several decades and a large amount of in-
formation is now available [1]. However, for real physical
systems, the ofF-lattice or continuum percolation models
are more appropriate since they are morphologically more
analogous to the real systems than their lattice counter-
parts. (In what follows, we will use the term "continuum"
in contrast to "lattice, " i.e., all ofF-lattice models are as-
sumed to be continuum models. ) The polyfunctional con-
densation of monomers, hydrogen bond networks in liq-
uid water, crosslinking of polymers, and two-composite
disordered media are such examples.

The universality of continuum percolation models has
been investigated by many authors via Monte Carlo sim-
ulations [4,5], molecular dynamics calculations [6,7] and
Monte Carlo renormalization studies [8—10]. The uni-
versal critical exponents v, p, and P were found to be
consistent with the corresponding lattice values, suggest-
ing that the lattice and continuum models belong to the
same universality class. Here v, p, and P characterize,
respectively, the correlation length, the mean cluster size
(often called the susceptibility), and the order parameter
near the critical point p at which a geometrical phase
transition from a nonpercolating phase to a percolating
phase takes place.

However, it has also been reported that the ampli-

tude ratio of susceptibilities (de6ned by R = C /C+,
where C and C+ are the amplitudes below and above
p„respectively), which is supposed to be universal [11],
is at least one order of magnitude smaller than the lattice
value for certain models of continuum percolation. Typ-
ical examples include the oK-lattice model of randomly
bonded percolation (RBP) [12], continuum percolation
of overlapping spheres, capped cylinders, and widthless
sticks [13]. On the other hand, for continuum percola-
tion of penetrable-concentric-shell (PCS) models [14], B
was found to be considerably larger than the lattice value
[15,10]. These unusual results lead us to speculate that
lattice and continuum percolations are in difFerent uni-
versality classes and/or A is not universal for continuum
percolation models.

In contrast, results that are di8'erent from those de-
scribed above were also reported for certain models of
continuum percolation. The present author carried out
extensive Monte Carlo simulations in two and three di-
mensions for the continuum percolation of overlapping
disks and spheres and of the PCS model [15]. The ampli-
tude ratios for the former models were found to be close
to the lattice values, while for the PCS model consider-
ably larger values were still observed. Frith and Buscall
[7] also studied, using molecular dynamics calculations,
the percolation of hard spheres and found that the am-
plitude ratio B, as well as the exponents v and p, was
similar to the lattice values. Considering these results,
it is still unclear whether or not B is universal for all
continuum models.

All these works were carried out on relatively small-
size systems and did not include careful discussions of the
Gnite-size efFect. We, however, claim that the system size
significantly a8'ects the estimates of B; thus it is not fair
to conclude, without considering the size efFect, that B is
difFerent from the lattice value. In this work, we present
extensive Monte Carlo results for B, carefully analyzed
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with respect to 6nite-size, for two typical models in which
the values of Bwere previously found to be different from
the lattice values. We found that the estimates of B vary
significantly depending on the size L of the system and,
after extrapolating the results as I ~ oo, the values of
R appear to be similar to the lattice values.

The models we consider in this work are the continuum
percolation of the PCS mod. el and the RBP model. In
the PCS model, each sphere of radius o/2 is composed
of an impenetrable core of radius Ao/2, enclosed by a
perfectly penetrable shell of thickness (1 —A)o/2. The
extreme limits of A = 0 and 1 correspond, respectively,
to the cases of fully penetrable and totally impenetrable
particles. The number density p or, equivalently, the re-
duced number density q = pVi (Vi being the volume of
each particle) can be considered as a control parameter
for percolation p. (We prefer to use g since it is dimen-
sionless. ) In the RBP model, on the other hand, a prede-
termined number of particles are distributed randomly
in a given system of size L and the bond between two
points separated by a distance r is assumed to exist with

2
probability p(r) = pe ' ~", where p is some constant.

These two models, however, are not unrelated to the
lattice percolation model. For example, if we modify the
lattice percolation model so that each lattice site can be
located on a randomly chosen position in a given system
and assume that two sites are connected if their separa-
tion distance is less than 0, then the given lattice model
would be identical to the model of the fully penetrable
spheres of diameter 0. In addition, if we impose a con-
straint that any two sites cannot be located within a
distance of Ao, we have a PCS model. The fully pene-
trable particle models can also be reduced to the RBP
model if the bonding rule is modified so that the bond
exists between two particle centers with probability given
by the RBP model. Since the constraints given i.n these
models are all short ranged, one can reasonably expect
that they are irrelevant and thus all these models belong
to the same universality class. Various critical exponents
estimated for these models support this speculation, al-
though the values of R previously reported varied.

This paper is organized as follows. In Sec. II we present
the Monte Carlo algorithms for obtaining equilibrium re-
alizations and discuss some subtleties regarding finite-
size effects. In Sec. III we present our Monte Carlo results
for B including various analyses using Gnite-size scaling.
Section V is devoted to the summary and conclusions.

II. MONTE CARI 0 PROCEDURES

In this section we present the computer simulation al-
gorithms for obtaining the percolation realizations for the
PCS and the RBP models. In the erst subsection, we de-
scribe the Monte Carlo method we employed to sample
the equilibrium realizations and, in the second subsec-
tion, we discuss some possible sources of errors occurring
in the estimation of B and propose eFicient ways to re-
duce the B.nite-size effect.

A. Monte Carlo algorithm for equilibrium
realizations

There are typically two different methods of obtain-
ing percolation realizations for the PCS model: random
sequential addition (RSA) and the Metropolis algorithm
[16]. The realizations obtained &om both methods are
known to exhibit many interesting statistical properties.
In the RSA method, particles are added sequentially to
randomly chosen positions. When the hard core of each
particle is overlapped with that of the previously added
particle, the current attempt is discarded and a new po-
sition is selected. This procedure is repeated until the
desired density is achieved. The realizations obtained
in this way are known to exhibit statistical properties
quite different from those generated by the Metropolis
algorithm. For example, the close-packed volume &ac-
tion of hard cores by the RSA method is much lower
than that from the Metropolis algorithm, In addition,
the realizations obtained by the RSA method are known
to be nonequilibrium, while the Metropolis algorithm re-
sults in equilibrium realizations. In this work, we employ
the Metropolis algorithm to investigate the equilibrium
properties.

In the Metropolis algorithm, particles are initially
placed in a cubical cell of volume V = L" on the sites of
a regular array (triangular and body-centered arrays for
two and three dimensions, respectively). Each particle
is then moved by a small displacement to its new posi-
tion, which is accepted or rejected according to whether
or not the inner hard cores are overlapped. When the
particle moves out of the cell, we assume that it reen-
ters from the opposite edge. In order to equilibrate, each
particle was moved 200 times before beginning to sam-
ple the realization. The realizations were selected at an
interval of 50—100 moves per particle depending on the
concentrations.

In order to sample the susceptibility, one must distin-
guish various clusters in a system. By definition, two
particles are "directly" connected if their interparticle
distance is less than the diameter of each particle cr (we
set o = 1). Pairs of particles may be connected in
Chrectly through chains of other particles. In order to
find various clusters, we use a standard cluster labeling
algorithm (known as the Hoshen-Kopelman algorithm)
[17]. For the sake of comparison, we employ both peri-
odic and &ee boundary conditions. The susceptibility is
then calculated according to the definition [to be defined
in Eq. (1)].

For the RBP model, a predetermined number of parti-
cles N = pL" are distributed randomly in a given system
of volume V (= I ) Each pair of p. articles is then tested
to see if they are directly connected according to the rule
defined by the model and the cluster labeling algorithm
is employed to analyze the cluster size distribution. The
susceptibilities are calculated in a way similar to the PCS
model.

B. Finite-size effect

In this subsection, we discuss some possible ways of
reducing the errors in R resulting &om finite-size effects
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occurring in Monte Carlo simulation.

Mean cluster size ver sus susceptibiLity

The percolation quantity corresponding to the ferro-
magnetic susceptibility is often defined in two ways:

y=) 'n. s'
0

1

and

S = )"n. s' ) 'n. s, 0.6

where n, denotes the mean number of clusters of size 8
per site and the prime implies that the spanning cluster
is excluded in the sum. The former is usually called the
"susceptibility" and the latter the "mean cluster size. "
In the extreme limit of an infinite system, y and S are
expected to exhibit the same critical behavior near p

forp&p
for p) p

with p = p'. While analytically p and B are defined for
the infinite system, the Monte Carlo simulation always
deals with a finite system. For any finite system, how-
ever, the two definitions in Eqs. (1) and (2) yield different
behaviors. This point was discussed in Ref. [18]for lattice
model and in Ref. [15] for continuum models and, from
both studies, it has been suggested that Eq. (1) should
be employed to observe correct asymptotic behavior.

g. Exclusion of the spanning cluster

As the prime denotes in Eqs. (1) and (2), one should
exclude the spanning cluster from sampled realizations.
In a rea/ infinite system, the spanning cluster exists only
above p and thus should be excluded in the sum for
p ) p . However, for any finite system, since the span-
ning cluster does not always exist even for p ) p and
since p is not known accurately for most ofF-lattice mod-
els, researchers have excluded the largest cluster both be-
low and above p, assuming that the largest cluster below
p, is sufIiciently small and exclusion of it does not cause
significant errors in y. This approximation apparently
underestimates the susceptibility below p . To see this
clearly, we have calculated the susceptibilities both with
and without excluding the largest cluster below p, while
always excluding it above p . We assume that the largest
cluster above p is part of the spanning cluster even when
no cluster spans the cell. Figure 1 shows the susceptibil-
ity for the two-dimensional (2D) PCS model with A = 0.8
and L = 150, obtained using the periodic boundary con-
dition: the closed symbols are the data obtained with the
largest cluster below p and the open symbols without the
largest cluster. The dotted line in (a) indicates the perco-
lation point in the L m oo limit, p = 0.7533 [10]. Clearly

FIG. 1. Monte Carlo data of y for the PCS model for
A = 0.8 and L = 150, obtained with and without exclud-
ing the largest clusters for p ( p„plotted (a) on a semilog-
arithmic scale and (b) on a double-logarithmic scale with
power-law fits. The open symbols are obtained with the
largest cluster excluded, while the closed symbols without ex-
cluding the largest cluster.

the two sets of data are very different, particularly near
p„where an asymptotic power law in Eq. (3) is expected
to hold. This value of p, does not, in general, yield the
same power law below and above it for a finite system.
For any given size of system, one usually treats p as a pa-
rameter and selects the effective value p, which yields
the same power law below and above. Figure 1(b) shows
a double logarithmic plot of y against ~1 —p/p,'+~. The
solid lines are the best fit to the data without excluding
the largest cluster for p & p . From this figure, we ob-
tained p 2.38, p' = 0.7560, and B 305. For the
data obtained excluding the largest cluster for p ( p,
we would obtain p 2.22, p = 0.7602, and B 360.
Clearly the data without excluding the largest cluster for

p ( p yield much better result for p (cf. p = —[19])
and the value of p, is also closer to the true p . From
these results, one can expect that the data without ex-
cluding the largest cluster for p & p would yield better
estimates of physical quantities.

8. Cluster size distr ibution

Another, perhaps more significant, source of errors for
the continuum models of volumetric inclusions is the def-
inition of n, inconsistent with the lattice counterpart. To
see this clearly, let n, = 1V, /N', where N, is the number
of clusters of size 8. For lattice models, N' is the to-
tal number of sites, i.e. , for d-dimensional cubic lattice,
N' = I".For continuum models, researchers have chosen
K' to be the total number of inclusions [10,13,15]. With
this latter definition, N' is not a constant and depends on
the concentration of inclusions for a given system, unlike
the case for lattice percolation model.

The correct analogy for continuum models can be ob-
tained by considering the probability that any site be-



3322 SANG BUB LEE 53

longs to a finite cluster P, 'n, s. Since P, 'n, s = p for

p ( p, and since p = q (= & Vj), it is natural to choose
Here N' can be considered as the "effective"

1
total number of sites that a system of volume V can in-
clude.

We found by numerical investigation that the ampli-
tude ratio estimated using this definition was consider-
ably smaller than that obtained by a conventional choice
for n, . We also found that the amplitude ratio for the
2D PCS model with L & 300, estimated in this way, was
close to the error bounds quoted for the lattice value, as
we will see later.

Boundary conditions
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FIG. 2. Monte Carlo data of y for ordinary site percolation
on a square lattice of L = 2000, obtained using the free bound-
ary condition (squares) and periodic boundary condition (cir-
cles), plotted on a double-logarithmic scale. The dotted lines
are the power-law 6t through the data for free boundaries
and the dashed lines for periodic boundaries. The linear re-
gression fitting on the same region shows that the periodic
boundary condition yields a better estimate of p.

The different boundary conditions employed in the
simulation might also yield difI'erent estimates of R. As
tests, we calculated y using both free and periodic bound-
ary conditions for selected cases of both the PCS and the
RBP models and found that the two "boundary condi-
tions yielded different values of R. While data for pe-
riodic boundary conditions yielded slopes very close to
the known lattice value of p, those from free boundary
conditions showed slightly larger values. Similar behav-
ior was also observed for lattice percolation. To see this
clearly, we carried out simulations for regular site per-
colation on a square lattice with L = 2000. Figure 2
shows the Monte Carlo data obtained using both free
and periodic boundary conditions. The largest cluster
was excluded only above p, . The dotted and dashed
lines for each set of data are the best fits, which show

the same power law below and above p . The estimates
for (p,p', ,R) are (2.56,0.5955,231) and (2.39,0.5929,191)
for free and periodic boundary conditions, respectively.
In general, the data from free boundary conditions ex-
hibited much larger statistical Quctuations and yielded a
slope somewhat larger than the known value of p. This
suggests that periodic boundary conditions would yield
better estimates of B.

III. RESULTS AND DISCUSSIONS

Since the main purpose of this work is to investigate
the ratio of amplitudes for percolation susceptibilities
below and above p for ofI'-lattice models, we have cal-
culated the susceptibilities, reducing errors in all possi-
ble ways as discussed in the preceding section. We first
present the results for B for various size systems. We
then present diferent analyses to confirm our estimates.

A. Continuum percolation of the PCS model

We have carried out Monte Carlo simulations for con-
tinuum percolation of the PCS model for selected values
of A, A = 0.3, 0.5, and 0.8 in two dimensions and A = 0.6
and 0.95 in three dimensions. The susceptibility g was
calculated for selected values of p, 0.0024 ( ~p

—p, ~

(
0.24, and for various values of L, 50 & I & 300 in two di-
mensions and L = 20, 30, 40, and 50 in three dimensions,
both with and without excluding the largest cluster. For
each of these cases, results were averaged over 50—5000
realizations, depending on p and I .

For the analysis, we first determined the approximate
value of p', using the data excluding the largest clus-
ter both below and above p, . We then selected the data
with the largest cluster below p and without the largest
cluster above p', to estimate B from the power-law fit.
The power-law fits along the data points were made in
a usual way: p was set as a parameter and the same
power-law below and above p was assumed. It should
be noted, however, that if one shifts the fitting region
slightly toward or away from p, the slope and the dis-
placement between the power law fits below and above
p, would vary appreciably. Since the amplitude ratio is
obtained from the displacement, it would also vary de-
pending on the choice of the fitting regions. In order to
observe the size efI'ect on B accurately, we have selected
the fitting regions in such a way that the slope of the
power-law fit yields the value close to the known lattice
value of p, p = is 2.39 [19], and the fitting region is
wide enough to determine B. This is certainly a reason-
able choice since we are investigating whether or not R is
difI'erent &om the lattice value for percolation models for
which the critical exponents are known to be the same.

In Fig. 3 we plotted, for the sake of comparison, the
Monte Carlo data of y in a double-logarithmic scale for
two typical values of L, I = 50 and 300, for the 2D PCS
model with A = 0.8. The best power-law fit yielded p
0.7609 and p = 2.40+ 0.02 for L = 50 and p = 0.7549
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FIG. 3. Monte Carlo data of y for the 2D PCS model with
A = 0.8 obtained for two typical values of L, using periodic
boundaries. The amplitude ratio clearly depends on the size
of system.

FIG. 4. Estimates of R plotted against L (points without
error bar) and against L ~" (points with error bar) for the
2D model. The solid line is the regression fit along the data
plotted against L ~" and the dotted line along the data for
L ) 80 against L . The inset is the plot of p' against

~", indicating the true p 0.753.

and p = 2.43+0.03 for I = 300. %lith these estimates, we
found that the Monte Carlo data exhibited a good power-
law behavior in the wide region of ~p

—p, ~, implying that
the exponent p for the PCS model is indeed close to the
lattice value. One important finding from the plot is that
the amplitudes of y below and above p are different for
the two cases of L. This difference, although it appears
not to be significant in the plot, affects B by a factor
of nearly 2. For I = 50, we obtained B = 465 + 75,
which is considerably larger than the lattice value B =
196+40 [20]. It should be noted, however, that this value
is smaller, by a factor larger than 2, than the previous
estimate [10]. We believe that this difFerence is due to
the different definitions of n, . For L = 300, on the other
hand, we obtained B = 242 + 30, which is rather close to
the lattice value but is slightly out of the error bounds.
Results are summarized in Table I, together with those
for other values of L. Clearly the estimates of amplitude
ratio decrease as the size of the system increases.

Since analytically B is defined for an infinite system,
one must carry out extrapolation, with the knowledge
of how B scales as a function of L. Unfortunately, such
information is not available to date. The easiest way one
can visualize how R converges as L ~ oo is to plot R(L)

TABLE I. Estimates ofp, slope y, amplitudes below and
above p, and R from power-law Gts for continuum percolation
of the PCS model with A = 0.8 in two dimensions.

I p p 101 104'+ R
50 0.7608 2.40 1.534 + 0.066 3.298 + 0.335 465 + 75
80 0.7586 2.38 1.517 + 0.074 3.889 + 0.408 390 + 67

150 0.7560 2.38 1.396 + 0.035 4.576 + 0.220 305 + 24
200 0.7557 2.40 1.289 + 0.034 4.757 + 0.493 271 + 39
300 0.7549 2.43 1.112 + 0.046 4.600 + 0.339 242 + 30

against L and estimate the intercept on the ordinate.
However, in such an analysis, it would be rather dificult
to extract B if B versus L is not linear. Another
possibility is to write from the scaling form y(p, L)
L~~"f(]p —p, ~L~~ ) that R should scale as a function of

as

R(L) = R (1+aL ~" + .) (4)

(see the Appendix). Thus, plotting R(L) against L
one expects a linear behavior.

Figure 4 shows our estimates of B versus L ~". Data
without the error bars are plotted against I while
those with error bars against L ~". The inset is the
plot of p' against I ~", in a way similar to that of
renormalization calculations [21], and the true p, is ob-
tained as p, 0.753, as expected [10]. Data plotted as
a function of L ~ appear to show a linear behavior,
indicating that R indeed scales as in Eq. (4). From the
plot, we estimate that B~ = 170+ 50, which falls within
the error bounds of the lattice value. If, on the other
hand, we consider the data against L, those of L & 80
also appear to show a linear behavior, yielding B = 190,
which is even closer to the lattice value (dotted line in
the figure). These results ensure us that the amplitude
ratio of susceptibilities for PCS madel is similar to the
lattice value.

The best known lattice value of B, on the other hand,
was obtained by Monte Carlo simulation on a 4000 x 4000
square lattice, without the size effect being taken into
account [20]. Since the size of system is relatively large,
one might expect finite-size efFects to be negligible in that
work. However, if one measures B for different size sys-
tems, one would still be able to observe a decreasing trend
as the size of system increases. In addition, the slope of
the power-law fit was estimated to be about 2.36 in [20],
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FIG. 5. Same as in Fig. 3, but for the 2D PCS model with
A = 0.3 and 0.5 for L = 80. The amplitude ratio appears to
be similar for two cases, while the amplitudes are difFerent.

which is smaller by about 1.3/p than the known lattice
value. If one shifts the fitting region slightly away from

p, one would obtain a slope closer to the known value of
p, but, in such a case, B would become slightly smaller.
In our investigation on a square lattice of I = 200—2000,
B appears to be about 180, with the error being simi-
lar to that quoted in [20] (not shown). This value of B
agrees with that obtained from series extrapolation [22]
and is also close to our estimate for the PCS model, thus
indicating a universal behavior for B.

For other values of A, A = 0.3 and 0.5, the size effect
appears not to be as significant as for the case A = 0.8.
Plotted in Fig. 5 are our data for A = 0.5 and 0.3, ob-
tained for L = 80. The power-law fits were obtained for
p' = 0.8540 and 0.9830 for A = 0.5 and 0.3, respec-
tively. Clearly data for the two cases exhibit different
amplitudes, but the amplitude ratio appears to be sim-
ilar. We believe this to be a good indication that the
amplitude ratio is a universal quantity, while the ampli-
tudes are not. For different size systems, data are not
very different from that for L = 80. For example, when
A = 0.5, the values of R were estimated as B = 201 + 41,
192 + 30, and 200 + 26 for L = 80, 150 and 200, respec-
tively; the slopes were estimated to be about 2.41 for all
cases. Considering the errors, these values are similar to
one another and are also consistent with the lattice value,
again indicating a universal behavior of B.

Interestingly, as A increases, the size effect appears to
be more significant. Our data for A = 0.9 and L = 80
yielded B 420, which is larger than the corresponding
value for A = 0.8. Unfortunately, we were not able to
obtain data for larger systems because of the difBculty
in generating equilibrium realizations due to too many
rejections of moves by hard core overlaps; however, we
believe that B would behave similarly to the case for
A = 0.8.

We have also carried out simulations for the 3D PCS
model for selected values of A, A = 0.6 and 0.95. Results

Q '..
Q.

0

3D PCS
(L, =40)

0

—1
—2.4 —1.4

log „Il —alp, "I

FIG. 6. Monte Carlo data of y for the 3D PCS model for
two typical values of A (0.6 and 0.95) both with L = 40. The
amplitude ratio obtained are close to the lattice value B 11.

were qualitatively similar to those for two dimensions.
As the size of system increased, the amplitude ratio de-
creased slightly; however, the decreasing rate was not
as significant as in two dimensions. Figure 6 shows the
Monte Carlo data for L = 40 for both cases of A. Again
the amplitude ratio appears to be similar for two cases
and is also consistent with the lattice value B 8—11
within errors [20], although the amplitudes themselves
are different. This again supports our observation that
the amplitude ratio is similar to the lattice value.

B. Randomly bonded percolation model

We have also carried out Monte Carlo simulations for
off-lattice, randomly bonded percolation for selected val-
ues of p, p = 0.3 and 0.5, for both two and three di-
mensions. The inclusion density selected are p = 10 for
p, = 0.3 and p = 5 for p = 0.2 for both dimensions. (Note
that, for p = 0.3 and L = 200 in two dimensions, we used
4 x 10 random sites, which is equivalent to the number
of occupied sites at p, on a 821 x 821 square lattice. )
The susceptibility was then calculated for various size
systems, 16 & L & 200 in two dimensions and I = 10,
15 and 20 in three dimensions, and the results were aver-
aged over 50—2000 realizations, depending on the values
of I and p. It should be noted that the parameters of our
simulations for p = 0.3 in two dimensions are identical to
those in Ref. [12], but we believe that our statistics are
at least one order in magnitude better.

Figure 7 shows our Monte Carlo data for y in two di-
mensions, plotted in a double-logarithmic scale, for two
selected values of L, I = 16 and I = 200. The pa-
rameters used are p = 0.3 and p = 10, with the cutoff
probability set for r, /~p = 8 as in Ref. [12], and pe-
riodic boundary conditions were employed. The dashed
and dotted. lines in the plot are the best power-law fits.
The estimates of p and p are p 2.44 and p' = 0.1913



53 UNIVERSAL BEHAVIOR OF THE AMPLITUDE RATIO OF. . . 3325

200

20 RBP

150
0 ()
0 ()

& 100

bD
0 r

'r

- - ~ —1.=16 'r
---r-- L =200 '. ~

100 — o
()

()

0
0.0 0. 1 0.2 0.3

—0.5

0
0.00

I

0.05 0. 1 0 0.15
—2.2 —1.2

n'og„l ~ —mls', "I
—0.2 —1 —1/vI. , L

FIG. 7. Percolation susceptibilities for the 2D RBP model
for p = 0.3, for two typical values of L. The displacement of
the power-law its below and above p are very diferent for
two cases, indicating that the amplitude ratio for RBP model
strongly depends upon the size of system.

FIG. 8. Estimates of R plotted against I (points without
error bar) and against L ~ (points with error bar) for the
2D RBP model. The inset is the plot of R against I
yielding the best fit.

TABLE II. Estimates of p', slope p, amplitudes below
and above p„and R from power-law 6ts for the RBP model
with p, = 0.3 and p = 0.3 in two dimensions.

I p slope C 10 C+
16 0.1913 2.44 1.177 + 0.142 3.164 + 0.188
25 0.1957 2.47 1.431 + 0.171 2.250 + 0.253
50 0.1984 2.39 1.975 + 0.145 2.015 + 0.079
80 0.1988 2.45 1.893 + 0.161 4.672 + 0.141

150 0.1996 2.42 2.327 + 0.270 1.787 + 0.096
200 0.1998 2.49 1.915 + 0.101 1.399 + 0.105

R
37+ 6
65+17
98+12

113+ 21
130 + 23
137 + 19

for I = 16 and p 2.49 and p,'= 0.1998 for L = 200.
The amplitude ratio again appears to depend on the

size of the system with B increasing as the size of the
system increases. For L = 16, we estimate B = 37 + 6,
which is one order of magnitude smaller than the lattice
value, while for L = 200, we obtained a considerably
larger value R = 137+19. Our estimate of B for L = 200
is of the same order of magnitude as the lattice value,
although smaller by about 30%. Moreover, considering
that the value of p for L = 200 is slightly larger than the
known lattice value, we expect B even larger than this
value if we shift the fitting region toward p so that the
slope of the power-law fit is similar to the known lattice
value of p. For example, if we select the region where

2.39, we would get B 150, which falls within the
bounds of the lattice value, but the fitting region would
be narrower. Simulations were also carried out for other
values of L and we found that such an increasing trend of
B as L increases was consistently observed for all selected
values of L. Results are summarized in Table II.

In order to estimate B in the thermodynamic limit,
we have plotted A(L) against L ~ and I ~, as for the

2D PCS model. Such plots are shown in Fig. 8; the points
without error bar are plotted against L and those with
error bar against L ~ . Clearly B increases as the size
of system increases and, if we make a simple eyeball ex-
trapolation to the I ~ cm limit, we get B about 160;
however, neither of the plots seems to yield a linear be-
havior.

In order to extract a better estimate of B,we have
assumed that B(L) scales as L, where x is a parameter.
As shown in the inset of' Fig. 8, we found that R(L)
exhibited a good. linear behavior for x = 0.5. Estimating
&om the figure, we obtained B = 175 + 40. This value
of B is very close to our estimate for the PCS model
in two dimensions and is also close to the lattice value,
indicating that B for the RBP model is also similar to
the lattice value. We, however, do not have any analytic
argument of why B scales as L ~, except the numerical
investigation. One possible way to understand this result
is to assume that both the leading and next leading terms
in Eq. (5) might be non-negligible and the combination
of the two terms might have resulted in such behavior.
However, because the errors in our estimates of B are so
large, we can still fit the data for I & 70 to get B 170.

Our data in Fig. 8 were obtained using the same pa-
rameters as those in the previous work [12];however, our
conclusions are totally different. These different conclu-
sions are due to the two major differences between our
work and the previous work. First, in the previous work,
the data for various size systems were plotted on the same
graph and the power-law fii.t was taken through all data,
while in our work, we estimated B(I) for each given size
and the extrapolation to the L —+ oo limit has been made
to estimate R . %"e have discussed the importance of the
finite-size effect in Sec. I and our motivation was in fact
to investigate such a size effect on B, which may have
been ignored in the previous work. Second, we employed
periodic boundary conditions, while free boundary con-
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FIG. 9. Monte Carlo data for the 2D RBP model with

p = 0.3 and p = 10, for two difFerent size systems, obtained
using free boundary conditions: (a) represents the best power
fit and (b) is the plot drawn intentionally so that the slope is
close to the known lattice value. Both plots appear to suggest
that the amplitude ratio depends on the size of system.

ditions were used in the previous work.
In order to see how the boundary conditions afFect the

value of B, we repeated the same simulation using free
boundary conditions. Figure 9 shows the data for two
different size systems, L = 60 and 200: (a) is the best fit,
which yields a wide region of power law, and (b) is the fit
made intentionally so that the slope is close to the known
lattice value of p. (Note that the largest cluster was again
excluded only above p, .) For both cases, data clearly ex-
hibit the size effect. In (a), the power-law fit yielded
slopes of about 2.67 for both cases, indicating that the
&ee boundary conditions indeed yield the exponent p sig-
ni6cantly overestimated &om the best power-law Bt, as
we claimed in Sec. II. The estimates of amplitude ratio
are B 40 for L = 16 and B 120 for I = 200, the
latter of which is again considerably larger than the pre-
vious estimate [12j. If we choose the fitting region closer
to p, we would be able to make the slope closer to the
known lattice value, as shown in (b); however, the fitting
region would be too narrow in this case. Even for such a
plot, we found that B for I = 200 was an order of 100,
in contrast to the value of 14 in the previous work.

One interesting point we should mention is that the
data obtained excluding the largest cluster below and
above p yield the slope close to the known lattice value

3

0 'p

Dog
C7

tg
0

1

3D RBP
(a=0.2, p=5)

of p, but still the amplitude ratio appears to depend
on the size of the system. Estimates of B are B 43
(p',+ = 0.2072, p = 2.44) for L = 60 and B 127
(p', = 0.2043, p = 2.42) for L = 200, the latter of which
is similar to our earlier estimate for the same size sys-
tem but with periodic boundary condition. Thus, even
for &ee boundary conditions, our data suggest that the
amplitude ratio for the RBP model is close to the lattice
value, indicating a strong universality between the RBP
model and the lattice percolation model.

For p = 0.2, we have chosen p = 5, i.e., half as many
particles as for p = 0.3, to reduce the computing time
and the cutoff probability was set for r, /~p, = 6. Results
were found to be qualitatively similar to those for p =
0.3, but the value of p' was significantly larger. The
estimates are summarized in Table III. The amplitude
ratio again depends on the size of system and, in the
L ~ oo limit, B would be within the bounds of the
error for the lattice value, again suggesting a universal
behavior for amplitude ratio.

So far, we have presented our simulation results for
the RBP model only in two dimensions. In order to see
if similar behavior is observable for the 3D RBP model
as well, we carried out simulations in three dimensions
using the same parameters for p and p as in two dimen-
sions. For p = 0.2 and p = 5, the amplitude ratio does
not appear to strongly depend on the size of system. For
L = 10 and 20, our estimates of B were identical within
the errors (see Fig. 10) and were found to yield R 10,
which is again similar to the lattice value in three dimen-
sions. However, for p = 0.3 and p = 10, we obtained
somewhat smaller values for B: B 5.0, 5.3, and 6.0 for
L = 10, 15, and 20, respectively. If we make a simple ex-
trapolation to the L + oo limit with these data alone, we
would still get B considerably smaller than the known
lattice value. In order to derive a definite conclusion,
however, we believe that more data for much larger sys-

TABLE III.
@=0.2 and p

eff

50 1.0410
60 1.0511
80 1.0520

100 1.0578
150 1.0611

Same
=5in
slope
2.40
2.43
2.40
2.44
2.40

as Table II, but for the RBP model with
two dimensions.

10 C+
6.559 + 0.583
5.701 + 0.329
5.642 + 0.267
5.026 + 0.190
5.084 + 0.260

R
76+21
95 + 19

104 + 19
119+ 20
136 + 19

C
5.016 + 0.817
5.430 + 0.699
5.865 + 0.742
6.031 + 0.753
6.899 + 0.557

-0'- L=10
----o-- L=20

—1
—2.0 1.5 —1.0 —0.5 0.0

FIG. 10. Monte Carlo data for the 3D RBP model with
p, = 0.2 and p = 5, for two typical values of L. The amplitude
ratio for both cases appears to be close to the lattice value.
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choice does not yield the same power-law behavior below
and above p . Since for any (relatively small) finite L
the power law with p = p' holds only for p', @(L),data for
various size systems are expected to split, without yield-
ing a correct power-law behavior, if the true p is used.
The second choice yields the correct power-law behavior
for each given L; however, since the amplitude ratio de-
pends upon the size of system I, data again are expected
to split. Thus, in any case, one cannot expect the data
to collapse onto a single curve for the entire region of p.
(This does not imply a breakdown of scaling since scal-
ing is, in principle, expected to hold in the vicinity of
thermodynamic limit where L &) 1.)

Figure ll shows the 6nite-size scaling plot of the data
for the 2D PCS model: (a) was obtained using the true
p„ i.e. , p, = 0.7533 [23] and (b) using p, = 0.7550, for
which the best power-law behavior and data collapsing
occurred. In both cases, v = 3 and p =

z&
have been

used [19]. The plot in (a) shows reasonably good data
collapsing for various size systems; however, it does not
yield the same power-law behavior below and above p,
as we discussed before. The reader may also notice that
data are about to split in the large x region for p ) p
(lower plot). In (b), data also show fairly good collaps-
ing, indicating that the quality of data collapsing is not
sensitive to the choice of p . Although the plot shows the
correct power-law behavior, the amplitude ratio estimate
&om this plot gives the wrong result. The solid lines are
the best power-law 6ts one can draw; however, they are
identical to those for the data for L = 300 in Fig. 3. This
implies that one would most likely get an estimate of B
similar to that of the largest system one used if one es-
timates B &om the Gnite-size scaling plot, ignoring the
size dependence of B.

For the RBP model, the situation is worse than that
of the PCS model. Figure 12 shows the scaling function
for the RBP model: (a) for true p„ i.e., p, = 0.2005
and (b) for p'+(L). (We have obtained the value of p

tems are necessary. Unfortunately, such calculations are
not currently possible because of prohibitively long com-
puting time. However, considering the increasing trend
of B against I and also the results for p = 0.2, we believe
that a similar conclusion would be obtained for this case
also.

C. Subtleties of Anite-size scaling

In the previous two subsections we have shown that
the size of system strongly a8'ects the amplitude of sus-
ceptibilities for selected cases of continuum percolation
of the PCS model and the RBP model. We have also
shown by direct extrapolation that, as the size of system
increases, the values of B converge to the lattice value
for both models. In many instances, researchers alter-
natively employ the finite-size scaling analysis of y(p, L)
to estimate the in6nite system results of B. However,
our observation indicates some subtleties on the scaling
analysis of susceptibilities.

For given L and p, the susceptibility y(p, L) can be
written, using the usual scaling argument, as

where

const for z (( 1
x ~ for x )) 1.

0
h y

0 o L=80
L= 100
L=150
L=200
L=300

FIG. 11. Scaling function of Eg. (5) for the 2D PCS model
with A = 0.8, using (a) p, = 0.7533 and (b) p = 0.7550. The
solid lines in (b) are the shifted power-law fits of Fig. 3 for
L = 200.

Here ( is the percolation correlation length, which di-
verges as ( lp

—p l

" as p -+ p„and the sub-
script + implies above and below p . Thus, plotting the
scaled susceptibility y~(p, L)/L~~" against a scaled vari-
able x:—L ~"

lp
—p, l, one would get the data for various

size systems collapsing onto a single curve [1]. However,
this proposed scaling relation does not yield the correct
asymptotic value of R if the amplitude ratio depends on
the size of the system.

Suppose we have a double-logarithmic plot of yy (p, L)
against lp —p, l, as in Figs. 3 and 7. Then the scaling im-
plies that, by shifting the plots by appropriate amounts,
both horizontally and vertically, data for various size sys-
tems overlap one onto another, with the slope and the
displacement of the power-law fit remaining unchanged
for a given L. However, as we have seen, since the am-
plitude ratio (and alternatively the displacement of the
power-law fits) depends on L for small L, it is, in prin-
ciple, not possible to have all data for various L's on a
single curve for small-size systems.

In order to con6rm this observation numerically, one
should determine what value of p should be used in
Eq. (5). There are basically two choices. First, one can
use the true p„ if available. However, since p is not
known accurately for most continuum percolation mod-
els, one can set p as a parameter and select the best value
that shows a good power-law behavior and good data col-
lapsing. Second, assuming that the power-law behavior
of ( depends on the size of system I as ( oc lp p', +(L)l-
one can argue that p', +(L) should be used for p . The first
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FIG. 12. Scaling function of Eq. (5) for the 2D RBP model
with p = 0.3 and p = 10, using (a) true p„ i.e., p, = 0.2005,
and (b) p,'(L). The solid lines in (b) are the best power-law
fits for L = 200.

IV. SUMMARY AND CONCLUSIONS

We have studied the amplitude ratio of percolation sus-
ceptibilities for two off-lattice models, the continuum per-
colation of the PCS model and the RBP model, where
for both models the amplitude ratio was reported to be

in a way similar to the inset of Fig. 3.) In (a), data for

p & p, (lower plot) scale fairly well over the entire region
of x. On the other hand, for p ( p, (upper plot), data
show two distinct regions. For small x (i.e. , close to p, ),
where the finite-size effect is the most prominent, data
yield the correct asymptotic behavior and also show good
collapsing. However, for the x )) 1 region (where the
power-law behavior is expected), data deviate, indicating
that the scaling region is relatively narrow for the RBP
model. As the size of system increases, the slope of each
plot appears to change gradually and the plot tends to
be more and more parallel to those of p ) p . We expect
that Monte Carlo data eventually yield correct power-
law behavior if the system is sufBciently large so that
the finite-size effect is negligible. In (b), although data
for each given size system appear to yield the correct
power-law behavior, those for various values of L do not
collapse onto a single curve. The plot, however, shows
a clear size dependence for the amplitude ratio. As the
size of system increases, the displacement of the power-
law fits also increases. The solid lines in the figure are
the power-law fits for I = 200 that yield B 137, and
we expect that B is even larger than this value, as
discussed earlier.

We have also tested the scaling of the Monte Carlo data
with other values of p, but we were not able to observe
the correct power-law behavior simultaneously with the
data collapsing. Thus, for both the PCS model and the
RBP model, it is not possible to estimate R from the
finite-size scaling plots of susceptibility functions.

different from the lattice value while the various critical
exponents remain unchanged. We found that the size of
system significantly affects the estimates of amplitude ra-
tio for selected cases of both models, particularly in two
dimensions. For any finite system, the estimates of B
were found to be significantly different &om the known
lattice values. However, as the size of system increases, R
was found to converge to the lattice value for both mod-
els, indicating a "strong" universality between lattice and
continuum percolation models. We thus believe that our
work, together with the previous work [15], resolves the
problem arising from the peculiar results of the ampli-
tude ratio previously reported for the susceptibilities of
continuum percolation models.

We also realize that there are other lattice models for
which similar behavior has also been reported. These
include the kinetic gelation model with random initiators
[24] and the AB percolation model [25].

For the kinetic gelation model, Monte Carlo data on
30, 42, and 60 lattice sites indicated that the critical
exponents v and p are slightly larger than those for ordi-
nary lattice percolation, but B was found to be consid-
erably smaller. Based on the estimate of B, the authors
claimed a new universality for this model [24], although
they later referred to their own work as an example sim-
ilar to the RBP model. The amplitude ratio was es-
timated Rom the Monte Carlo data for three different
values of I plotted on the saxne graph and the result was
confirmed by the finite-size scaling analysis. However,
as we discussed before, since the finite-size data collaps-
ing implicitly assumes R being independent of the size of
system, we believe that a more careful analysis is neces-
sary to derive a definite conclusion for this model. At the
same time, we also do not rule out the possibility that
this model belongs to a new universality class. A sig-
nal of such behavior can be seen &om the results for the
backbone. While the fractal dimension of the backbone
of ordinary lattice percolation is about 1.74, that for ki-
netic gelation was found to be about 2.22 [26]. Since the
fractal dimension is related to the critical exponents via
df = d —P/v, this implies that at least one of the crit-
ical exponents is different for the two models. If this is
indeed the case, the critical exponents of kinetic gelation
model may happen to be close enough so that the differ-
ence cannot be determined within errors by a numerical
calculation, while that of the amplitude ratios is larger
and more easily detectable.

For AB percolation, on the other hand, B was calcu-
lated on a triangular lattice of four different lattice sizes,
L = 1000, 2500, 5000, and 10 000 and the average was re-
ported as B = 139+24. Since this value already overlaps
the errors with the lattice value, it is not clear whether or
not B is different from the lattice value, even without the
finite-size effect carefully taken into account. In addition,
since the result B = 145 for L = 10000 in [25] is larger
than the average of four lattice sizes, it is clear that the
estimate of B increases as the size of system increases.
Considering such a trend, we expect B to be larger than
the reported value if the results are extrapolated to the
I ~ oo limit. We therefore cannot rule out a possible
universal behavior of B, in the strong sense, between the
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ordinary lattice and AB percolation models.
We have also discussed the subtleties of finite-size scal-

ing for percolation susceptibilities. Our Monte Carlo
data for the PCS model yielded fairly good data collaps-
ing for the known value of p; however, the estimates of
B from the finite size scaling do not appear to yield the
value in the thermodynamic limit. For the RBP model,
on the other hand, the scaling region appears to be rel-
atively narrow and it was not possible to estimate the
correct value of B from the finite-size scaling plot. How-
ever, the plots indicated a clear size dependence in B for
both cases.
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APPENDIX: AMPLITUDE RATIO
AS A FUNCTION OF L

Prom Eq. (3), the amplitude of susceptibility for a sys-
tem of size I can be written as

C+(L) = x+(p, L)lp —p. l'. (Al)

Substituting Eq. (5) in (Al), one can write the amplitude
C~(L) as a function of a scaled variable x—:L~~"]p —p, ],
with the two extreme limits given as

(A2)

Here C~ is the amplitude above and below p in the
L -+ oo limit. Assuming that C(x) is an analytic function
of x, it is easy to show that

R(I)= =R i1+ —+, +C (x) t' a b

C+ x ( x x2 (A3)

Since the amplitude ratio can be measured for the same
values of ~p

—p, ]
below and above p„ the leading cor-

rection term of R(L) would be of L ~~, thus yielding
Eq. (4).

[1] D. StaufFer and A. Aharony, Introduction to Percolation,
Theory (Taylor and Prancis, London 1992).

[2] J. W. Essam, Rep. Prog. Phys. 43, 833 (1980).
[3] S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).
[4] E. T. Gawlinski and H. E. Stanley, J. Phys. A 14, L291

(1981).
[5) B. Lorenz, I. Orgzall, and H.-O. Heuer, J. Phys. A 26,

4711 (1993).
[6] A. Geiger and H. E. Stanley, Phys. Rev. Lett. 49, 1895

(1982).
[7] W. J. Frith and R. Buscall, J. Chem. Phys. 95, 5983

(1991).
[8] J. Kertesz and T. Vicsek, Z. Phys. B 45, 345 (1982).
[9] T. Vicsek and J. Kertesz, J. Phys. A 14, L31 (1980).

[10] S. B.Lee and S. Torquato, Phys. Rev. A 41, 5338 (1990).
[11] For lattice percolation models, R was proven to be

universal by 6eld theoretical calculations; see, e.g. , A.
Aharony, Phys. Rev. B 22, 400 (1980).

[12] D. Y. Kim, D. P. Landau, and H. J. Herrmann, Phys.
Rev. B 35, 3661 (1987).

[13 I. Balberg, Phys. Rev. B 37, 2391 (1988).
[14 S. Torquato, J. Chem. Phys. 81, 5079 (1984); 83, 4776

(1985); 84, 6345 (1986).
[15] S. B. Lee, Phys. Rev. B 42, 4877 (1990).
[16] N. Metropolis, A. W. Rosenbluth, M. N. Rodenbluth, A.

H. Teller, and E. Teller, J. Chem. Phys. 21 1087 (1953);
see also W. W. Woods, in Physics of Simple Liquids,
edited by H. N. V. Temperly (North-Holland, Amster-
dam, 1968).

[17] J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438
(1976).

[18] H. Nakanishi and H. E. Stanley, Phys. Rev. B 22, 2466
(1980).

[19] B. Nienhuis, Phys. Rev. Lett. 49, 1062 (1982).
[20] J. Hoshen, D. StaufFer, G. H. Bishop, R. J. Harrison, and

G. D. Quinn, J. Phys. A 12, 1285 (1979).
[21] P. J. Reynolds, H. E. Stanley, and W. Klein, Phys. Rev.

B 21, 1223 (1980).
[22] W. F. Wolff and D. StaufFer, Z. Phys. B 29, 67 (1978).
[23] Prom the plot of inset in Fig. 3, we obtained p, 0.753.

For Monte Carlo renormalization calculations, see, e.g. ,

Ref. [10].
[24] H. J. Herrmann, D. P. Landau, and D. StaufFer, Phys.

Rev. Lett. 49, 412 (1982).
[25] H. Nakanishi, J. Phys. A 20, 6075 (1987).
[26] A. Chhabra, D. P. Landau, and H. J. Herrmann, in Frac

tais in Physics, edited by L. Pietronero and E. Tossati
(North-Holland, Amsterdam 1986); also see D. StaufFer,
A. Coniglio, and A. Adams, Adv. Polym. Sci. 44, 103
(1982).


