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Hypersensitivity to perturbation is a criterion for chaos based on the question of how much

information about a perturbing environment is needed to keep the entropy of a Hamiltonian system
from increasing. We demonstrate numerically that hypersensitivity to perturbation is present in the
following quantum maps: the quantum kicked top, the quantum baker's map, the quantum lazy
baker's map, and the quantum sawtooth and cat maps.

PACS number(s): 05.45.+b, 03.65.—w, 89.70.+c

I. INTRODUCTION

Present research on quantum chaos focuses mainly on
what Berry [1] has called quantum chaology, namely, "the
study of semiclassical, but nonclassical, behavior charac-
teristic of systems whose classical motion exhibits chaos. "
We pursue a diferent approach, which seeks to identify
intrinsically chaotic features within quantum dynamics.
A straightforward application of this approach, which at-
tempts to generalize the classical notion of sensitivity
to initial conditions, fails immediately, for two reasons:
Grst, there is no quantum analog of the classical phase-
space trajectories in terms of which sensitivity to initial
conditions is de6ned and, second, the unitarity of lin-
ear Schrodinger evolution precludes sensitivity to initial
conditions in the quantum dynamics of state vectors. A
classical Hamiltonian system has, however, in addition
to its description in terms of trajectories governed by
the Hamilton equations of motion, an equivalent descrip-
tion in terms of Lipuville probability densities governed
by the Liouville equation. Because it conserves phase-
space volumes, the linear Liouville equation shares with
the Schrodinger equation a lack of sensitivity to initial
conditions. Again, in Berry's words [2], "the fact that
this equation is linear and yet preserves the chaos of the
trajectories disposes of the argument that the linearity of
the Schrodinger equation is responsible for the absence of
chaos in quantum mechanics. " We have recently estab-
lished a criterion for classical chaos in terms of Liouville
probability densities [3—5], which we call hypersensitivity
to perturbation and which has a straightforward quantum
analog [3,6,7].

Hypersensitivity to perturbation for @ quantum system
is defined in purely quantum terms, not in the semiclas-
sical domain. Though quantum systems show no sen-
sitivity to initial conditions, due to unitarity, they do
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show what one might call sensitivity to parameters in
the Hamiltonian, as has been demonstrated for the quan-
tum kicked top by Peres [8,9]. Our approach to quantum
chaos could be viewed as a generalization of Peres's work:
whereas Peres compares the time evolution of the same
initial Hilbert-space vector for two slightly diferent pa-
rameter values in the kicked-top Hamiltonian, we study
the distribution of Hilbert-space vectors arising from the
many possible ways in which the Hamiltonian time evo-
lution can be perturbed through interaction with an en-
vironment. Our approach, however, is embedded in a
broader information-theoretic framework [3,5,7] that is
quite different from the viewpoint expressed in [9].

There are many reasons for studying quantum chaos
in an information-theoretic framework. In a very gen-
eral way, it is desirable to find a quantum version of the
very successful information-theoretic approach to classi-
cal chaos pioneered by Kolmogorov and Sinai [10]. More
specifically, formulating the question of quantum chaos in
terms of information and entropy reveals the relevance of
quantum chaos to the foundations of statistical mechan-
ics [7,9]. The distribution of vectors in Hilbert space
arising Rom perturbed quantum evolution could be of
considerable importance for the emerging field of quan-
tum information theory [11].Finally, since our approach
is in terms of open quantum systems, it may prove rele-
vant to the theory of quantum trajectories [12]; indeed,
our approach has been used recently to define the notion
of an optimal quantum trajectory [13].

In this paper we present numerical evidence that hy-
persensitivity to perturbation is present in a variety of
quantum maps. We make no attempt to develop a gen-
eral theory of quantum hypersensitivity to perturbation;
rather, our attitude in this paper is exploratory: by in-
vestigating numerically the perturbed dynamics of sev-
eral quantum systems, we seek to determine whether
hypersensitivity to perturbation provides a criterion for
distinguishing regular from chaotic dynamics in quan-
tum systems. The paper is organized as follows. Sec-
tion II defines hypersensitivity to perturbation and re-
views the main results for classical Hamiltonian systems.
Section III introduces the model of the quantum kicked
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top interacting with a perturbing environment. Sec-
tion IVA explains how hypersensitivity to perturbation
can be related to the distribution of vectors in Hilbert
space; Sec. IV 8 contains numerical results for the quan-
tum kicked top. In Sec. V we present numerical evidence
for hypersensitivity to perturbation in a variety of quan-
tum maps on the unit square. Section VI concludes with
a brief discussion.

II. HY'PERSENSITIVITY TO PERTURBATION

+Imin
&Hs —&Hanoi

(2.1)

The information LI;„purchases a reduction LHg-
LH& ~ in system entropy, which is equivalent to an in-
crease in the useful work that can be extracted from the
system; hypersensitivity to perturbation means that the
Landauer erasure cost of the information is much larger
than the increase in available work.

Hypersensitivity to perturbation means that the in-
equality (2.1) holds for almost all values of AHq i. The
inequality (2.1) tends always to hold, however, for suf-

Hypersensitivity to perturbation, in either classical or
quantum mechanics, is defined in terms of information
and entropy. The entropy H of an isolated physical sys-
tem (Gibbs entropy for a classical system, von Neumann
entropy for a quantum system) does not change under
Hamiltonian time evolution. If the time evolution of the
system 8 is perturbed through interaction with an incom-
pletely known environment E', however, averaging over
the perturbation typically leads to an entropy increase
LHg. The increase of the system entropy can be limited
to an amount LHq ~, the tolerable entropy increase, by
obtaining, &om the environment, information about the
perturbation. We denote by LI;„the minimum infor-
mation about the environment needed, on the average, to
keep the system entropy below the tolerable level LH& ~.

A formal definition of the quantities LHp, LH& ~, and
LI;„is given below.

Entropy and information acquire physical content in
the presence of a heat reservoir at temperature T. If all
energy in the form of heat is ultimately exchanged with
the heat reservoir, then each bit of entropy, i.e., each bit
of missing information about the system state, reduces
by the amount k~T ln 2 the energy that can be extracted
&om the system in the form of useful work. The connec-
tion between acquired information and work is provided
by Landauer's principle [14,15], according to which not
only each bit of missing information, but also each bit of
acquired information, has a kee-energy cost of k~T ln2.
This cost, the Landauer erasure cost, is paid when the ac-
quired information is erased. Acquired information can
be quantified by algorithmic information [16—20].

We are now in a position to define hypersensitivity to
perturbation. We say that a system is hypersensitive to
perturbation if the information LI;„required to reduce
the system entropy &om AHg to LH&~~ is large compared
to the entropy reduction AHg —LHq ~, i.e.,

ficiently small values of LHq ~. The reason is that for
these small values of LHq ~, one is gathering enough in-
formation from the perturbing environment to track a
particular system state whose entropy is nearly equal to
the initial system entropy. In other words, one is essen-
tially tracking a particular realization of the perturbation
among all possible realizations. Thus, for small values
of LHq ~, the information LI;„becomes a property of
the perturbation; it is the information needed to specify
a particular realization of the perturbation. The impor-
tant regime for assessing hypersensitivity to perturbation
is where AHq ~ is fairly close to LHp, and it is in this
regime that one can hope that LI;„reveals something
about the system dynamics, rather than properties of the
perturbation.

In [5) we have shown that a large class of classi-
cally chaotic systems shows exponential hypersensitivity
to perturbation, which is characterized by an exponen-
tial growth with time of the ratio (2.1) between informa-
tion and entropy reduction, for a broad range of values
of LHq ~ below LHg. The exponential rate of growth
is determined by the Kolmogorov-Sinai entropy of the
classical dynamics. In preliminary work [6,7] we have
applied the notion of hypersensitivity to perturbation to
quantum systems and, through numerical simulations,
have shown that hypersensitivity to perturbation seems
to distinguish regular from chaotic quantum dynamics.
The present paper contains a more detailed treatment
of hypersensitivity to perturbation, including numerical
evidence for a range of prototypic quantum systems.

To define the quantities LH~, LHq ~, and AI;„rigor-
ously in the quantum case, consider a quantum system 8
coupled to an environment E'. We assume that the total
system 8 8 is initially in a product state

6o& i(t = 0) = l@o)(gol P & (2.2)

combining a pure system state l@o) with a mixed envi-
ronment state pp. The initial von Neumann entropy H
of the system is zero. After evolving for a time t under
the action of the total Hamiltonian H« ~, the total sys-
tem is d.escribed by a density operator pq ~ i(t), which is
generally not a product state. The state pp of the sys-
tem 8 alone at time t is then obtained by tracing over
the environment,

ps = trs[S ~.~.i(t)] . (2.3)

The increase in system entropy due to tracing over the
environment is given by

LHg ———try pg log2 pg (2.4)

Now suppose a measurement is performed on the envi-
ronment 8'. The most general measurement is described
by a positive-operator-valued measure (POVM) [9,21].
We assume for convenience that the measurement is de-
scribed by a POVM that has a discrete set of possible
outcomes r with probabilities p„. For each measurement
outcome r, we denote by p„ the system state conditional
on the measurement outcome r; the conditional system
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states obey the relation (for a justification, see the Ap-
pendix)

A A.p~p~ = ps . (2.5)

We further define the system entropy conditional on mea-
surement outcome r,

sudden kicks or twists at times nT with twist parameter
k (second term in the Hamiltonian). The angle of &ee
precession between kicks is given by p. In this paper we
use p = vr/2.

We look at the time evolution of an initial Hilbert-
space vector ~@o) at discrete times nT. After n time
steps, the evolved vector is given by

LH„= —trg p„ log2 p„ (2.6)
I@ ) = &t".,I@e)

where Tt ~ is the unitary Floquet operator

(3 2)

the average conditional entropy

~H=) p„sH„,

and the average information

(2 7)

T" —i(k/2 J)J2 —im J, /2
toP =&

The model has a conserved parity, which for half-integer
J takes the form

s = —z~ i~J (3.4)
AI = —) p„ log2 p„. (2.8)

LI;„= inf LI,
AH&AHtoi

(2.9)

where the infimum is taken over all environment measure-
ments for which the average conditional entropy increase
LH does not exceed LHq ~. In other words, LI;„is the
information about the environment it takes to reduce the
entropy increase of the system from AHs (the increase
due to averaging over the perturbation) down to AHq i,
i.e., LI;„is the minimum information about the envi-
ronment needed to purchase a reduction LHg —AHt I
in system entropy.

III. QUANTUM KICKED TOP

A. Kicked-top Hamiltonian

The quantum model of the kicked top [22,23] describes
P

a spin- J particle, i.e. , an angular momentum vector LJ =
h(J,J„,J,), where [J;,J~] = ie,~I, JI„whose dynamics in
(2J + 1)-dimensional Hilbert space is governed by the
Hamiltonian

Actually LI is a lower bound to the average algorithmic
information needed to specify the measurement outcome
r. One of us has shown [20], however, that the minimum
average algorithmic information can be bounded above
by LI + 1, so that LI is an excellent approximation to
the minimum average algorithmic information.

The minimum amount of information about the per-
turbing environment to keep the system entropy from
increasing by more than the tolerable amount AHt ~ can
now be defined as

and which permits factorization of the matrix represen-
tation of the operator T$ p into two blocks. Starting &om
a state with definite parity, the whole dynamical evolu-
tion occurs in the invariant Hilbert subspace with the
given parity. For half-integer J, the dimension of the
even-parity subspace (eigenspace of S with eigenvalue 1)
is J + 2. In this paper, we work with J = 511.5 in the
512-dimensional even-parity subspace or with J = 63.5
in the 64-dimensional even-parity subspace. We consider
only the projection of the initial vector in the even-parity
subspace. Numerical evidence and symmetry considera-
tions [8] suggest that no additional insight is gained by
including the odd-parity subspace. In any case, the re-
stricted model can be regarded as a quantum map in its
own right, which can be investigated independently of
the behavior of the complete kicked-top model.

B. Choice of initial vector

X'= —Y,
Y' = XcoskY+ ZsinkY,
Z' = Z cos kY —X sin kY,

(3.5)

Depending on the initial condition, the classical map
corresponding to the Floquet operator (3.3) displays reg-
ular as well as chaotic behavior [23]. Following [8], we
choose initial Hilbert-space vectors for the quantum evo-
lution that correspond to classical initial conditions lo-
cated in regular and chaotic regions of the classical dy-
namics, respectively.

The classical map corresponding to the quantum
map (3.3) is obtained by introducing the unit vector
(X,Y, Z) = J/J and performing the limit J ~ oo. One
obtains [23]

Ht (t) = (hp/T) J, + (hk/2J) J ) b(t —nT) . (3.1)

The &ee precession of the spin around the z axis (first
terxn in the Hamiltonian) is interrupted periodically by

which is an area-preserving map of the unit sphere, i.e.,
an area-preserving map on the configuration space of a
classical spin with fixed magnitude. Depending on the
value of the twist parameter k, this map has regions of
chaotic behavior interspersed with regular regions asso-
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ciated with elliptic cyclic points. In this paper, we are
interested in two cyclic points of the map for k = 3. One
is an elliptic fixed point of period 1, located at [24]

Z = cos 0 = 0.455 719, &p = 3vr/4, (3.6)

Z = cos 0 = 0.615 950, y = ~/4, (3 7)

in the middle of a chaotic region
We want to choose initial vectors for the quantum evo-

lution that correspond as closely as possible to the clas-
sical directions (3.6) and (3.7). For this purpose, we use
coherent states I0, p) [25—27], defined by the relation

n . JI0, (p) = JI0, p),
where n is the unit vector pointing in the direction given
by 0 and y. All coherent states can be generated by
an appropriate rotation of the state

I
J, M = J) = I0 =

0, p = 0), where
I
J, M) (M = —J, . . . , J) is the simulta-

neous eigenstate of J and J, with eigenvalues J(J + 1)
and M, respectively.

The distance between two normalized vectors I/i& and
I/2) is defined as the Hilbert-space angle

) 2 = cos 1 2 (3.9)

between the two vectors [28]. Consider two coherent
states I0, p) and I0', p'&. In terms of the angle n between
the directions (0, y) and (0', &p'), the distance between
the two coherent states is given by [29]

cos[s(10 ~& I0' v'))] = l(0 vl0' v')I
= [cos(n/2)]
= exp( —Jn2/4), (3.10)

where the approximation is valid for large J. Two coher-
ent states can therefore be regarded as roughly orthog-
onal if n ) 2J i~ [8]. The size of the coherent state
[0, Ip& is conveniently defined in terms of the Q function

where we use spherical coordinates 0 = cos Z and p =
tan i(V/X). For A: = 3 the elliptic fixed point (3.6) is
surrounded by an oval-shaped regular region of regular
dynamics, extending about 0.3 rad in the y direction and
about 0.5 rad in the 0 direction. The other cyclic point
of interest to us is a hyperbolic Axed point of period 4,
which has a positive Lyapunov exponent. It is located at
[24]

C. Interaction with an environment

Suppose now that the kicked top interacts with an envi-
ronment consisting of a collection of degenerate two-state
systems. For the interaction Hamiltonian we assume the
form

H;„, = hgJ, ) (crs)„6(t —nT —e) . (3.12)

Here (os) is a Pauli operator for the nth two-state sys-
tem, g is the interaction strength, and e is an infinites-
imal time interval. The kicked top thus interacts with
a single environment system at a time, interacting with
the nth two-state system just after the nth twist, i.e. ,
just after the nth unperturbed time step. The nth per-
turbed time step includes the nth unperturbed time step
and the immediately subsequent coupling to the nth two-
state system. The total Hamiltonian for the system and
environment is

a... I ——II,.p+ a;„, , (3.13)

where Hi p is given by Eq. (3.1) with p = vr/2.
As explained in Sec. II, we take the initial state of the

total system to be of the form Igo)(/el ps, where here
the initial state Ige& of the system is a coherent state
centered at one of the fixed points (3.6) and (3.7) and
the initial state of the environment, for the n two-state
systems that are relevant for the first n time steps, is

l1, ... ,ln6 (—&,+i}
2-"I&.) lt-)(t-I (&. I (3 14)

Each of the environment two-state systems is with equal
probability in the "lower" state

I

—1), where osl —1)
—

I

—1), or in the "upper" state I+1), where crsl+1)
I+1).

Now suppose the kicked top and the environment
evolve together for n time steps. We want to make a
measurement on the environment in order to reduce the
entropy increase of the system. The form of the interac-
tion Hamiltonian (3.12) suggests that the natural basis
for a measurement of the environment state is the simul-
taneous eigenbasis of the operators (os) . If the envi-
ronment is measured in this basis and is found to be in
the state Ili) . Il ) (I E (—1,+1), m = 1, . . . , n), then
the system state after n perturbed steps is given by

) = Trop(& ) . Ttop(tl) Iyo& (3 15)
where

Qs, ~(0' ~') —= l(0' ~'I0 ~) I' = [co (n/2)l" —= Q(n)

(3.11)

Since Q(2J ~ ) e Q(0), the Q function of the co-
herent state I0, p) is very small outside a region of radius
2J i~2 centered at the direction (0, y). For the value
J = 511.5 used in this paper to study regular behavior,
one Ands a radius of 2J / 0.09 rad, less than the size
of the regular region around the elliptic fixed point (3.6).

() ) &glm ~z &(Al/2&) J ~ Jz /2 —~gl
topy ~g = & top

(3.16)

is the unperturbed Floquet operator (3.3) followed by an
additional rotation about the z axis by angle g/ . Notice
that Ti p(l ) commutes with parity (3.4) and hence does
not couple odd- and even-parity subspaces.

The e8'ect of the coupling to the environment, together
with the measurement, is to produce a binary stochastic
perturbation at the end of each time step. The top ro-
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tates by +g if the two-state system is found in the upper
state and by —g if it is found in the lower state, the
two possibilities occurring with equal probability. After
n steps, there are 2 difFerent equally probable measure-
ment results, each leading to a pure system state. Since
there is no simple commutation relation between the op-
erators Tq ~(—1) and Ti ~(+1), these 2" system states
are all difFerent. Any measurement that fails to distin-
guish completely between difFerent environment states
~li) ~l ) leads therefore to a mixed system state. To
keep the system state pure, one has to specify which of
the 2 equally probable alternatives is realized. The min-
imal information about the environment needed to keep
the system entropy at the level LHt ~

——0 is therefore
LI;„=n bits. This means that the information about
the environment needed to keep track of the exact sys-
tem state is unbounded as the number of steps increases,
an efFect that is independent of the exact nature of the
system dynamics.

The value of AI;„ for AHq ~
——0, therefore, is not

a useful measure of the difhculty in keeping the system
entropy small. We must determine how fast AI;„de-
creases if LHt ~ is increased. Unfortunately, it is diKcult
to find an optimal measurement leading to minimal in-
formation for an arbitrary value of LHt ~. It is possible,
however, to find a nearly optimal measurement based
on the following idea. The interaction with the environ-
ment (3.12) is of a special form that can be described in
terms of a randomly perturbed. unitary evolution opera-
tor. Each of the 2 possible measurement results corre-
sponds to one of 2 difFerent perturbation histories ob-
tained by applying every possible sequence of perturbed
unitary evolution operators T& ~(—1) and Ti ~(+1) for n
steps. Consider the list 8 of 2 vectors generated by all
perturbation histories. In the next section, we show how
a nearly optimal measurement can be found in the class
of measurements whose outcomes partition the list l. into
groups of vectors.

IV. DISTRIBUTION OF VECTORS
IN HILBERT SPACE

From this section on, we always assume that the in-
teraction with the environment can be described by a
stochastic unitary time evolution. In the first part of
this section, we explore the relation between hypersensi-
tivity to perturbation and the distribution of the vectors
in Hilbert space resulting from difFerent realizations of
the stochastic evolution. In the second part, we use this
relation to investigate hypersensitivity to perturbation in
the quantum kicked top.

A. General theory

Given the assumption of a stochastic unitary time evo-
lution, the interaction with the environment at a given
time can be described by a list 8 = (~gi), . . . , ~giv))
of N vectors in D-dimensional Hilbert space, together
with probabilities qq, . . . , q~, each vector in the list cor-

responding to a particular realization of the perturbation,
which we call a perturbation history. Averaging over the
perturbing environment leads to a system density oper-
ator

(4.1)

with entropy AHg as given by Eq. (2.4). Consider the
class of measurements on the environment whose out-
comes partition the list 8 into R groups, labeled by
r = 1, . . . , B. We denote by N„ the number of vec-
tors in the rth group (P„ i K = K). The K vectorsR

in the rth group and their probabilities are denoted by
~gi), . . . , ~g~ ) and qi, . . . , qiv, respectively. The mea-
surement outcome r, occurring with probability

(4.2)

indicates that the system state is in the rth group. The
system state conditional on the measurement outcome r
is described by the density operator

(4.3)

Using Eqs. (4.2) and (4.3), we define the conditional sys-
tem entropy LH„, the average conditional entropy LH,
and the average information AI as in Eqs. (2.6)—(2.8).

We now describe nearly optimal measurements, i.e. ,
nearly optimal groupings, in the sense of the discussion
in Sec. II. Given a tolerable entropy LH& ~, we want to
partition the list of vectors 8 into groups so as to mini-
mize the information AI without violating the condition
LH & AHt ~. To minimize LI, it is favorable to make
the groups as large as possible. Furthermore, to reduce
the contribution to LH of a group containing a given
number of vectors, it is favorable to choose vectors that
are as close together as possible in Hilbert space. Here
the distance between two vectors ~@i) and ~@2) can be
quantified in terms of the Hilbert-space angle (3.9). Con-
sequently, to find a nearly optimal grouping, we choose
an arbitrary resolution angle P (0 ( P & ir/2) and group
together vectors that are less than an angle P apart. More
precisely, groups are formed in the following way. Start-
ing with the first vector ~gi) in the list 2, the first group
is formed of ~@i) and all vectors in 2 that are within an
angle P of ~@i). The same procedure is repeated with
the remaining vectors to form the second group, then
the third group, continuing until no ungrouped vectors
are left. This grouping of vectors corresponds to a partial
averaging over the perturbations. To describe a vector at
resolution level P amounts to averaging over those details
of the perturbation that do not change the fznal vector
by more than an angle P.

For each resolution angle P, the grouping procedure
described above defines an average conditional entropy
AH = AH(P) and an average information AI = AI($).
If we choose, for a given P, the tolerable entropy AHt, i =



3262 RUDIGER SCHACK AND CARLTON M. CAVES 53

AH(P), then to a good approximation the information
DI;„ is given by AI;„AI(P). By determining the
entropy b,H(P) and the information AI(P) as functions
of the resolution angle P, there emerges a rather de-
tailed picture of how the vectors are distributed in Hilbert
space. If AI(P) is plotted as a function of AH(P) by elim-
inating the angle P, one obtains a good approximation to
the functional relationship between LI;„and LHq ~.

It is easy to see that information and entropy obey the
inequalities

AI(0) & AI(p) & AI(7r/2) = 0, (4 4)

0 = AH(0) & dH(y) & b,H(~/2) . (4.5)

The first of the information inequalities in Eq. (4.4) fol-
lows from the fact that any group at resolution P is the
union of groups at resolution P = 0; in words, the average
information needed to specify a group at resolution P = 0
is equal to the average information needed to specify a
group at resolution P p/us the average information needed
to specify P = 0 groups within the groups at resolution

The latter of the entropy inequalities in Eq. (4.5) is
a consequence of the concavity of the von Neumann en-
tropy [30,31]. A general theorem about average density
operators [30,31] shows that, for all P,

»(&)+ &H(&)»H( /2) (4.6)

Here VD(P) = (sing) ! lV~ is the volume contained
within a sphere of radius P in D-dimensional Hilbert
space, and VD = vr i/(D —1)! is the total volume
of Hilbert space. The maximum of g(P) is located at
P = cos [1//2(D —1) ]; for large-dimensional Hilbert
spaces, g(P) is very strongly peaked near the maximum,
which is located at P vr/2 —1/+2D, very near vr/2.

As yet a further characterization of the way the vec-
tors are distributed in Hilbert space, we want to define a
quantity that indicates how many dimensions of Hilbert
space are explored by the vectors in the list Z. A pos-
sible measure of the number of explored dimensions is
the exponential of the entropy, 2 ~ . This quantity is
bounded above by D, the dimension of Hilbert space,
and gets smaller if the dimensions are occupied with dif-
ferent weights. For example, if two eigenvalues of pg
are close to 1/2 and all the others are close to zero, then
2 ~ 2, indicating that the vectors are essentially con-

In general, AI(P) is a decreasing function of P, whereas
AH(P) is increasing. This monotonicity can sometimes
be violated, however, because of discontinuous changes
in the grouping of vectors.

As a further characterization of our list of vectors, we
calculate the distribution g(P) of Hilbert-space angles
P = s(~@), ~@')) = cos '([(@~@')])between all pairs of
vectors ~g) and ~g'). For vectors distributed randomly in
D-dimensional Hilbert space, the distribution function
g(P) is given by [7]

fined to a two-dimensional subspace. Unfortunately, if all
the vectors in l. are confi.ned to a small sphere with ra-
dius P « 7r/2, AH~ is necessarily small just because all
the vectors in the group lie along roughly the same direc-
tion in Hilbert space; this is true even if the orthogonal
components of the vectors are evenly distributed over all
the orthogonal directions in Hilbert space. For example,
the density operator describing a uniform distribution of
vectors within a sphere of radius P « vr/2 has one dom-
inating eigenvalue close to 1 and D —1 eigenvalues that
are all equal and close to zero [7]. Clearly, in this case
2 ~ is not an adequate measure of the number of di-
mensions explored. On the other hand, if one disregarded
the largest eigenvalue in this example, then the exponen-
tial of the entropy would become a useful measure of the
number of explored dimensions. We therefore introduce
the spread LH2 as the entropy calculated with the largest
eigenvalue of pg omitted. The spread is defi. ned as

AH2 ———) log2
~

Ak ( AA,

- 1 —Ai (1 —Ai)
(4 8)

B. Results for quantum kicked top

For our numerical study of the kicked top, we use a
twist parameter k = 3 and either spin J = 511.5 or spin
J = 63.5. The calculations are done in the corresponding
512-dimensional or 64-dimensional even-parity subspace;
the even-parity subspace is the eigenspace of the par-
ity (3.4) with eigenvalue +1. Throughout this section,
we consider only two initial states. The first one, the
coherent state ~8, p) with 8 and p given by Eq. (3.6), is
centered in a regular region of the classical dynamics; we
refer to it as the regular initial state. The second one,
referred to as the chaotic initial state, is the coherent
state ~8, p) with 8 and p given by Eq. (3.7); the chaotic

where A~ & A2 & & AD are the eigenvalues of the
density operator p~. By giving di8'erent weight to di-
mensions corresponding to difFerent eigenvalues of pg,
the quantity [2 '] turns out to be a good indicator
of the number of Hilbert-space dimensions explored by
the vectors in the list 2, independent of the size of the
region occupied by the vectors ()x] denotes the smallest
integer greater than or equal to 2:). In our analysis of the
numerical results, we identify the number of dimensions
explored by the entire set of N vectors with the integer

~2b.R'
~

To investigate if a quantum map shows hypersensi-
tivity to perturbation, we use the following numerical
method. We first compute a list of vectors corresponding
to diferent perturbation histories. Then, for about 50
values of the angle P ranging from 0 to n/2, we group
the vectors in the nearly optimal way described above.
Finally, for each grouping and thus for each chosen angle
P, we compute the information AIg&) and the entropy
AH(P). In addition, we compute the angles between all
pairs of vectors in the list and plot them as a histogram
approximating the distribution function g(P).
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initial state is centered in a chaotic region of the classical
dynamics.

Figure 1 shows results for spin J = 511.5 and a to-
tal number of 2 = 4096 vectors after n = 12 per-
turbed steps. The interaction strength is g = 0.003, cor-
responding to perturbing rotations by an angle +0.003
rad about the z axis (the perturbation strength in units
of the coherent-state radius 2J i~2 is gJ ~ /2 = 0.034).
For Fig. 1(a), the chaotic initial state was used. The dis-
tribution of Hilbert-space angles, g (P), is concentrated
at large angles; i.e. , most pairs of vectors are far apart
&om each other. The information LI needed to track a
perturbed vector at resolution level P is 12 bits at small

angles, where each group contains only one vector. At
vr/16 the information suddenly drops to 11 bits,

which is the information needed to specify one pair of
vectors out of 2 pairs, the two vectors in each pair be-
ing generated by perturbation sequences that differ only
at the first step. The sudden drop of the information to
10 bits at P 7r/8 similarly indicates the existence of 2 o

quartets of vectors, generated by perturbation sequences
difFering only in the first two steps. Figure 1(a) suggests
that, apart from the organization into pairs and quartets,
there is not much structure in the distribution of vectors
for a chaotic initial state. The 2 quartets seem to be
rather uniformly distributed in a ng = [2 '

]
= 46-

dimensional Hilbert space, a supposition supported by a
comparison with Fig. 2, where results for 2 = 8 192 ran-
dom vectors in 45-dimensional Hilbert space are shown.

The inset in Fig. 1(a) shows the approximate func-
tional dependence of the information needed about the
perturbation, LI;„, on the tolerable entropy, LH& ~,

based on the data points AI(P) and XII(P). There is
an initial sharp drop of the information, re8ecting the
grouping of the vectors into pairs and quartets. Then
there is a roughly linear decrease of the information over
a wide range of LHt~~ values, followed by a final drop
with increasing slope down to zero at the maximum value
of the tolerable entropy, LHt ~

——LH~. The large slope
of the curve near LHt ~

——LH~ can be regarded as a
signature of hypersensitivity to perturbation. The lin-
ear regime at intermediate values of LHt ~ is due to the
finite size of the sample of vectors: in this regime the
entropy LH„of the rth group is limited by log2 N„, the
logarithm of the number of vectors in the group. Finite-
sample-size effects dominate the behavior of the curve as
long as the number of vectors in a typical group is smaller
than the effective dimension of Hilbert space. One there-
fore expects reduced finite-size effects for larger samples
and smaller Hilbert-space dimensions.

To investigate this prediction, we plot in Fig. 3 results
for J = 63.5 and 2 = 16384 vectors after 14 perturbed
steps, using an interaction strength g = 0.03 (gJi~2/2 =
0.12). As expected, the inset shows that the large-slope
behavior of the LI;„vs LHt ~ curve extends to higher

FIG. 1. Results characterizing the distribution of
Hilbert-space vectors for the perturbed kicked top with
J = 511.5, A: = 3, and g = 0.003 after n = 12 time steps.
The two main diagrams show, as a function of the angle P,
the distribution g(P) of Hilbert-space angles (unnormalized,
in arbitrary units), the average information AI(P) to specify
a vector at the resolution given by P (in bits), and the aver-
age conditional entropy EH(P) (in bits). See the text for a
precise definition of these quantities. In the insets, AI(g) is
plotted versus AH(P) using the same data points as in the
main diagrams. The labeling of the inset axes is motivated
by the fact that AI(P) is a good approximation to AI;„ for
AHt, i = AH(P). (a) Chaotic case, i.e., initial coherent state
~@o) = ~8, rp) centered in the chaotic region with 0 and rp given
by Eq. (3.7). Distribution of all 2 vectors generated after 12
perturbed steps. (b) Regular case, i.e. , initial coherent state
centered at the elliptic fixed point given by Eq. (3.6). All 2
vectors generated after 12 perturbed steps.
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FIG. 2. Same quantities as in Fig. 1 plotted using a list of
2 random vectors in 45-dimensional Hilbert space.
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it was shown in [7] that AI(P) D—log2(sin P) and
AH(P) sin Plog2D sin (P)AHg if AI(P) ( log2I]I.
The information is thus proportional to the dimension of
Hilbert space, D, whereas the tolerable entropy is pro-
portional to log2 D. Eliminating P gives

(log D'] D t AHt ]'i

D
(aHg —aH, ])lnD

)) AH/ —AHt ], (4.9)

i.e. , hypersensitivity to perturbation.

FIG. 3. Same as Fig. 1(a) (chaotic case), but using
J = 63.5, g = 0.03, and all 2 vectors generated after 14
perturbed steps.

V. QUANTUM MAPS ON THE UNIT SQUARE

A. Quantized unit square

values of AI;„ than in the previous case. Otherwise,
Fig. 3 is very similar to Fig. l(a). Apart &om an obvious
organization of the vectors into pairs, there is no apparent
structure in the distribution of vectors. The 2 pairs
of vectors are distributed quasirandomly in a np ——45-
dimensional Hilbert space, as is con6rmed by comparing
Fig. 3 to the case of 2 random vectors in 45 dimensions
shown in Fig. 2.

We limit the discussion of the regular initial state to
spin I = 511.5 since, as pointed out in Sec. III 8, only for
a large dimension of Hilbert space is the regular initial
state well localized inside the regular region around the
elliptic fixed point (3.6). Figure 1(b) shows data for 2
vectors after 12 perturbed steps in the regular case. The
distribution of perturbed vectors starting from the reg-
ular initial state is completely diO'erent from the chaotic
initial condition of Fig. l(a). The angle distribution g(P)
is conspicuously nonrandom: it is concentrated at angles
smaller than roughly vr/4, and there is a regular structure
of peaks and valleys. Accordingly, the information drops
rapidly with the angle P. The number of explored dimen-
sions is nd = 2, which agrees with results of Peres [8] that
show that the quantum evolution in a regular region of
the kicked top is essentially confined to a two-dimensional
subspace. The AI;„vs LHt ) curve in the inset bears
little resemblance to the chaotic case. Summarizing, one
can say that, in the regular case, the vectors do not get
far apart in Hilbert space, explore only few dimensions,
and do not explore them randomly.

To obtain better numerical evidence for hypersensi-
tivity in the chaotic case and for the absence of it in
the regular case would require much larger samples of
vectors, a possibility that is ruled out by restrictions
on computer memory and time. The hypothesis most
strongly supported by our data is the random character
of the distribution of vectors in the chaotic case. To close
this section, we give a crude argument to show that ran-
domness in the distribution of perturbed vectors implies
hypersensitivity to perturbation. Consider N vectors
distributed randomly in a D-dimensional Hilbert space,
where N » D » 1, so that LH~ log2 D. In this case

UV = VUe,

where e = 1. We choose e = e '/ . We further assume
that V = U = g = +1. The case g = 1 corresponds to
periodic boundary conditions (used in Sec. V E), whereas
the case g = —1 corresponds to antiperiodic boundary
conditions (used in Secs. V C and VD). It follows [32,33]
that the operators U and V can be written as

U
2''t g V —2'"LP (5.2)

The position and momentum operators q and p both have
eigenvalues (P + j)/D, where the integer j runs over a
sequence of D integers and

0 iffy=1
if@= —1, (5.3)

ie g=e
This quantization procedure fixes the eigenvalues of q

and p to lie within some unit interval, but leaves us free
to choose the interval. We use the freedom to write the
eigenvalues of q and p as

q~ = =@~, j =Do, . . . , DO+D —1,0+j (5.4)

where the integer Do can be chosen freely. We denote
by ~q~. ) and ~p~. ) the eigenvectors of q and p with these
eigenvalues. In Secs. VC and VD we choose Do ——0,
corresponding to qz, p~ C [0, 1), whereas in Sec. VE we
choose Do —— D/2, corresponding —to q~. , p~ 6 [

—2, 2).
In the following, we represent Hilbert-space operators

In this section, we investigate perturbed quantum
maps on the unit square. Our quantization procedure
closely follows [32] and [33]. To represent the unit square
in D-dimensional Hilbert space, we start with unitary
"displacement" operators U and V, which produce dis-
placements in the "momentum" and "position" direc-
tions, respectively, and which obey the commutation re-
lation [32]
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by matrices in the position basis (lq~)). For consis-
tency of units, let the quantum scale on phase space be
2m h = 1/D. A transformation between the position basis
(lq~)) and the momentum basis (lpz)) is effected by the
operator GD, defined by the matrix elements

(&D)„= (p&lq, ) = v'2~a e-*&"&'~"

1 —2~i (P+k) (P+j ) /D (5.5)

Following [33], we define a family of D states le. , pi, )
(j, k = Dp, . . . , Do + D —1), which we call, in analogy to
the continuous case, coherent states. The fiducial coher-
ent state Iqo, po) (assuming D(—Do ( 0) is defined as
the eigenstate with the smallest eigenvalue of the opera-
tor [33]

U+ U~

2

V+ V~

2
= 2 —cos(2vrq) —cos(27rp) .

(5.6)

The other coherent states are defined by applying the
displacement operators to the fiducial state, i.e. ,

)
—wr,gk/D Uk g j

I

= e* &"~D Z' U" Iq, p, ) . (5.7)

—) Iq, , pi, ) (q, , pi, l

= II. = (unit operator) . (5.8)

Therefore they can be used to define a discrete Q func-
tion, representing an arbitrary state I@) via

=1 2
Q(q&(q~ ») = Dl(q. »I&)I (5 9)

In terms of the Q function, the coherent state le, pi, ) is
represented by roughly circular contours centered at the
point (q~, pA, ) and occupies an area of about 1/D [33].

For our discussion of the diferent quantum maps be-
low, we always assume the initial state lgo) to be a co-
herent state. The state I@„)after n unperturbed steps is
given by

The coherent states can also be characterized as
minimum-uncertainty states [33].

The coherent states are an overcomplete set, satisfying

evolution operator T. The perturbation operator is con-
structed by analogy to our previous work [4] on the clas-
sical baker's map, where the perturbation consisted in
shifting the phase-space pattern by a small amount in
the p direction. The quantum analog of this perturba-
tion would be an operator that shifts the Q function of
a state by a small amount in the p direction. Due to
the discrete nature of our quantum version of the unit
square, however, a Q function can be shifted rigidly only
if it is shifted by a discrete multiple of 1/D.

In order to apply a perturbation that does not shift
the momentum by a discrete multiple of 1/D, one might
consider a perturbation operator P = e '~ e'~-/'" =
e '~ e '~ that ramps up the phase uniformly in
the position basis, i.e. , PI,~

—— bI,~e '~ e
bi,ze '~ . When n is not a multiple of 1/D, however,
this perturbation can couple widely separated momen-
tum eigenstates because of the abrupt phase change be-
tween j = Do + D —1 and j = Do. To avoid this abrupt
phase change, we use instead a perturbation operator II
defined in the position basis by

'
hi,~e2 '~ if Do & j ( Do + D/2

II - = & b e'~'('Do+
k~ =

if Dp + D/2 ( j ( Do + D,
(5.11)

C. Baker's map

The classical baker's transformation maps the unit
square 0 & q, p & 1 onto itself according to

where o. & 0 is the magnitude of the momentum shift
(Da is the magnitude of the momentum shift in units
of the separation between momentum eigenstates) and
where we restrict attention henceforth to Hilbert spaces
with an even dimension D. Roughly speaking, the oper-
ator II shifts the momentum up by o. in the left half of
the unit square and down by o. in the right half of the
unit square.

A perturbed time step consists of first applying the un-
perturbed time-evolution operator T, followed either by
the perturbation operator II or by its inverse II, chosen
randomly. After n perturbed time steps, the number of
di8'erent perturbation sequences —or histories is 2, all
occurring with equal probability.

I&-) = T" I@o) (5.10)

where T = T~ for the baker's map (Sec. V C), T = TI,
for the lazy baker's map (Sec. VD), and T = Tg for the
sawtooth and cat maps (Sec. VE).

B. Perturbation operator

In Sec. III C we presented an example of an interaction
with an environment that can be described as a stochas-
tic perturbation of the unitary time evolution. Here we
assume from the start that at each step a random per-
turbation operator is applied following the unperturbed

f

2q~ 2p if 0 & q &—
(q, J)

{2q —1, 2 (p + 1)) if 2 ( q ( 1.
(5.12)

This corresponds to compressing the unit square in the p
direction and stretching it in the q direction, while pre-
serving the area, then cutting it vertically, and finally
stacking the right part on top of the left part, in analogy
to the way a baker kneads dough.

There is no unique way to quantize a classical map.
Here we adopt the quantized baker's map introduced by
Balazs and Voros [34] and put in more symmetrical form
by Saraceno [33]. We assume antiperiodic boundary con-
ditions (rI = —1, P = —) and Do ——0, which leads,
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plot as an an initial drop of the information. Apart from
this initial drop, however, the AI;„vs AHt ~ curve is
similar to the generic case, ind. icating that the quantum
cat map, like the generic sawtooth map, is hypersensitive
to perturbation.
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the generic sawtooth map, which might also be due to the
additional symmetries, is the grouping into pairs, quar-
tets, and possibly octets, revealed by the sudden drops
in the AI vs P curve in Fig. 7, but which is absent in
Fig. 6(a). As already discussed for the kicked top in
Sec. IVB, this grouping shows up in the LI;„vs LHt ~

Our aim in this paper is to explore, via numerical sim-

ulations, the notion of hypersensitivity to perturbation
in quantum systems, trying to determine whether hy-

persensitivity might provide a criterion, as it does for
classical systems, for distinguishing regular from chaotic
quantum dynamics. What has been learned'? Our sim-

ulations indicate that hypersensitivity is a valuable tool
for investigating chaotic quantum dynamics. Our key
ending is that if a chaotic quantum system is perturbed
stochastically, the difFerent perturbation histories tend to
produce state vectors that are distributed randomly over

a large number of Hilbert-space dimensions, whereas if
a regular quantum system is subjected to a similar per-
turbation, the resulting state vectors explore only a few

Hilbert-space dimensions and do not explore even those
dimensions randomly.

The nearly rand. om distribution of vectors translates
into a characteristic AI;„vs LHt ~ curve, evident in

the insets of Figs. 1(a), 2, 3, 4(b), and 5(a), which seems
to be a property of quantum chaos. This characteris-
tic curve is distinctly difFerent from the AI;„vs LHt ~

curve produced by regular quantum dynamics [Figs. 1(b),
5(b), and 6(b)j. After an initial sharp drop due to per-
turbation histories that dier only at the 6rst few steps,
the LI;„vs AHt ~ curve for chaotic dynamics has a
region of roughly linear decrease that extends over a
broad range of values of LHt j, this linear decrease is

a consequence of the Bnite sample of vectors produced
by the perturbation (always a binary perturbation in our

simulations) and thus cannot be said to be a property
of the chaotic dynamics. The Inost important part of
the LI;„vs LHt, ~ curve is the steep increase in LI
as AHt ~ is decreased just below its maximum value of
AHg. This steep increase means the following: to de-
crease the entropy a small amount below the entropy
that comes from averaging over the stochastic perturba-
tion requires a large amount of information about the
perturbing environment, much larger than the entropy
decrease. This rapid increase in information is what we

call hypersensitivity to perturbation. It seems to be a
feature of chaotic quantum dynamics.

These considerations set the stage for further work: to
understand in detail the steep rise in the LI;„vs LHt ~

curve and how it is cut ofF by a 6nite sample of vectors;
to show that quantum hypersensitivity to perturbation is
indeed a property of chaotic quantum dynamics and not
an artifact of particular perturbations; to study the time
dependence of quantum hypersensitivity and perhaps to
extract Rom the time dependence a quantity such as the
Kolmogorov-Sinai entropy of classical chaotic dynamics;
and, Anally, to develop a general theory of quantum hy-
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persensitivity to perturbation, which would allow one to
relate it to other properties of chaotic quantum dynam-
ics.

operators are environment operators. The probability to
obtain measurement result r becomes
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is an element of a POVM. Completeness of the POVM
guarantees that

) E, = Ils = (environment unit operator).

APPENDIX

+r (ptotal)

Pp

&~;ptatai&„,

The complete positivity of T„means that it can be writ-
ten as the sum involving the operators A„. [21]; since we
are considering a measurement on the environment, these

Equation (2.5) is true for any measurement on the en-
vironment that is described by a set of comp/etely positive
operations T„; an operation is a linear, trace-decreasing
mapping that takes positive operators to positive oper-
ators and hence takes a density operator to an (unnor-
malized) past-measurement density operator [21]. The
joint state of the system and the environment after a
measurement that yields result r is

The system state after a measurement that yields re-
sult r is obtained by tracing out the environment,

«s P; (pt.ta)]
pp

«z(ptot i&.) (A1)

The crucial step here uses the cyclic property of the
trace to move the operators A„, to the right-hand side
of the trace; this step is allowed within an environment
trace because these operators are, by assumption, envi-
ronment operators. The important content of Eq. (Al)
is that even though there are many operations W„ that
are consistent with the POVM E„, the system state after
a measurement on the environment depends only on the
POVM. Equation (2.5) follows from summing over r and
using the completeness of the POVM:
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