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Pattern forn1ation in a vibrated granular layer
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We report experiments on a vibrated bidimensional granular layer showing peak pattern for-
mation. We measure the dispersion relation and observe two regimes of pattern selection: at low
frequency, a parametric excitation of vertical shearing waves, and at high frequency, a crossover to
a pattern selection with a constant wavelength. The amplitude of the patterns is proportional to
the amplitude of vibration. We study the instability onset at high frequency and we find evidence
of burst waves taking place in a subcritical region de6ned by two acceleration values.

PACS number(s): 47.54.+r, 46.10.+z, 47.20.—k, 83.70.Fn

The dynamics of noncohesive granular assemblies such
as sandpiles has been an object of interest in recent
years [1]. This interest is due to the rich phenomenol-
ogy and the fundamental questions this system raises.
In opposition to usual solids or fluids, the energy dissi-
pation takes place at the level of granular contact (the
microscopic level here) and sets this material into a new
class of physical behavior. When submitted to verti-
cal shaking, noncohesive grains show many diKerent re-
sponses. Phenomena such as surface fluidization, con-
vection rolls, heaping collective block motion, spatial de-
fects, and surface waves have been reported either on
three-dimensional (3D) granular systems [2—6] or in re-
duced dimension model media [7—10]. Recently, Melo et
al. [11]observed, from the top of a cell in 3D, the forma-
tion of surface patterns such as stripes or squares, due
to a parametric excitation of the layer, just as in experi-
ments with Buids ([12] [13] and references therein). Note
that parametric excitation studies are of fundamental im-
portance since they constitute a unique experimental way
to access directly the modes of transport of macroscopic
granular assemblies and provide a crucial data set for
future theoretical investigations.

Here we report on measurements performed on bidi-
mensional layers of aluminum beads. We study in detail
the dispersion relation for diKerent layer heights and we
visualize the bulk motion. We show diKerent regimes
of parametric amplification and pattern selection. We
study the amplitude of the pattern and we show how it
is related to the amplitude of the excitation. In the high
frequency regime, we study the onset of pattern forma-
tion. Experiments in 2D of the type we present here
oKer a good chance for contact with ongoing computer
simulation investigations.

Our experiments are made with aluminum spheres of
diameter d = 1.5 mm. %'e use cells with horizontal width
I = 150 mm and I = 300 mrn. The cell is shaken with
a vertical trajectory: y„(t)= a sin mt We visualize u. sing
a charge-coupled device (CCD) video camera connected
to an image processing device. The shaker operates from
f = 6 Hz to f = 25 Hz with accelerations I' = a~ /g
up to I' 8 (g is the gravitational acceleration). The
normal-impact coefEcient of restitution for our spheres is
about e = 0.6 for velocities around 1 m/s. For this dissi-

pation parameter and for a layer of typical height at rest,
II = ~3/2&gd (triangular piling with Kh bead layers),
numerical studies indicate [14] that, for Kp, ) 2, no Bu-
idization is expected. Note that a fluidized layer would
be obtained in the limit (1 —e)Nh, ( 1 (see [15] and ref-
erence therein), as in experiments with steel beads [10].
The relative acceleration I' is a fundamental control pa-
rameter since theoretical studies [16] show its relevance
for the response of a totally inelastic block on a vibrat-
ing plate (zeroth order description of a large assembly of
inelastic particles). Experimentally, for moderate accel-
erations (1 ( I' ( 2.5), the layer stays compacted and
undergoes roughly the trajectory of a totally inelastic
block. Two limiting cases of solid friction may be consid-
ered: p = 0.2 (low friction) and p = 0.8 (high &iction).
At this point, we note that changing the cell length and
the friction coefficients did not influence noticeably the
forthcoming experimental results. For beads with higher
friction, convection rolls show up, generated by friction
with the lateral boundaries and limited in extent to sizes
of the order of Nh layers in depth. The eKect of shear-
ing by lateral boundaries has been studied elsewhere [8].
Here, we are interested in phenomena taking place far
from the boundaries.

For large accelerations, a surface instability shows up
as an array of peaked structures separated by a typical
wavelength A. We observe three major features.

(i) During the "free" Bight (ignoring boundary efFects),
the amplitude of the peaks grows until the bottom plate
hits the layer.

(ii) The layer is carried upwards by the plate and the
peak amplitude relaxes.

(iii) The peak positions alternate i.e. , a minimum cor-
responds to a Inaximum in the next period. In Fig. 1, we
show two typical pictures of the peak pattern, for %h ——9
beads at an acceleration I' = 3.4. The snapshots are
taken at a moment of the phase when the layer bottom
hits the cell after the free Bight. Figure l(a) is obtained
at an excitation frequency f = 7.8 Hz and Fig. 1(b) is at
a higher frequency, f = 12 Hz. Figures l(a) and l(b) are
rescaled since we have Aq/A2 . 2. A crucial remark here
is the presence of an arching height l between the bottom
of the cell and the apex of the arch. In the top view, /i is
of the order of several tens of bead. sizes and in the lower
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FIG. 1. Snapshot of the surface instability for Nh, ——9 lay-
ers of beads and acceleration I' = 3.4. The dots are the center
of the beads. (a) f = 7.8 Hz; (b) f = 12 Hz. The pictures
are not drawn at the same scale: AI ——2Ag.

previous dispersion relation since their data would give
A*(d = 1.5 mm) 5.8 mm and g* 1.1 m/s2 when
used with our empirical law. Note that in view of the
small range of frequencies and layer heights, the previous
fit must be considered as strictly empirical since, so far,
no complete theoretical account of the phenomenon has
been proposed.

Alternatively, a natural idea is to consider the disper-
sion relation in analogy with gravity waves in fluids [20].
The dispersion relation is in this case u = gk tanh(IIk).
Note that such a relation has been recently suggested in
the context of granular layers [19]. To test this idea, we
plotted on the inset of Fig. 2(a) w /gk as a function of
Hk. Though there is a tendency for data clustering, no
obvious hyperbolic tangent behavior is evidenced. Fur-
thermore, this display shows a clear discrepancy in the

view l d, i.e. , the bead size. The value of l is decreased
when the frequency is increased. In all higher frequency
experiments (typically larger than 10 Hz), variations of
the bottom layer position are of the order of d. Never-
theless, and for the numerous pictures we have taken, it
is unclear whether we still have an arch forming or if we
have merely a bottom layer random fiuctuation. For a
thin 3D cell, a parametric instability has been reported
by Fauve et al. [4], showing a fingering pattern, but little
quantitative information has been extracted [17]. Note
that we observed similar shapes for thin layers [18]. Ob-
servation of resonant waves in small boxes has recently
been reported [19]. We have studied the dispersion re-
lation of the pattern selected for difI'erent layer heights,
ranging from Nh = 3 to Nh, = 16, for 7 & f & 20 Hz. For
lower value of the column height (Nh & 3), we do not find
a clear pattern formation but rather a fiuidized regime.
Since the values of A fiuctuates in time, a statistical av-
eraging is performed and is the origin of error bars that
can be as large as 15%%uo. We present in Fig. 2(a) a study
of the dispersion relation for the wavelength measured,
tvhen the peak patterns are visible. In Fig 2(a), the wave
length A is plotted as a function of 1/f We find a c. lear
dependence of the wavelength on the frequency.

(i) Now let us consider the measurements made for
4 & Nh & 9. A first set of measurements was per-
formed with 3 ( I' ( 4.5. In this acceleration range,
the frequency of kicks with the bottom plate is locked
on the period and the free Bight value is roughly one
half of the period. The corresponding data of Fig. 2(b),
for a given %h, group apparently around a straight line.
An important feature is a finite limiting value of A in
the asymptotic limit f ~ oo. We tried an empiri-
cal estimate to fit this regime and. we obtained in this
limited range a satisfactory agreement with an empir-
ical law: A/QNh = A*(d) + g*/f2 with A*(d) = 7.2
mm and g* = 1.05 m/s2. Note that in 3D experi-
ments, Melo et al. [11] have reported for their patterns
A —Ao~(d) = K(Ãh)/f with a coefflcient K(Nh) in-
creasing with %hand saturating at larger heights. They
also find an ofI'set value depending on d. Using their em-
pirical determination A ~(d) = lid for a layer height0 = 7d, a remarkable agreement is obtained with our

m'/g k

6

&00
0

I
'b. ~o O

O-
O O.

O.

2
Hk

I

80
E
E
g 60

40

20

rX
e rr

r
r

~ -X' 1.
g/ 0

rX
Qw

Q
rX r r

p

o P

0 0.01

1/f (s ')
0.02 OQ3

50

40

30

E
E

gz
20

10

0 0.0300.020
1/f'(s ')

FIG. 2. Dispersion relation for 3 & Nh & 16:Nh = 3 (0);
Nh, 4 ( )j Nh 6 ( A)j Nh 8 (x); Na = 9 (~)j¹ = 16 (4). (a) Wavelength A as a function of 1/f for
3.3 & I' & 4.2. The inset is the scaling plot u /gk as a func-
tion of Hk (b) Rescaled wavelen. gth A/QNh as a function of
1/f . For 3.3 & I' & 4.2, many symbols overlap; the solid line

y = 1.05x+ 7.2 is a fit. Symbol (~ ) is for: I' 7 and Nh, = 9,
the dashed line is y = 4 x 1.05x + 7.2. Symbols for Np, ——16
(f) are connected by dashed segments as a guide to the eyes.
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FIG. 3. Wavelength A as a function of the acceleration I'
for Nh, = 16: f = 12.3 Hz (I) and f = 15 Hz (~).

case of higher frequencies, corresponding to a wavelength
saturation.

(ii) A natural idea emerging from Fig. 1(a), would be
the existence of a growth instability of vertical shearing
waves developing during the free flight trajectory of the
layer. Since the shocks with the bottom plate take place
at a constant pace, a specific modulation wavelength is
selected and amplified parametrically. The instability is
such that the longe@is the free flight, the Largeris the arch
amplitude l and the larger is the selected toavelength A. A
consistency test of this qualitative interpretation scheme
is provided by the response of the system when excited
at higher accelerations. For I' ) 6, a transition takes
place to a regime where the frequency of kicks with the
bottom plate is twice as large as the period of excitation
[16,3] and the free Hight time is one period larger than
in the previous acceleration range. Some of the resulting
data points are reported in Fig. 2(b) for Nh, = 9 (empty
symbols). Obviously they do not fall on the master curve
[solid line] but considering now that the efFective excita-
tion frequency is one half of the fundamental frequency,
we predict those points should fall on the curve (2) which
has a slope four times larger. The agreement is satisfac-
tory.

(iii) We observe also that the high frequency saturation
is not necessarily obtained in the infinite frequency limit.
For instance, for Nh ——16 we obtain a pattern selection
with a wavelength saturating at a constant value inde-
pendent of the frequency for frequencies larger than 9 Hz.
The wavelength saturation values increase with the num-
ber of layers. Apparently, there is a typical time r(%, d)
separating the two regimes. In Fig. 3, the wavelength A

is plotted as a function of I', for a fixed value Kh ——16
beads, for accelerations I' = 3 to I' = 4.5, and for fre-
quencies between f = 11 Hz and f = 25 Hz. We observe
that once the pattern has developed, the wavelength is
indeed a constant: Ap = 55 + 10 mm. The fluctuations
are obtained from statistical averaging for 40 snapshots.

A problem subsists for the assessment of the physics
behind the wavelength high frequency saturation. Our
experimental results cannot determine whether the pat-
tern formation is produced by a remanence of the arching
eAect for which l d or if a new phenomenon, yet to be
discovered, is taking over.

Now we address the question of the pattern amplitude.
In Fig 4 we report the maximum amplitude P of the
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FIG. 4. Maximal amplitude of the pattern P „asa func-
tion of the amplitude of excitation a, for 3.3 ( I' ( 4.5. The
straight line is P „=4a. Nh, = 6 (+), NiL = 9 (~ ), Ng = 11
(k ), and Ni„=16 (R). The inset shows the definition of P.

peaks (obtained at the phase of contact with the bottom
plate) for 3 ( I' & 4.2, as a function of the amplitude of
excitation. For numerous measurements, with diferent
excitation conditions and layers of beads, a data collapse
is obtained on the linear relationship P 4a. A conse-
quence is that, at constant acceleration, the phenomenon
is bound to fade away at high frequency because of the
finite grain size. This important result can be interpreted
as follows. The peak formation is attributed to a veloc-
ity di8'erence Lv between the zone where a peak devel-
ops and the zone where it does not. In the phase of free
flight, a deformation builds up with a growing amplitude
P trav until the impact with the bottom plate, after
a free 8ight time t „1/w. If we estimate the veloc-
ity difference to be of the order of the impact velocity
V p t aw, we obtain P t Lv a. This rea-
soning is a rough scaling estimation which does not take
into account more subtle eÃects where the impact ve-
locities and the times of flight may be more complicated
functions of the acceleration. Also it ignores that beyond
the threshold of subharmonic bifurcation (I' 3.3), the
time of free flight may vary from one period to the other.
Note that the value 4 of the slope corresponds to a veloc-
ity difference of the order of V; ~,t/2. Data for higher
amplitudes are taken in the lower frequency regime. So
it seems that this interpretation is very general and that
the slope value is only weakly dependent on the layer
height. .

Now we study the instability onset in the higher fre-
quency regime. For a layer Nh —— 16, we report in
Fig. 5, measurements of the order parameter, i.e. , the
ratio P „/a,as a function of the relative acceleration I".
For I'+ ) 3.2 + 0.1 the regular pattern is fully developed
and rather stable with P „/a 4. Note that this accel-
eration is comparable to the acceleration threshold found
by Melo et al. in 3D (in the low frequency limit, though)
and is close to the onset of the first subharmonic bifurca-
tion for the one-inelastic-bead problem. There is a whole
region between I' = 2.7 + 0.1 and I"+ ——3.2 + 0.1 where
the pattern is not stable and for which the wavelength is
not well defined. We notice for the same conditions of ex-
citation the presence of undeveloped patterns (horizontal
layers), collection of uncorrelated bursts, and ultimately



53 BRIEF REPORTS 2975

5 e ~
I ~

'I P
~ p

~ ~

I ~

(Q 4 4 ~

X
3 ~ ~

CL

0
2.3

f ~
~ L

I

e

2.7r-
3. 1

I ~ I ~

I ~

qa

3.9

FIG. 5. Instability onset P „/aas a function of the accel-
eration I': a = 58 mm (~ ) and a = 48 mm (I).

we observe the intermittent occurrence of a solitary burst
(see inset of Fig. 5). In this region, we also report the
maximal height of all the patterns and we still find, even
for the solitary burst, an average value of P „/a 4.
By varying the excitation frequency between f = 10 Hz
and f = 20 Hz, we show that this threshold region is
governed by the value of the relative accelerations only.
The acceleration I' is the lower limit for which a burst
is still observed. The onset of the pattern formation has
the features of subcritical bifurcation with a rather large
noise amplitude. An important point is to realize that,
when we reach an acceleration where a matching veloc-
ity exists between the &ee flight of the layer and of the
vibrating plate (I 4.5), the phenomenon stops, and
then resumes for larger acceleration (I' 6). We are
aware that in this presentation we did not discuss the
influence of the subharmonic responses of the layer tra-

jectory, spatial phase defects, the threshold dependence
on the number of beads, etc. We leave these points for a
more detailed presentation taking place elsewhere [18].

In this Brief Report, we report experimental measure-
ments on a vibrated bidimensional granular layer. We
study the response for diferent shaking accelerations and
layer heights. We observe, in this geometry, a pattern for-
mation and two regimes of pattern selection. At low fre-
quency of excitation, we obtain a parametric excitation of
vertical shearing waves with a wavelength dependent on
the frequency of kicks (which can be locked on several pe-
riods of vibration of the shaker). The larger the layer free
flight, the larger the vertical deformation of the layer and
the larger the wavelength selected. The dispersion rela-
tion is shown to behave consistently with previous results
in 3D [11]. We tested our results with respect to a sirn-
ple fluid gravity wave dispersion relation and we found
no clear evidence for the proof of this mechanism. For
frequencies larger than a crossover value (which can be
very large), we see evidence of another pattern selection
scheme with a wavelength saturating at a value indepen-
dent of the excitation frequency. For example, at a value
of the layer as large as 16 beads, we directly probed this
regime. We show that the amplitudes of the patterns are
generally proportional to the amplitude of vibration. In
the saturated regime, we study the instability onset and
we show burst waves taking place in a subcritical region
limited by two acceleration values.
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