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Bounds on the decay of the autocorrelation in phase ordering dynamics
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We investigate the decay of temporal correlations in phase ordering dynamics by obtaining bounds on the
decay exponent X of the autocorrelation function [defined by lim, ~, (P(r, t, )P(r, t2)) —L(tz) "].For a non-
conserved order parameter, we recover the Fisher and Huse inequality, X ~d/2. For a conserved order param-
eter, we find k~d/2 only if ti = 0. If ti is in the scaling regime, then X~d/2+2 for d~2 and k~3/2 for
d= 1. For the one-dimensional scalar case, this, in conjunction with previous results, implies that the value of
X depends on whether tI =0 or t&&&1. Our numerical simulations for the two-dimensional, conserved scalar
order parameter show that X=4 for t& in the scaling regime, consistent with our bound. The asymptotic decay
when t, =0, while exhibiting an unexpected sensitivity to the amplitude of the initial correlations, is slower
than when t&&) 1 and obeys the bound X~d/2.

PACS number(s): 64.60.My, 64.60.Cn, 64.75.+g, 68.35.Fx

Phase separation dynamics proceeds when a system is
quenched from its high temperature, homogeneous phase to a
low temperature, inhomogeneous phase (where several
phases coexist in equilibrium). Due to its simple description
yet rich behavior, phase ordering dynamics has greatly en-
hanced our understanding of nonequilibrium processes [1].
At late times, the spatial distribution of domains can be de-
scribed by a single time-dependent length, L(t), which typi-
cally grows algebraically in time, L(t) —t ".This is reflected
in a scale invariant equal-time correlation function C(r, t).
More recently it has been realized that the temporal decay of
the correlations and the response to past perturbations are
scale covariant. In particular, the asymptotic decay of the
two-time autocorrelation function, C(r, t i, t2)
=(P(r, ti) @(O,t2)), defines an independent exponent ). via
lim, &, C(0,t i, t2) —[L(ti) /L(t2) ] . This exponent, which is

dependent on the spatial dimension d, bears no relation to
g and so its value provides a sensitive test for approximate
theories of phase ordering kinetics [2—8]. Although the au-
tocorrelation function has been studied extensively for non-
conserved order parameter (NCOP) dynamics [2,4 —10],
there has been much less discussion of the conserved order
parameter (COP) case [11—14]. In a recent publication, Ma-
jumdar et al. have shown both numerically and analytically
that X=1 for the one-dimensional, scalar COP with t&=0
[12].

In this paper, we obtain bounds on the decay of the auto-
correlation function. For nonconserved order parameters, we
find X~d/2 independent of the first time t], consistent with
a general argument of Fisher and Huse [2). However, for
conserved order parameters, we find that the bound depends
on the choice of t, . Specifically, )i. ~d/2 for t, =0 (assuming
the quench is from a high temperature phase), but, for ti in
the scaling regime, X~d/2+2 for d~2 and X~3/2 for
d = 1. This difference arises from the small k behavior of the
scattering intensity S(k, ti). In conjunction with the exact
result for X, for the one-dimensional scalar model, with
ti = 0 [12],we conclude that for d= 1, k depends on whether

t] =0 or t&&)1. To carry out the investigation in higher di-
mensions, we perform an extensive numerical integration of
the Cahn-Hilliard equation [see Eq. (4) below] in d=2. For
t] = 0 we find quite surprisingly, that the asymptotic value of
X is extremely sensitive to initial conditions. We find that
P =2, when the amplitude of the initial correlations is large,
while k=3 (with a possibility of a slower decay at late
times) when the amplitude is small. On the other hand, when
t& is in the scaling regime, there is no dependence on the
initial state, and X=4. We also derive bounds on X for
quenches to and from the critical point. Moreover, our results
easily extend to vector order parameters.

We begin by obtaining the lower bounds on X. The equal
point autocorrelation C(t„,t~)

—= C(O, t, , t2) is related to the
k space autocorrelation S(k, t, , t2) by

C(t, , t2) = dk(6@k(t, ) 8$ k(t2)) = dkS(k, t, , t2).

Here P(r, t) is the order parameter at point r and time t and
8$(r, t)—= P(r, t) —mo with me= V 'fdr@(r, t) and the
Fourier transform 8@k(t)—= V ' fdre '"'8'p(r, t). The an-
gular brackets indicate an average over initial conditions.
Note that for a critical quench (mo) = 0 and (mo) is
CJ(V '), whereas for an off-critical quench (mo) is CJ'(I).

Using the Cauchy-Schwartz inequality, we find

+ ( ~4k(4) ~4 —k(t2) )

f
dkS(k t )' S(k, t )"

where S(k, t) =S(k, t, t).
Now assume t2 to be in the scaling regime with t2& t

&
. At

late times, the scattering is due to the sharp interfaces or
defects The k mo. des 6'pk at times t, and t2 will be uncor-
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related when the interfaces move a distance greater than
2 7rlk, so that S(k, t, , tz) decreases rapidly for
k(L(tz) —L(t, ))&) 1. The upper limit of the integral over k in

Eq. (1) can then be cut off at 2a7r/L(tz) where a is a con-
stant of H(1) . This corresponds to assuming that

S(k, t, , tz) decays faster than [kL(tz)] " for tz)t, . For
L(tz))L(t, ), only the small k behavior of S(k, t&) contrib-
utes to the integral. Assume that limk pS(k, t, )—k~

(p~0). For quenches to zero temperature, S(k, tz) will have
the scaling form S(k, tz) =L(tz) f(kL(tz)). Substituting into
Eq. (1) (with the appropriate limits of integration), gives

lim C (t &, tz) —L(tz)
t2&)t&

& 2a 7t!L(t2)(L(t )
"tz dkk" 'k~' f(kL(tz)),

Jo

)
—(d+ P)/2

This immediately gives a lower bound on X,

P+d
2

The argument just presented is very general and holds for
conserved and nonconserved, scalar and vector order param-
eters.

We now consider specific dynamical scenarios. Let TI and

TF be the temperatures of the initial and final states, respec-
tively. We first focus on quenches from the high temperature
phase (TI= ~) to zero temperature (TF= 0). Since the initial
state is disordered, limk pS(k, O)-k . This is true irrespec-
tive of the dynamics. Let us now consider a dynamics where
the order parameter is not conserved. In this case,
lim„pS(k, t, )-k for both t, =0 and t, in the scaling re-
gime, and therefore p = 0. This implies that for nonconserved
dynamics,

god/2

This inequality was also obtained by Fisher and Huse using
general scaling arguments [2] and is consistent with all re-
sults to date [4,5,7—10].

When the dynamics is such that the order parameter is
conserved, then the bounds on X depend on whether t& is
zero or is in the scaling regime. Clearly, as before,
llmk pSy k when t& = 0 and P= 0. However, when t, is in
the scaling regime, lim~ pS(k, t)-k for d~2 [15] and so

P =4. For d = 1, the dynamics is dominated by thermal noise
and Majumdar et al. find that limz pS(k, t) —k [12], so that

p = 2 for d = 1. Therefore, for a conserved order parameter
and t& in the scaling regime, we have

d 3.X~ —+2 if d~2 and ) ~ —if d=1.
2 2

These bounds suggest that the exact value of the asymptotic
exponent may in fact depend on whether t& is in the scaling
regime or not, but of course do not rule out the possibility
that the exponent is independent of t, . However, for d = 1,
Majumdar et al. find analytically and numerically that

P =1 for t&=0, while our bound suggests that k~3/2 for
t& in the scaling regime [16].Thus at least in d = 1, it is clear
that the value of X depends on whether t& is in the scaling
regime or not.

For vector fields (with m, the number of components of
the order parameter, )2), an argument analogous to Ref.
[15],gives the same lim„pS(k, t)-k . This is supported by
an extensive numerical integration of the Cahn-Hilliard
equation [17]. Therefore the lower bounds on k derived
above are valid even for vector order parameters with
m~2,

Quenches from the critical point (TI= T, , TF= 0) lead to
long-range correlations of the initial configurations. In this
case, P ~ d/2 no longer holds. More generally if
S(k,O) —k we obtain X ~ (d —o.)/2. (For critical dynamics
o.=2 —

z/, where rg is the static critical exponent. ) This is
consistent with the result of Bray et al. , who found that, for
nonconserved order parameter, X=(d —o)/2 for o greater
than a critical value cr,. [6].

Analysis of the bounds on the autocorrelation exponent
for quenches to the critical point (TI= ~, TF = T,) has to start
afresh from Eq. (1). Since tz is in the critical point scaling
regime, the correlation function has the following scaling
form: S(k, tz) -k + "f,(kL(tz)). Substituting this form into
Eq. (1) gives k~(2d —2+ g+ p)/2. Therefore, when t, =0
we get X~(2d —2+ zl)I2. When t, is also in the scaling
regime, the bound on X depends on the behavior of the scal-
ing function f,(kL(t&)) as kL(t, )~0 For none. onserved
systems lim, pf, (x)~const, or p = —2+ z/, leading to
X~d —2+ g.

We test the above ideas and fix the value of X using nu-
merical simulations. As previously mentioned, exact analyti-
cal results and numerical computations on the one-
dimensional scalar model have been carried out only for the
case when t& = 0. In higher dimensions, however, the numeri-
cal results are not very conclusive [11].We therefore com-
pute the asymptotic value of X by numerically integrating the
Cahn-Hilliard equation in two dimensions,

8@(r,t) =V p, (r, t), (4)

where p, = —P+ P —V @. We have used an Euler discreti-
zation with St=0.1 and Bx=1.09 and periodic boundary
conditions. We discretize the Laplacian as

v2 @X+X —64;,,
1 + 2 NNN NN

This choice decreases lattice anisotropy effects and allows a
larger 6't before the onset of the checkerboard instability
[18].Decreasing 8thas no effect 'on the numerical results,
while increasing 6x to 1.32 results in pinning effects that
lead to a slower decay of the autocorrelation function at late
times (even though the effect on the single-time behavior is
less apparent). We solve this dynamical equation subject to

(t=O) being uncorrelated random variables with vari-
ance A. We work on a finite lattice of size n, n (the number
of lattice points in the x and y directions respectively) and
calculate physical quantities (such as the energy density and
correlation functions) averaged over several realizations of
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FIG. 1. Characteristic domain size (defined as the inverse of the
interfacial density) vs time for 5=0.25. A very good L(t)-t"
behavior is found for times t~400.

initial conditions. For 6=0.03 our lattice sizes range from
n = n~ = 64 (averaged over 3084 initial configurations), 256
(1120 configurations), and 1024 (42 initial configurations).
For 5 =0.25 we used n, =n, =256 (650 initial configura-
tions) and 1024 (35 configurations).

We have used the interfacial area density as a measure of
the characteristic length scale L(t) Operation. ally, this is de-
fined as (2 Bxn n, )ln, ~„, where n„n Y

is the total number of
lattice sites and n is the number of sites whose nearest
neighbor has a P of opposite sign. Figure 1 shows that we
recover the standard result that L(t) grows as t' for all
t)200 for 6=0.25. Other measures of the characteristic
length scale, such as the first zero of the real space correla-
tion function, also behave in the same manner (for t~200).
To check for the single time scaling S(k, t) =L(t) f(kL(t))
we plot, in Fig. 2, the scaled scattering intensity,
L(t) S(k, t) vs kL(t) for times from t=200 to i=51 200.
Scaling is evident at later times and there is a clear regime at

FIG. 3. Autocorrelation function C(O, t) for n, =n =64, 256,
and 1024 for 5=0.03. The asymptotic decay is very difficult to
extract in this case. There is a regime of about 1/2 a decade in L or
3/2 decades in time, where the correlation function decays as
L . However, there are indications of a crossover to a slower rate
decay at later times but it is difficult to differentiate this from finite
size effects which also produce a crossover to a slower decay.

low k where S(k)-k at these times. Thus our bound on k
with P=4 should be operative when tt~200.

We have found that it is extremely difficult to extract an
unambiguous value for the decay exponent when t& = 0, since
the two-time correlation function is surprisingly sensitive to
the magnitude of the initial correlations (the variance 5) and
to finite size effects. Figure 3 shows the two-time autocorre-
lation function for the smaller variance 5=0.03 with n
64, 256, and 1024, while Fig. 4 shows the same for
5 = 0.25 and n = 256 and 1024. The behavior for the smaller
variance 5=0.03 is especially complicated. We find that
C(0,r)-L s7 for approximately a half decade in L, which
corresponds to about one-and-a-half decades in time. There
is a definite crossover to a slower decay at later times with
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FIG. 2. Scaled scattering intensity for 6 =0.25. Times t=200,
400, 800, 1600, 3200, 6400, 12 800, and 25 600 are shown. Al-
though the earliest times do not yet show good scaling, even for
t=200 there is a clear regime where S(k) —k" for small k.

FIG. 4. Autocorrelation function C(O, t) for n =n =256 and
1024 for 5=0.25. In this case we do not find strong finite size
effects. The autocorrelation function decays at a slower rate in this
case than for 5 =0.03. We find that C(0,t) behaves approximately
as L
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C(O, t) -L for approximately half a decade in time. There
are indications of a further slowing down in the decay at
even later times. However, this slower decay seems to be a
finite size effect as the crossover to slower decay occurs
earlier for smaller system sizes. Thus for 5 = 0.03, we would
hesitate to provide an unambiguous value for the asymptotic
decay exponent.

As is clear from Fig. 4 however, an increase in the vari-
ance to a value 5 = 0.25 yields much less ambiguous results.
The correlation function in this case decays much slower
than for 5=0.03 and the slope shows lesser variation. We
find that at late times, C(O,t)-L obtains a good fit for a
little more than a 1/3 decade in L(t) or for more than one
decade in time. Moreover, we do not see strong finite size
effects; the result for n =n~=256 shows no systematic de-
viation from the result for n =n~= 1024. Note that in spite
of this strong sensitivity to 5, the decay exponent is consis-
tent with the bound k~d/2 for either value of A.

This sensitivity to initial conditions is, at least to us, un-

expected. We do not have a detailed understanding of this
phenomenon, and so we offer a conjecture as to how this
could arise. It is clear that the linear dynamics regime of the
Langevin equation (when there is an exponential growth of
the structure function), holds for a longer time when the
variance of the initial correlations is smaller. In this linear
regime the scattering intensity will be strongly peaked at the
fastest growing Fourier mode k =k, . The domains emerg-
ing from this linear regime, will almost entirely have a cur-
vature of k and so the autocorrelation function will be
determined for a very long time by the autocorrelation at
k=k „.Only when the amplitude at k „has decreased
sufficiently, will the two-time correlation be determined by
the behavior at low wave numbers. On the other hand, when
the dynamics proceeds from initial conditions with a high
variance, e,g. , 5 = 0.25, the linear dynamics regime is almost
nonexistent. Domains form and grow almost immediately
and hence the correlations will not be dominated by one
wave number.

The strong effects of finite size seen when the initial vari-
ance is small are also surprising since finite size effects on
single-time quantities become important when L(t) is of the
order of the lattice dimension, Lp. Thus the usual length
scales extracted from single-time quantities are identical for
n=256 and n=1024 at these late times. However, since
C(O, t) decays rapidly with t, any small systematic effect
becomes increasingly relevant as t increases. Clearly, finite
size effects on C(O, t) may be important (though not neces-
sarily so) when the spread in C(O, t) is of the same order as

C(O, t). The spread in C(O, t) decreases as Lo
"' and, based

on our simulations, depends only weakly on L(t). Hence
finite size effects can become important when C(O, t)
-L(t) -Lo "', i.e. , much earlier than for single-time
quantities. This may account for why finite size effects are
observed when the variance 5 is small. For the larger vari-
ance this effect is not evident: this is because the autocorre-
lation function decays much slower for large initial variance,
and then the mean value is always found to be larger than the
spread during our simulations.

On the other hand, the autocorrelation function is very
robust with respect to initial conditions, when ti is in the
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FIG. 5. C(t~, t2) vs L(tz)/L(t~) for t, =200, 400, and 800 for
5 =0.25 and for t& =200 for 5 =0.03. We find a very good L
decay in this case.

scaling regime. Figure 5 shows C(t, , t2) vs L(t2)/L(t&) for
t i = 100, 200, and 400 with 5 = 0.25 and for t i = 200 with
5 =0.03. The figure shows results for the largest employed
lattice size, since we did not find strong finite size effects for
either value of A. A fairly good collapse of the data for these
times demonstrates a good fit to the scale covariant form for
these values of ti. For 5 = 0.25 and ti = 200 we find that the
autocorrelation function decays as (L2/L&) for over half a
decade in L2 or 1.5 decades in time. Hence, we find a late-
time regime in which k=4 [16] consistent with our bound
that k~3 when p=4 and d=2.

Recently Marko and Barkema [14] performed a Monte
Carlo simulation on a kinetic Ising model using an algorithm
that accelerated the diffusion of spins in the bulk relative to
that along the interface, so that they could access the late-
time regimes. They found that the correlation function does
decay with a larger power when t& is in the scaling regime
compared to when t& =0. However, they found that k=3 in
two dimensions, which, though consistent with our bound, is
not in agreement with our simulations for the two-
dimensional Cahn-Hilliard equation. For d=3 they found
k=2.5, which would violate our bound of X~3.5 (using
p=4 and d= 3) . However, it was found from their simula-
tions that the small k behavior of the scattering intensity
seems to behave as k rather than as k seen in the Cahn-
Hilliard simulations and polymer experiments. If we use a
p=2.2, then our bound in three-dimensions r'eads k~2.6,
which is consistent, to within numerical errors, with their
results. Further work will be necessary to understand the
difference between the kinetic Ising model and the coarse-
grained description.

Having provided useful lower bounds on X, we now ask
whether is it possible to bound X from above. Unfortunately,
we have not been able to provide useful upper bounds. How-
ever, we note that the bound [Eq. (3)] as well as our numeri-
cal results violate the upper bound conjectured by Fisher and
Huse, X~d [2]. As they originally noted, their conjecture
contains many assumptions. Moreover, inasmuch as their ar-
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gument is aimed at the decay of the magnetization, their
conjecture has validity only when the order parameter is not
conserved and when t& =0 [so that S(k, t, )-k ].
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