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Kinetics of multidimensional fragmentation
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We present two classes of exact solutions to a geometric model which describes the kinetics of fragmenta-

tion of d-dimensional hypercuboid-shaped objects. The first class of exact solutions is described by a frag-

mentation rate a(xi, . ..,xd)=1 and daughter distribution function b(xi, ...,xd~xi, ...,xd)=(ni+2)" (nd+2)
ul u

&
/(ul+ 1) /(ud+ 1)

x, ' xd'/x, '
xd

' . The second class of exact solutions is described by a fragmentation rate

a(x, , . . . ,x„)=x, ' . .x„' /2 and daughter distribution function b(x, , . . . ,x„~x,', . . . ,xd) = 2"8(x,
—xi/2) 8'(xd —xd/2). Each class of exact solutions is analyzed in detail for the presence of scaling solutions

and the occurrence of shattering transitions; the results of these analyses are also presented.

PACS number(s): 02.50.—r, 05.20.Dd

I. INTRODUCTION

Fragmentation occurs in numerous important physical,
chemical, and geological processes. These include droplet
breakup [1]and fiber length reduction [2]; depolymerization
through shear action [3,4], chemical attack [5], and exposure
to nuclear, ultraviolet, and ultrasonic radiation [6,7]; and
rock crushing and grinding (communition) [2]. Theoretical
predictions of the evolution with the time of the probability
distribution functions of the fragmenting objects during such
processes is of great interest and importance. There are es-
sentially two approaches in use for determining the evolution
in time of the object probability distributions as a function of
the initial conditions and the fragmentation rates. The first

approach relies upon statistical and combinatorial arguments

[8—10]. The second approach has been through the analysis
of the kinetic equation modeling the fragmentation process
[»-13].

In the kinetic equation approach the fragmentation pro-
cess can be described by the evolution in time of the prob-
ability distribution function c(x, t), where x is the size of the

fragments and t is the time, through a kinetic equation. This
theoretical approach is of a mean field nature since Auctua-

tions are ignored. Fragments are assumed to be distributed
homogeneously at all times throughout the system, i.e., there
is perfect mixing and the shape of the fragments is ignored.
Consequently, the size of the fragments is the only dynamical
variable that characterizes a fragment in the kinetic equation
approach. A number of authors have expended much effort in

finding exact solutions to the kinetic equation, in order to
study specific practical problems and to provide a greater
understanding of the behavior of physical, chemical, and
geological systems in which fragmentation occurs [5,14—
21]. Although the basic kinetic equations are linear, and in

principle soluble, the number of exact solutions is few,
mainly because of the nonlocal structure of the kinetic equa-
tions.

Of considerable importance are the scaling solutions.
These are essentially the solutions in the long-time (t~~),

small-size (x—+0) limit where the probability distribution
function c(x, t) evolves to a simpler universal form. This
form is universal in the sense that it does not depend on the
initial conditions. Most experimental systems evolve to the
point where this behavior is reached. Scaling theories based
on a linear kinetic equation have been derived for a large
class of models which undergo fragmentation [18,22 —24].

The time evolution of the fragmentation process depends
qualitatively on the behavior of the probability of the
breakup for the fragments. For breakup rates increasing suf-
ficiently quickly with decreasing size (or mass), a cascading
breakup occurs in which a finite part of the total size (or
mass) is transferred to fragments of zero or infinitesimal size
(or mass). This so-called "shattering" [17,25] or "disintegra-
tion" [26] phenomenon is accompanied by a violation of the
usual dynamical scaling as well as violation of size (or mass)
conservation. This shattering regime is also characterized by
the presence of large fluctuations and the absence of self-
averaging.

The general form of the one-dimensional multiple frag-
mentation equation is given by

dc(x, t)
Bt

ca

= —a(x)c(x, t)+ dx'a(x')b(x x')c(x', t),
Jx

)xx= dx'x'b(x'ix)
Jo

(2)

holds. The average number of objects produced when an

object of size x fragments is given by

where a(x) is the rate of fragmentation of objects of size x,
the daughter distribution function b(x~x ) is the average
number of objects of size x produced when an object of size
x' breaks up, and c(x, t) is the probability distribution func-
tion of objects of size x at time t To ensure that the size (o. r
mass) of the fragmenting objects is conserved per fragmen-
tation event, we insist that
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(N(x)) = dx'b(x'lx).
Jo

(3)
eral d. Each class of exact solutions is analyzed in detail for
the presence of scaling solutions, and the occurrence of shat-
tering transitions.

On physical grounds we must have (N(x) ))2, which, to-
gether with (2) and (3), places constraints on the possible
choices for b(x x') available to us.

In the special case of binary fragmentation where two
objects are produced per fragmentation event, (1)—(3) can be
rewritten in terms of the single symmetric function
F(x,x') =F(x',x) as follows. First, write

Px
a(x) = dx'F(x —x',x').

Jo

Then to ensure that there are precisely two objects produced
per fragmentation event, choose

2F(x,x' —x)
b (X I

X )—

in which case (1) becomes

Bc(x,t) = —c(x, t) dx'F(x x',x')—
Bt )p

P oo

+2 dx'F(x, x' —x)c(x', t),

where F(x,x') describes the rate at which objects of size
(x+x') fragments into objects of size x and x'. As men-
tioned above, the kinetics of such one-dimensional fragmen-
tation processes is now well understood with numerous ex-
plicit exact solutions, scaling solutions, and quantitative
descriptions of shattering transitions known to us.

In realistic fragmentation processes objects have both size
and shape, and it is clear that the geometry of these frag-
menting objects will inhuence the fragmentation process. For
example, an object may be selected for fragmentation at a
rate which is dependent on its area or volume, but the man-
ner in which the fragmentation of the object is implemented
will, in general, depend on its precise dimensions. If two
objects have the same area but one is needle shaped and the
other is square shaped, they may be equally likely to frag-
ment as a consequence of their possessing the same area, but
the needle-shaped object is much more likely to fragment
across its longer side, whereas the square-shaped object is
equally likely to fragment across either side. Until recently,
all these properties were represented by a single parameter,
namely the size (or mass) of the fragmenting object.

Recently, various authors [27—29] introduced and investi-
gated simple kinetic models describing the fragmentation of
two-dimensional, and more generally d-dimensional objects.
These authors present several simple classes of explicit exact
solutions for two-dimensional models. Krapivsky and Ben-
Naim l 28] also discuss the presence of scaling and multiscal-
ing in their models of fragmentation for d-dimensional ob-
jects. In Ref. [29], the shattering transition in a two-variable
fragmentation model is investigated.

In this paper we present two classes of exact solutions to
a geometric model which describes the kinetics of fragmen-
tation of d-dimensional hypercuboid-shaped objects, for gen-

II. FRAGMENTATION IN d DIMENSIONS

The general form of the d-dimensional multiple fragmen-
tation equation is given by [27]

Bc(x, , . . . ,xd, t) = —a(X1, . . . ,xd) c(x, , . . . ,xd, t)

I' co t' »x»

+ dx1.
i

dxda(x1, . . . ,xd)
J x1 Jxd

+b(xl » .»Xdlx1». . .»xd)c(X1» . »Xdt)

(7)

fxi
tdx 1(N(x, , . . . ,xd)) =

Jo
1

Xd

dxdb(xl » xdlx1»xd)»
Jo

(8)

and hypervolume conservation per fragmentation event re-
quires

pxd
dx„x, x„b(xl, ' ' xdlx»1»»xd)

I xl
& j &d — d&]

3o jo

Equations (7)—(9) form a complete set of equations, which
define the fragmentation process given a(x, , . . . ,x„),
b(x, , . . . ,x„lx,', . . . ,x„'), and suitable initial conditions. Of
course, the functions a(x, , . . . ,x„) and

b(x, , . . . ,x„lx,', . . . ,x„') must be chosen to make the equa-
tions physically meaningful, and furthermore
b(x, , . . . ,xdlx,', . . . ,x „') must be chosen to ensure that (8) and

(9) hold, as well as the obvious physical constraint
(N(x1, . . . ,xd))) 2.

As a special case, consider fragmentation processes such
that a given d-dimensional hypercuboid-shaped object frag-
ments into 2" pieces per fragmentation event. In this case, as
in Sec. I above, we may rewrite (7)—(9) in terms of a single
function F(x1,x1', . . . ,xd, xd) as follows. First, choose

t xd

dXd
I xl

I
~ ~

1 Jo
a(x, , . . . ,x„)=

Jo

X F(x, x, ,x, , . . . ,xd x„,xd), (10)

where c(x, , . . . ,xd, t) is the probability distribution function
of a d-dimensional hypercuboid-shaped object of hypervol-
ume x, . . .x„characterized by (x, , . . . ,xd) at time t,
a(x, , . . . ,xd) is the rate at which an object characterized by
(x, , . . . ,x„) fragments, and the daughter distribution function
b(x, , . . . ,x„lx 1, . . . ,x „') is the rate at which an object charac-
terized by (x, , . . . ,x„) is produced from an object character-
ized by (x 1, . . . ,x d).

Consequently, the average number of objects produced
per fragmentation event is
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where F(x, ,x,';. . . ;x„,x „') is the rate of fragmentation of an
object characterized by [(x,+x,'), . . . , (xd+x „')] into 2
smaller objects characterized by (x, , . . . ,x„),. . . , (x ', , . . . ,xd).
Now choose

(X t «XI «. . .«Xl «Xk «. . . «Xd, Xd)

t—F(xl «xI « ~ «xk «xl « ~ ~ ~ «xd «xd)« (12)

b(xt «. . . ,xd~xI, . . . ,xd) =

where, of course,

2 F(x t,x I XI, . . .
«, xd «xd xd)

Q(XI «. . .«Xd)

i.e., F(x),x I, . . . ,xt. ,x k, . . . ', xd, xd) is symmetric in all pairs
of arguments (xt. , xk) for k= l, . . . ,d.

It is easily shown that (N(x, , . . . ,xd)) =2, as required,
and that hypervolume conservation per fragmentation event
requires

Jo dx[ j o dxdxt xdF(xt xt «xi « ~ ~ «xd xd «xd)

Jo'dx) . fo"dxdF(x) —xt,x)' . . «.
', xd xd, xd—)

The fragmentation equation (7) now becomes

ac(x, , . ,x„,t).. t x) pxd= —c(xl «. . .«xd «t) dx) ~ dxdF(xt —xt, x, ;.. . ;xd xd, xd)

~
~™

+ 2 dx, . dx„F(x, —x, ,x, , . . .;x„x„,x„)c(—x, , . . . ,x„,t),
3xd

(14)

where F(x, ,x,';.. .;x„,x„') is defined by (10)—(13).
Before we begin solving the d-dimensional multiple fragmentation equation, we state briefly that all latin indices i, k, ...,

etc. , will range over the values 1,...,d, unless otherwise stated.

Model 1

This model is described by the fragmentation rate and daughter distribution function, given, respectively, by

pl+ 1 pd+ 1a(x, , . . . ,x„)=x", . x,'"

b(x, , . . . ,x„~x, , . . . ,x„)—
(n, +2) . (nd+2)x, '. . .x„"

Hi+1 1A'd+1Xfo ~ «Xd
(16)

This model is the natural d-dimensional generalization of the one-dimensional model of McGrady and Ziff [17].
Insisting that the hypervolume is conserved per fragmentation event places the following restrictions on the indices

AI )...)Qd '.

(17)

It is easily shown that the number of fragments produced per fragmentation event is

'
(n, + 2) . .(n„+2)

(N(xt, . . . ,xd))=' (ni+I) (nd+ I)
f all ui+ —1

if some or all a&~ —1.
(18)

On physical grounds, when (N(x, , . . . ,x„)) is finite Vn;) —1, (N(x, , . . . ,x„)) must satisfy (N(x, , . . . ,xd)) ~2. This further
constrains the u; by

(tr t+ 2) (~d+ 2) ~2,(,+1) "( .+1)

The d-dimensional multiple fragmentation equation (7) now becomes

Bc(x, , . . . ,x„,t) t

~i+ & &d+ I dxt
I

dxd
x) ' xd C( .X. .I ««tx)d +«(Cll+2) ' ((id+2)XI ' ''xd «~ p

' '
«~ p C( .X. .I ««X)d. «t

Jx x Jxdx
(2o)
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Here we will consider the special case when P;= —1, and Vi = l, . . . ,d, in which case (20) becomes

0C(X1, . . . ,X«, t) dx1 t dxd= —c(x1, . . . ,xd, t)+(n1+2). (nd+2)x1 . x« ~ +1 . , ~ +1c(x1,. . . ,xd, t).
J x1xt J xdxd

(21)

We now need to solve (21) subject to appropriate initial conditions, which we will assume to be

c(x1,. . . ,x«,0) =f(x1, . . . ,xd) 4 0. (22)

Define the Laplace transform of c(x, , . . . ,x„,t) with respect to t, p(x, , . . . ,xd, s), by

P(x, , . . . ,xd, s)= dt e "c(x, , . . . ,xd, t),
&o

(23)

in which case we may recover c(x, , . . . , xd, t) from the inverse Laplace transform

c(x, , . . . ,xd, t) = . dse"P(x, , . . . ,xd, s),
27Tl g ~ l'oo

(24)

where Re(s) )y to ensure convergence.
Taking the Laplace transform of (21) with respect to t yields the following integral equation for p(x, , . . . ,Xd, s):

f(x1 xd) (n1+ 2) . (nd+ 2)x1 ' xd" t'~ dx1
@(x,, . . . ,Xd, s) = +

J x)x)

dxd
& n + 1 $(xl »Xd &S)

J xdxd
(25)

Following the approach introduced in Ref. [30] one easily finds

f(x, xd) (n1+2) (nd+2)x1' . xdd

0( ' '.')= (,"+1')" + (,+1)

dx, r dx„
»&11+) & nd+1f( 1 »' '' d) X i

~
qd

SxlX ' 3xdX
1 d

/'
~

(n1+2) . .(nd+2) r XI xd~
ln — . ln-

(s+1) (26)

Performing a simple contour integration yields the following expression for the probability distribution function
c(x, , . . . ,xd, t):

&- dx' 1- dx„'
c(x1, . . . , xd, t)=e ' f(x, , . . . ,xd)+(n, +2) (nd+2)x, ' xd" &~, ~, .

( &~„+,f(x,', . . . ,x„')
3 x, x, Jxdxd

1 rx', ) rx„'l "I
xg ( n1+ 2) . (nd+ 2) in' — 1ni-.=o (r+1)'(r')"

t 1i l «J . )
(27)

For monodisperse initial conditions

f(X1 ~ ~ ~ d) ~(X1 l 1) ~( d ld) (2g)

(27) becomes

Al Adx
$

~ ~ & xd
c(x1, . . . ,xd, t) =e ' 8'(x, —l, ) . 8(xd ld)+(n, +2) (n—d+2)

l) . . . ld

x $ „(n,+2). (nd+2)ln~ — . ln.=o (r+1)'(r')" )
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For d = 1 and lx, =u=O, (29) reduces to the result of Ziff and
McGrady [16].For d = 2 and n, =O (29), reduces to the so-
lution presented by Rodgers and Hassan [27]. When d= 1

and n)=u is completely general, (29) is equivalent to the
exact solution for the model investigated by McGrady and
Ziff [17], with P= —1.

1 Pl+1 Pd+ ]0( 1 ««Xd) dX (3o)

Model 2

In this model we investigate a fragmentation rate and
daughter distribution function given, respectively, by

F(x, ,x,';. . . ;x„,x„')=(x1+x,')P1 ' . .(x„+x„')P'+'

X 6(x) —x', ) 8(xd —x„'). (32)

In this form the kinetics of the model become a little more
transparent. The fragmentation rate F(x, ,x,';. . . ;xd, x d) de-
scribes a fragmentation process in which a d-dimensional
hypercuboid-shaped object splits into 2" fragments of equal
hyper volume.

This choice for a(x, , . . . , xd) and b(x, , . . . ,xd~xI, . . . ,xd),
or equivalently, F(x, ,x,';. . . ;xd, x d), reduces the
d-dimensional multiple fragmentation equation (7) to the fol-
lowing form:

X', ~ t Xd~
b(x) . .«. Xd«lx), . . . ,xd) =2"6 x1 —— . 8 xd-—

(»)

OC(X), . . . , Xd, t) p, +1 p„+1
x1 " xd

C(X1,",Xd, t)

+2 "+PxP' xP" c(2x, , . . . ,2xd, t)

It is easily shown that hypervolume conservation per single
fragmentation event holds, and that the average number of
objects per fragmentation event, (N(x, , . . . ,Xd)), is 2".

This particular choice for the fragmentation rate
a(x, , . . . ,Xd) and the daughter distribution function
b(x, , . . . ,Xd ~x I, . . . ,x d can be implemented by
F(x, ,x1', . . . ', xd, xd with

where P=P, +".+Pd.
Solving (33) subject to the initial conditions

c(x), . . . ,xd 0) =f(x), . . . ,xd) 4 0

via the approach outlined in Ref. [30], one finds

(34)

Pl+ 1

c(x, , . . . ,x„,t) =e
oo r X~) . . .~pd+

( ) 2k( p+ d) ) t/2d
Pa+ ' e lx„" t/2 f( ) + g 2r(r+1)p/2+ r(r+5)d/2f(2r 2rx ) g

g (2m(p+d) 2k(p+d))
r

ol FIk

(35)

with p= p, + . . + pd4 —d and 1k={0,1,2, . . . , k —l,k+ l, . . ,r't.
Using the fact that

"(1—2 ~)f/2 I ~1 ~d
e l (x) . . .xd t 1

(2m' 2k««.
)

= (36)

we can obtain c(x, , . . . ,xd, t) for p= p, + . + pd= —d without any extra effort.
Explicitly,

P +1 P +1 .d r

c(x, , . . . ,x„,t) = e i 'd " g (x, ' x„" )"f(2'x, , . . . ,2"x„),
r=O

(37)

where, of course, P = P, + + P„=—d.
For monodisperse initial conditions

f(x1, . . . ,xd) = 6(x) —l, ). 6(xd —ld), (38)

we find
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Pl + ] Pd+ ] t'

C(X1,...,Xd, i) = ( (2m''P+d) —2" ~
)

...1 4 (1-2)&' "&(P+ t/28 1 d

k=0
P4 —d, (39)

~ ~ ~ )~4 t/2&~ P]+1 Py+ 1

OO

lg
e 1

"'d " ~ —(I ' I d )"8'xi ——„' 8'xd ——„, p= —d.~Q 7-) d

For d= 1, these results reduce to those presented in Ref. [30].For d = 1 and P, =P= —1, one recovers the exact solution of Bak
and Bak [19].

III. SCALING THEORY

We now introduce the d-tuple Mellin transform of the probability distribution function c(x, , . . . ,x„,t) defined by

M(si, . . . , sd, t) = dxi dxdxi' xd" c(xi, . . . ,xd, t).
Jo Jo

(40)

The functions M(si, . . . , sd, t) for fixed s, , ... ,s„are known as the moments of the probability distribution function
C(X, , . . . ,X„,t) .

Combining (7) and (40) gives

BM( i,s. . . , ds, t) f oo f oo

dx 1 dxda(x), . . . ,xd)
Jo 0

(
X C(X1, . . . ,Xd, t) Xi 'Xd~ ~ ~

~

x] &x

GX
3o 1

0o
I$1 —1 lsd —1 g

r

dxdx .xd b(x), . . . ,xd~x ), . . . ,xd)

We now proceed to investigate the two classes of exact solutions to the d-dimensional multiple fragmentation equation,
presented in Sec. II, for the presence of scaling.

Model 1

In this case (41) becomes

M(si, . . . , sd, t) =M(si, . . . , sd, O)

—(1—[(u]+2) ~ (ng+2)]II (s]+n]) (sg+ ug)]3t

BM(s, , . . . , sd, t) (~1+2) "(~d+2) '
1—

(Si+ Al) (Sd+ Ad))

x M(s 1+pi+ l, . . . , sd+ pd+ l, t)

(42)

provided s;+ a;~O,Vi.
To obtain the total number of objects, N(t), in our frag-

menting system, we must take s;=1Vi in (44). We find that

provided s, + n, )O,Vi. In the special case when P, = —1,
Vi, (42) becomes

N(t) =M(l, . . . , l, t)

1 0)
—11 —[(~1+2)" (~d+2)W[(~&+1) "(~d+1)11&

(45)

BM(s i, . . . , sd, t) (~X1+2)" (~d+ 2)1—
(S 1 + Cl 1 ) ' ' ' (Sd + Cl'd ) /

X M(s i, . . . , sd, t)

provided s;+ n;~O, Vi. Then it follows that

(43)

which is only valid for a;~ —1,Vi. When some or all of the
n;~ —1, then (43) and (44) are not valid, since it can easily
be shown that the number of particles in the system in this
case becomes infinite, even though the total hypervolume
V(t) of the system is conserved. If we set s, =2Vi in (44),
we find that the total hypervolume V(t) of our system is
constant, i.e.,
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V(t) = M(2, . . . ,2, t) = M(2, . . . ,2,0), (46)

(~1+2)".(~d+ 2) =1,
(Sl+ Ai) (Sd+ Ad)

(47)

are all time independent. Of course, s;41@i in this case,
otherwise (47) would contradict (19) even if n;) —1Vi Be-.
sides, the total number of objects, N{t), in a fragmenting
system cannot possibly be conserved. Thus, in addition to the
conservation of the total hypervolume V(t), there are an in-
finite number of hidden conserved integrals for those s; that
lie on the hypersurface defined by (47). According to a sug-
gestion by Krapivsky and Ben-Naim [28], it is precisely
these integrals which are responsible for the absence of scal-
ing solutions for d-dimensional fragmentation processes. In-
deed, the scaling solution

c(x i, . . . ,xd, t) —t P( t'x, , . . . , t'xd)

implies an infinite number of scaling relations

(48)

provided o.;)—2Vi, which indeed is the case in general, as
shown by (17).

An interesting feature of (43), for s;+ n;) OVi, is that it
implies the existence of an infinite number of conservation
laws, apart from the usual total hypervolurne conservation
law one usually encounters. The moments M(s, , . . . ,sd, t)
with s&, . . . , sd, satisfying

where s=s, + +s„.Again, as in model 1, we observe that
(50) implies the existence of an infinite number of conserva-
tion laws. The moments M(s, , . . . ,s„,t) with the s; satisfying

s=2d, (51)

as t~~, where v(t) is the hypervolume of a typical time-
dependent cluster. This scaling form is fully equivalent to the
one given by (48); however, it is more convenient for our
calculations [18]. The exponent —2d ensures conservation
of total hypervolume of the complete system of fragmenting
objects.

A short calculation will show that

M(si, . . . , sd, t) v(t)' m(si, . . . , sd),

where s=s&+ . . +sd, are all time independent. Thus, in
addition to the conservation of the total hypervolume V(t)
=M(2, .. .,2,t), there are an infinite number of hidden con-
served integrals for those s; that lie on the hypersurface de-
fined by (51). Due to the existence of an infinite number of
hidden conserved integrals, we do not expect there to be any
scaling solutions to this model. However, this does not ap-
pear to be the case, and we demonstrate this explicitly by
finding the scaling solution to this model.

In this case assume a scaling solution of the form

c(xi, . . . ,xd, t) —u(t) "@[xi/v(t), . . . ,xdlu(t)], (52)

w =ps, (49) where the scaling moments m(si, . . . , sd) are defined by

where s= s, + . . +sd, which together with (47) cannot all
be satisfied by the scaling exponents w and z. This rules out
the possibility of scaling solutions in this model.

Model 2

For this case (41) becomes

f oo

m(si, . . . , sd) = dpi . dsd( ' ( 4'((1, . . . , (d).
3o so

(54)

If the moments are to be conserved, then they must be
constant. This occurs when

+ Pd+ l,t), (50)

ciM(si, . . . , sd, t) t 1 1 ~

Bt L2' 2(, d&
——

d M(si+Pi+1, . . . , sd
$=2d, (55)

which is in complete agreement with (51), as it should be.
Substituting (52) into (33) yields

1 du(t)
U(t)p+ ' dt

—1/(P+d) P) —d, t~~
u(t) e Exit P= —d,

(t t)»l/+dl p
(57)

where the separation constant co is positive since v(t) must
be a decreasing function of time in a fragmenting system,
and, g, =x;/u {t)Vi. In the previous equation we have implic-
itly assumed an implied summation over repeated indices.

Then

These expressions are only valid provided scaling holds. For
p( —d a singularity is encountered within a finite time t, ,
and scaling becomes invalid. In this instance, we anticipate
shattering, which will be discussed below. When P= —d, as
in the one-dimensional case [24,26,30], a scaling form does
not exist which is consistent with the boundary conditions

p((, , . . . , gd)~const as /k~0 and @{/,, . . . , (d)~0 as
gk~~ for Vk. Consequently, we need only look at the case
when P) —d, for which scaling is clearly valid.
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When p~ —d, we assume that @($,, . . . , (d) vanishes at
(k=0 and (k= ~Vk. It can be shown from (56) that

dition dV(t)ldt(0. When shattering is suspected, a more
subtle analysis to that used to derive (62) is required.

To analyze the shattering transition define a cutoff hyper-
volume V, (t) with 0(a(& 1, by

4'(ll ~ ~ l(d) ((2+ + (2)d (58)

as (~~~Vk. Therefore, we will assume that our scaling
function @((,, . . . , gd) is of the following form:

t
oo t'oo

V, (t) = dxl .
,

dxdxl . .xdc(xl, . . . ,xd, t), (63)

(0)+ "+(d)"
/2 co(p+d)

4((i, ",4)= f((l " 4)
(59)

with

V(t)= lim V.(t)
e~o+

(64)

where we insist that f((, , . . . , (d) = 1 at (t, = ~Vk.
Substituting (59) into (56) and performing a lengthy cal-

culation yields a solution for f((, , . . . , g„) of the form
It is easily shown that the cutoff hypervolume loss is given
by

n=l

m= 1

(2m(P+d) 1)

( 1)n2n(P+d)
f((l . . 4) = I+ 2 dV, (t)

dt
dx 1

Jg

| oo

dXdQ(Xl ~. . . ~Xd)C(Xl ~. . . ,Xd, t)

Xe (2"(P+d) —$ )/2d(g(p+ d)
a

X dxl ~ ~ dxdxl Xdb(xi, ",xdlxl ~ ~xd),
Jo Jo

Thus, a rather unusual situation occurs in this d-dimensional
model. A scaling solution exists, in spite of the fact that we
have an infinite number of hidden conserved integrals, of the
form (52) as t +~ with U(t) given by (57), and @((,, . . . , g„)
given by (59) and (60). These results are consistent with the
exact solution of model 2 presented in Sec. II above. When
d = 1, these results reduce to those in Ref. [30], and are of a
similar form to those of Cheng and Redner [24].

where, of course,

dv(t) dv, (t)= lim
a~0+

IV. SHATTERING TRANSITIONS

Formally, the total hypervolume V(t) of the multidimen-
sional fragmenting system is defined by

V(t) =
3o

P
oo

dxl, dxdx l xdc(x l, . . . ,xd, t), (61)
3o

so that, with the aid of (7) and (9), it can easily be shown that

dV(t)
=0, (62)

indicating that V(t) is conserved. However, when the frag-
mentation rate increases sufficiently fast as the hypervolume
of the fragments decreases to zero, a cascading of the frag-
mentation occurs such that hypervolume is lost to fragments
of zero or infinitesimal hypervolume. This cascading pro-
cess, which has been named "shattering" [17,25] or "disin-
tegration" [26], is somewhat similar to gelation in coagulat-
ing systems, where mass is lost to an infinite gel molecule
[31,32]. Gelation and shattering are both signaled by the con-

Model 1

In this model, for p;= —I Vi, shattering does not occur
for any values of the indices n;. This is easily demonstrated
from the definition of the total hypervolume V(t) of the sys-
tem via (61) and the exact solution for this particular model
(27). One finds that the total hypervolume V(t) of our sys-
tem is both finite and time independent, a sure indicator that
shattering is indeed absent.

Model 2

As can be easily demonstrated by substituting the exact
solution for this particular model (37) into the definition of
the total hypervolume V(t) of system (61), shattering does
not occur when the sum of the homogeneity indices, p, sat-
isfies p= —d. Again, one finds that the total hypervolume
V(t) of the system is both finite and time independent. It
therefore remains to investigate the case when the sum of the
homogeneity indices, p, satisfies p~ —d.

To analyze the shattering regime, p( —d, we need to
know the behavior of c(xl, . . . ,xd, t) as t~~ and xk —+0,
such that tx/, remains fixed Vk. A short calculation will show
that the asymptotic form of c(x, , . . . ,x„,t) in the shattering
regime is given by
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c(xi, . . . ,x„,t) —T(t)x, ' x„",kg (67)
c(x), . . . ,xd, t) =e ' 8(xi —li) . 8(xd —ld)

where T(t) 40. The exponents P, , ...,)z. d are restricted by

where P =X&+" + P z . In this analysis it does not matter
what each individual value of the X.z is; all that matters is
what their sum k is. Therefore, we need not concern our-
selves with explicitly determining the Xk.

For P(—d, (65) becomes

dV, (t) 1

2dJ 1 ) 0

(2d )(r+1)
+

l, . . . ldr=p (r+1)!(r!)

(i, &

X ln~ — ~ ln
1)

(74)

Substituting this into (73) yields the following expression for
the probability distribution function for the total hypervol-
ume:

x c(xi, . . . ,xd, t) (69) C(U, t)=e ' 8(V—li . ld)

for this particular model. Substituting (67) into (69) yields 2 t (2"t)"
+

li ' 'ld„=p (r+ 1)![d(r+ 1)—1]!
dV, (t) 1

dt 2
= ——T(t) (ln2)",

VP;+)z.;= —3, with l~i~d, and

(70) f ) [d(r+ 1)—1]

X ln'
i "d

(75)

dU, (t) 1 ~ 2~~k+ i+~~+ i+»
= ——

d T(t) (ln2)
dt 2' p/+i+) k+i+3

(2(»+~d+ ) —1]
~ ~ ~

Pd+) d+3 (71)

This expression reduces to the result of Ziff and McGrady
[16] when d= 1, and to the result of Rodgers and Hassan
[27] for d=2. Expanding (75) for small t gives

C(V t)-e ' c$(U —i) . ld)
if P, +)1., = —3 for i = l, . . . , k and P;+)1., 4 —3 for i=k
+1,. . . , d, where O~k~d —1. Hence we see that

+ ln
l, ld (d —1)! ( V

(76)

dV(t) dV, (t)= lim 40,
dt + dta~0

which proves that shattering does indeed take place for p(
d.

V. VOLUME DISTRIBUTIONS

As d increases by 1, the power of the logarithmic divergence
in the second term in (76) also increases by a factor of l.
Analogous to the one-dimensional case, the d-dimensional
case for p;= —1Vi forms the borderline case for the shatter-
ing transition.

Define the normalized nth moments of the total hypervol-
ume V by

In this section we briefly consider the total hypervolume
probability distribution function C(V, t) defined by

fpdV V"C(V, t)
( ")= (77)

C(V, t) = dx) . dxd8(xi . .xd —V)c(x, , . . . ,xd, t),
0 00

(73)

Then it follows that

(Vn) lln —2 [1—1/( z+1) ]zlzn (78)

which is usually very useful for providing a partial descrip-
tion of a fragmenting system.

Model 1

For p;= —1, n, =0, Vi, and monodisperse initial condi-
tions, the relevant exact solution to this model is

which indicates that C(V, t) does not exhibit a scaling form.

Model 2

In this model, for monodisperse initial conditions, the rel-
evant exact solution is given by (39). Substituting (39) into
(73) yields
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P)+ { P~+{ d (
e

—II 1& tl2 . pr'y I . . .I 4+ & 2r(r+ i)P!2+r(r+3)dl2
1 dX r= i

C(V, r)= ~

r {P& . . . iP&+ {i 2 {k—r){P+d)) dg2d
$1 ~ ~ ~ IdXb V —

„d g, Pg —d,
(2m(P+d) 2k(P+d)) )

(79)

PI+1 Pd+1 g t (
e { d

' xg —(I ' . . . / ) {I)~~V—
r=O ~ ~

f d d 2rd

These results may be compared with the results when d= 1

for c(x&, . . . ,xd, t) given in (39) or in [30].The similarity is
quite remarkable, indicating that the scaling and shattering
behavior of C(V, t) given by (79) will closely match that
observed for c(x), . . . ,xd, t) given by (39), when d= 1.

VI. CONCLUSN3NS

In reality, fragmenting objects will have both size and
shape, i.e. , a geometry. Intrigued by the possibility that the
geometry of the fragmenting objects may influence the frag-
mentation process, we have investigated two distinct
d-dimensional fragmentation models for d~1. Two classes
of exact solutions to these geometric models, which describe
the kinetics of fragmentation of d-dimensional hypercuboid-
shaped objects, are presented. The first class is described by
a fragmentation rate a(x, , . . . ,xd) =1 and a daughter distri-
bution function b(x{,. . . , xd~x {,. . . ,xd=(n{+2) . (nd+2)
x

1 xd /x
1 xd . For d ~ 1, this particular

class of exact solutions does not exhibit scaling, and does not
permit the occurrence of a shattering transition. This model
is a generalization to d dimensions of the model investigated
by McGrady and Ziff [17], with p= —1. The second class of
exact solutions is described by a fragmentation rate

P(+ 1 Pg+ 1a(xi, . . . ,xd) =xi ' . xd" /2" and a daughter distribution

function b( , , x. . . , d~ x,', x. . . , d) x= 2"6(x, —x,'/2) 6(xd
—xd/2). This particular class of exact solutions describes a
type of fragmentation process in which d-dimensional
hypercuboid-shaped objects always break up into 2" pieces
of equal hypervolume at various rates which depend upon
the geometry of the fragmenting objects and the homogene-
ity indices p, , ... ,p„. This type of fragmentation has been
observed and studied when polymers degrade under tension
(stretching) [33], or in the presence of a destructive force
field such as ultrasound [6]. Defining P to be the sum of all
the homogeneity indices P{,...,Pd, it is shown that this par-
ticular class of exact solutions exhibits scaling for p) —d,
and this scaling form is explicitly determined. For P= —d,
we show that a scaling solution to this model does not exist,
and that the shattering transition is not permitted. When p(
—d, we show that a scattering transition occurs.

An interesting scenario occurs in our investigation into
the scaling behavior of the second class of exact solutions.
When p) —d, we have shown that a scaling solution to our
model exists, and we explicitly find this scaling solution.
This is very surprising, since it has been suggested [28] that
scaling solutions are not supposed to exist when we have an
infinite number of hidden conserved integrals present. We
suggest that the existence of an infinite number of hidden
conserved integrals is not always indicative of the absence of
scaling solutions. There must exist other important criteria
which conclusively indicate the absence of scaling solutions
in a particular d-dimensional fragmentation process. We pro-
pose to investigate the nature of these criteria in subsequent
work.

An investigation into the occurrence of a shattering tran-
sition in the second class of exact solutions presented in Sec.
II is quite intriguing. When p( —d it is shown that shattering
occurs. It is interesting to see that whether shattering occurs
or not is determined exclusively by the fact that p( —d, and
not on the values of the individual pi, ...,pd, which add up to
give p. Of course, the intensity of the shattering transition
will depend on how negative p+d is. In this case, there is
also the possibility that competing effects between the posi-
tive and negative homogeneity indices p; will act to moder-
ate the intensity of this shattering transition.

The total hypervolume probability distribution function
C(V, t) is very useful for providing a partial description of a
fragmenting system. Consider C(V, t) for the first class of
exact solutions for small t. In this case, the two-dimensional
model differs from the one-dimensional model by the pres-
ence of a logarithmic divergence term. The three-
dimensional model differs from the one-dimensional model
by the presence of a logarithm squared divergence term, and
so on. An analysis of the normalized nth moments of the
total hypervolume V indicate that C(V, t) for model I does
not exhibit scaling. For the second class of exact solutions
presented in Sec. II, it is shown that the similarity between
C(V, t) and c(xi, ...,xd, t), with d= 1, is quite remarkable.
This is a strong indicator that the scaling and shattering be-
havior of C(V, t) will be very similar to that observed for

(x cx{t),dwith d= 1.
We have found that the introduction of more than one

dimension (or parameter) to characterize the geometry of the
fragmenting object can have a significant effect on the kinet-
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ics of the fragmentation process. As a prospect for future
research, one could investigate problems with sources and
sinks in d dimensions, given that one now has a useful
method available for determining exact solutions to geomet-
ric models which describe the kinetics of fragmentation of
d-dimensional hypercuboid-shaped objects.
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