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Head-on collision of two concentric cylindrical ion acoustic solitary waves
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The head-on collision of two concentric cylindrical, ion acoustic solitary waves traveling in opposite
directions is considered by extending the Poincare-Lighthill-Kuo method to the cylindrical geometry.
The results show that the phase shifts of the solitary waves due to the collision are proportional to r
and depend on their initial positions, where r is the radius measured from the center of the disturbances.
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Ion acoustic solitary waves have been extensively stud-
ied both theoretically and experimentally, resulting in
considerable success in clarifying many aspects of the
characteristics of solitary waves in planar [1—3], cylindri-
cal, and spherical systems [4—7]. For the interaction of
the ion acoustic solitary waves, a series of theoretical and
experimental investigations also have been made. In the
planar case, theoretical predictions [8,9] have been
confirmed by experiments [10—12]. However, for cylin-
drical and spherical solitary waves only the colliding
behavior of nonconcentric solitary waves have been con-
sidered [13—16]. There is no detailed study about the
head-on collision between two concentric cylindrical or
spherical solitary waves [17].

In this paper, we investigate the head-on collision be-
tween two concentric cylindrical ion acoustic solitary
waves based on an extended Poincare-Lighthill-Kuo
(PLK) method.

We consider an ion acoustic wave, that is, a Auctuation
in the ion density of a two-component, collisionless plas-
ma. The ions carry low-frequency density and velocity
Auctuations near the ion plasma frequency, while the
electrons preserve an approximate local charge neutrality
by following the ion motion. Higher-frequency Auctua-
tions near the electron plasma frequency will be ignored.
In dimensionless form the equations of motion are
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where r, 0, and z are the radial, polar angle, and vertical
coordinate, respectively. v„, U&, and U, represent the
components of the ion velocity in the cylindrical coordi-
nate system. V is the Laplacian operator. In the follow-

ing, for simplicity, we only consider the excitations with
cylindrical symmetry and independent of z as in Ref. [4].

Suppose that two cylindrical solitary waves, R and L,
have been excited in the system. The solitary wave R (L)
is traveling outward (inward) from (to) the initial point of
the coordinate system. The initial position (at time t =0)
of the solitary wave R (L) is at r =r~ (r =rL ), rL ))rz
[18]. After some time they interact, following a collision,
and then depart each other. In order to investigate the
head-on collision between the two cylindrical solitary
waves, we extend the PLK method [19—22] to the cylin-

drical geometry. We anticipate that the co11ision will re-
sult in phase shifts in their postcollision trajectories.
Thus we introduce the following transformation:

V /=exp(P) —n, (3)
g =e(r t rlt )+—e Po(ri, r—)+e P, (g, rt, r)+ (9)

where nno is the ion number density, A,ax the space coor-
dinate, toot the time, ( cook, t, )v the ion velocity, and
(k& T/e)P the electrostatic potential. Here no is the
equilibrium value of the ion number density, A,D the De-
bye shielding length of the electron, ~0 the ion plasma
frequency, T, the electron temperature, —e the electron
charge, and kz the Boltzmann constant.

In cylindrical coordinates, Eqs. (1)—(3) have the form

g=e(r+t r~)+e'g, (g—,r)+e'g, (g, g,r)+, (10)

7=E T

where e is the smallness and ordering parameter for the
series expansion and P, and Q~ (j=0, 1,2, . . . ) are the
functions to be determined in the process of our perturba-
tion solution of (4)—(8). Thus for the spatial and tem-
poral derivatives we have
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where f0 and qp are to be determined. Hence in the lead-

ing order we have two waves, one of which, fo(g, r), trav-
els outward, and the other one, qo(rl, ~), inward.

To the order 0 (e) (j = 1), the solution is
Introducing the asymptotic expansion
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and substituting (12)—(16) into (4), (5), and (8), one ob-
tains a hierarchy of linear, inhomogeneous equations:
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where f i ( g, r ) and q i ( rl, r } are to be determined.
To order 0 (e ) (j=2), Eq. (26) reads

with
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with j=0, 1,2, . . . . By (17), (20), and (23), we obtain an
equation for u '
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The third and the forth terms in (32) are not secular
terms in this order, but they will become secular in the
next orders [20—22]. Hence we have

—1~p~= ~qo (35)

Qog=-,'fo . (36)

The first (second) term of (32) will be proportional to g(g)
because the integrated function is independent of q (g).
Thus the first two terms of (32) are all secular terms,
which must be eliminated in order to avoid spurious reso-
nances [20—22]. Hence we have:

4aga„" ay+ a,
c) c} c)+
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j=0, 1,2, . . . .
At the leading order (j=0), we obtain the solution

up=f0(g 7) qp(71, 1 )
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Equations (33) and (34} are cylindrical Korteweg —de
Vries equations. Their single- or multisoliton solutions
can be obtained by the inverse scattering transform [23]
or by Hirota's method [24]. Equations (35) and (36) per-
mit calculating the leading phase changes in the head-on
collision.

Since we are interested in the asymptotic properties of
the collision process, we use the asymptotic solutions of
(33) and (34), rather than their exact solutions, which in-
volve the Airy function [24]. By using the method given
by Kako and Yajima [14] or Weidman and Zakhem [25],
for large ~ we obtain the quasisolitary wave solutions of
(33) and (34):
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where rz =e rz and rL =e rz A. z ( AL ) is the amplitude of the cylindrical solitary wave R (L) at the initial position
r =r~ (r =rL ). From (37) and (38) we can calculate the leading phase changes due to the collision. We have
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where g~, o= —rt~, o=e(rL rz ). The—n we obtain the solution up to O(e ).
We can estimate the phase shifts in the head-on collision process of the two concentric cylindrical solitary waves

traveling in opposite directions. The phase shift hz (b,z ) for solitary wave R (L) is
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when returning to the original variables.
The colliding position of the solitary waves is at

rc= —,'(rz+rr ) and the collision time is tz= ,'(rL rz). ——
If the initial distance between two solitary waves is large
enough, i.e., rL —rR ))1, and the observation time
t ))tc =

—,'(rL rz ), from —(41) and (42) we get
1/3
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Equation (45) is a phase-conserving relation in the col-
lision.

The phase trajectories of the two solitary waves may be
obtained by setting g —Az(rz /r) &=0 (for solitary
wave R) and r) —AL(rt lv)r=0 (for solit. ary wave I.).
For small e they become

t
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(44) for solitary wave E, and
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which satisfy
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for solitary wave I..
From (41}and (42) we see that the phase shifts of two

concentric cylindrical solitary waves due to the head-on
collision are proportional to r ' and depend on their
initial positions, rz and rL. This results is a geometric
effect in the cylindrical system, and it is absent for Carte-
sian solitons. However, the phase-conserving law (45) is a
kind of dynamical effect of the collision. For the phase
trajectories of the solitary waves, both the geometric
effect and the dynamical effect in the same order contrib-
ute to the collision. This can be seen from the second and
the third terms of (46} and (47). Higher-order correc-
tions, not considered here, may give some secondary
structures in the collision event, and postcollision trajec-
tories.

In the limit r~~, the phase shifts experiencing a
head-on collision, given by Eqs. (43) and (44}, reduce to
those of two Cartesian ion acoustic solitary waves. It
suftices to extend the region of radial coordinate from
0&r &+ ~ to —~ &r &+ 00. Then the initial position
for the solitary wave R (L) is rtt = —~ (rL =+ ~ ). Thus
the phase shifts (46) and (47) become b,z ~—e (6AI )'~

and b,L ~e (6AIt )', identical with the results of
Oikawa and Yajima [26] (for water waves see Ref. [21], a
similar result is expected).

In conclusion, our study of the head-on collision be-
tween two concentric cylindrical ion acoustic solitary
waves has shown some new effects, geometric and dy-
namic, given by (43)—(47), respectively, which are absent
for Cartesian solitons. These results, which could be test-
ed in experiments of nonlinear ion acoustic waves in a
plasma, have been obtained by extending the PLK
method to the cylindrical geometry. Needless to say this
extended PLK method can also be applied to the study of
the head-on collision between two concentric spherical
ion acoustic solitary waves and other physical systems.
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