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Solution of the Fokker-Planck equation for reactive Rayleigh gas
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A Rayleigh model of heavy molecules diluted in a thermal bath of light molecules is extended to in-
clude a chemical reaction between both species. The solution of the appropriate Fokker-Planck equa-
tion for the distribution function is obtained from the corresponding solution for the nonreactive mix-
ture. In the hydrodynamic regime the shape of the velocity distribution of heavy molecules is Maxwelli-
an, but with a temperature di6'erent from that of the carrier gas. Exact results are derived for the reac-
tion rate constant and diff'usion coeKcient.

PACS number(s): 51.10.+y, 82.20.Mj

A number of kinetic theory studies of reactive gaseous
systems were concerned with efFects related to a deforma-
tion of the equilibrium Maxwellian velocity distribution
by a chemical reaction. This generic name denotes
corrections to the quasiequilibrium reaction rate constant
[1—3] and to the linear transport coefficients [4—7], which
both can be calculated by means of the Boltzmann equa-
tion. Due to difhculties in treating the collisional in-
tegral, it is inevitable to resort to approximate methods of
solution, like perturbation technique [1,2,6,7], limited
moment expansion [4,5], or numerical simulation [3].
The results obtained in this way are applicable to chemi-
cal reactions relatively slow compared with a relaxation
process. The complex Boltzmann integral can be
transformed to a much simpler Fokker-Planck (FP) form
in the case of the Rayleigh model system, which consists
of a foreign gas 3 diluted at a very low concentration in a
carrier C (a thermal bath) with the essential condition
(m „/mc )' ))1 for the ratio of molecular masses of the
species. This paper presents a solution of the kinetic
equation for the reactive Rayleigh gas; in particular, ex-
act results for the reaction rate constant and diffusion
coeKcient are derived.

In the Rayleigh system complemented by the chemical
process, the species are mutually involved in an irreversi-
ble reaction 3 +C—+I', where the product is neglected
because of its low concentration. It should be em-
phasized that the reactive system is constructed from the
nonreactive one in such a way that a part of originally
elastic collision is switched to become reactive. Under
this procedure, the original cross section o.

o in the non-
reactive system is divided in the reactive system into a
part cr, for elastic collisions and a part o.* for reactive
collisions, with the constraint oo=cr, +o.*. For con-
creteness, the molecules are treated in the following as
reactive hard spheres of diameters d z and dc, respective-
ly. In this system the distribution function f (r, v, t) of
position r and velocity v of molecules 3 obeys the follow-
ing Boltzmann equation [6(b)]:

df .df, M M+v' =nc f (f'4c ffc)lv cvl do trdcv
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where nc denotes the concentration of the carrier C, and
, 3/2
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The friction coefficient in (3) is
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where d =(d„+dc)/2 is a collisional diameter, and
p=m~mc/(m~+mc) is a reduced mass. Similarly, one
can transform the integral for reactive collisions, either
by calculating the transition probability kernel [9,10], or
in the more traditional way proceeding with the expan-
sion

is the Maxwellian distribution of velocity v~ of molecules
C at temperature T (k denotes the Boltzmann constant).
The primed distribution functions are calculated for
postcollisional velocities. The first term of the right side
of Eq. (1) has the same form as the collisional integral for
the nonreactive system. The respective second term ac-
counts for the chemical reaction, and expresses a
de6ciency of molecules which appear with the postcol-
lisional velocities, but instead are transformed into prod-
ucts in reactive collisions, after hitting the reactive part
o.* of the cross section.

For the whole spectrum of the molecular mass ratio,
only the approximate solution of Eq. (1) has been ob-
tained previously [6b] by means of the perturbation
method. In the Rayleigh limit the collisional integrals
can be approximated by the di6'erential FP form. The
transformation relies on the fact that a change of ve1ocity
in a single collision, v' —v, is scaled by the small pararne-
ter (mc /m ~ ) . The well-known result for the nonreac-1/2

tive term has the form [8]

nc f (f'pc~ fyMc)lv vcldcrodvc—
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e is a unit vector along a line connecting centers of mole-
cules at the instant of impact. According to inequality (6)
it is a necessary condition for reactive collision that the
relative energy of colliding molecules exceeds the definite
threshold value, which in a dimensionless form can be
written as

where g is the equilibrium Maxwellian velocity distribu-
tion of molecules A [Eq. (2) with the obvious replace-
ments]. Integral (S) is calculated for the line-of-centers
model, which assumes that a collision is reactive with the
probability s& if it satisfies the condition

has the usual FP form, but the friction coe%cient is
modified by the chemical reaction and its erat'ective value
is

/=go[1 —s/ exp( —E)(1+E)] . (12)

Equation (10) has a physical sense only if /&0, otherwise
there is no effective relaxation mechanism for f. In the
latter case, condition /=0 is satisfied only for s&=1 and

c =0, meaning that every collision is reactive.
The solution of Eq. (10) is simplified considerably by el-

imination of the component of the reactive term propor-
tional to v . This can be done via substituting the distri-
bution function in the form

pg
2kT

(7) myU 2

f (r, v, t)= exp 5 F(r, v, t),2kT
(13)

2Plgv mc f+v* 1+(—,'+ E) 1 —-
3kT m&

For the above reaction model, integral (S) has the follow-
ing form:

nc ff'f'c lv

f kT df
Bv my Bv

in which the exponent 6 is calculated as

1 —
s& exp( —E ) /26=—

2 1 —s/ exp( —E)(1+E)

The resulting equation for the function Fhas the form

+v =J„'p(F) (v' —3/5 )F- ,
Bt Br

where the FP term is given by

(15)

where g*=g~&exp( —E)(1+E) is a contribution to the
friction coeIIIicient, and

' 1/2
SkT

nc~d sI exp( —e) (9)
KP

is the frequency of reactive collisions calculated for the
Maxwellian velocity distribution g . The factor
s&exp( —E) controls the intensity of the chemical process.
The terms up to the order mc/m„were retained in ex-
pansion (8) to adjust with the order of dissipative term
(3). Using approximations (3) and (8) for the collisional
integrals, the FP equation for the reactive Rayleigh gas
can be written as

J„'p(F)=g(1+25) vF+ kT BF
Bv m~ 1+25 Bv

(16)

The form of Eq. (16) implies the use of renormalized fric-
tion coefficient g' and temperature T',

g'=g(1+25), T'= T
1+26 (17)

The second component on the right side of Eq. (1S) is of
purely chemical origin, and corresponds formally to a de-
pletion of molecules 3 by the reaction proceeding at a
rate a, independent of velocity,

a= —(v* —3(5 ) .
af af
Bt Br

=Jpp(f) —v* 1+(—,'+c, ) 1—
2
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The well-known [11]fundamental solution F' of the part
of Eq. (15) forming the ordinary FP equation (with g' and
T' as effective parameters) provides the solution of the
entire Eq. (1S),

where the linear di8'erential operator F(r, v, t)= exp(at)F'(r, v, t) . (19)

JFp(f) =4 ~„vf+ Pl g BV

Formally, the e6'ect of chemical reaction consists in the
change of the parameters of J„'p according to Eq. (17),
and introduction of the factor decaying exponentially
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where X is a normalization factor with respect to scalar
product (20). Thus in the hydrodynamic limit the veloci-
ty distribution of molecules 3 has a Maxwellian shape
with the eftective temperature

The eigenvalue A,0=a associated with $0 determines the
rate of decline of the hydrodynamic solution; that is, the
rate constant for the irreversible, (pseudo) first order re-
action consuming molecules A. As the separation of A, o
from the next nearest eigenvalue is A, ,

—
A, o~

=g', the hy-
drodynamic solution is valid for t » I/g'.

In the analysis of the nonuniform system, inhomo-
geneities are treated as infinitesimally small spatial per-
turbations. This approach leads to exact results for
difFusion, which is a linear response to the spatial inho-
mogeneities. Following Resibois [12], it is convenient to
consider the spatial Fourier decomposition

P( q, v, t ) =I exp( iqx )f(x, v, t )dx—, (23)

with time. The solution of Eq. (10) is then found from
Eq. (13).

The hydrodynamic approximation is obtained from the
kinetic description in the limit of long time and soft spa-
tial inhomogeneities. The following treatment of the hy-
drodynamic regime is based on the perturbative method
of Resibois [12]. Let us first consider Eq. (10) for a reac-
tive but homogeneous system. As the FP operator (11) is
self-adjoint in the scalar product defined by

&ylq)= Jy( )q( )[q ( )] (20)

the distribution function f can be expanded in a series of
eigenfunctions of the operator of the right-hand side of
Eq. (10). By means of Eq. (13) these eigenfunctions are
generated by the eigenfunctions of the right side operator
of Eq. (15), which in turn are exactly the familiar eigen-

functions of the FP term Jip itself [12], since the remain-
ing (reactive) part introduces multiplication by the simple
factor o.. The corresponding eigenvalues for both equa-
tions are the same, and can be presented as A, „=A,"„+o.,
where IA, „" I is the well-known spectrum of the FP term
given in the form of J„'p. The hydrodynamic solution is
furnished by the eigenfunction associated with the largest
eigenvalue, which provides the slowest decaying rate.
This condition evidently selects A,o =0, and the associat-
ed eigenfunction of JFP is the Maxwellian with the tem-
perature T', which yields the corresponding eigenfunc-
tion of Eq. (10) in the form

mgU mdiv
2 2

q ~0, can be treated by the perturbation technique
adopted from the quantum theory. The perturbed hydro-
dynamic solution can be written as [12,6]

PI, (q, v, t) =Q exp((a —Dq )t )$0(q, v), (24)

where Q is U and t independent, and —Dq =b,A, O is the
(second order) correction to the unperturbed eigenvalue
A,o=o;. Calculation of AA, o closely follows the standard
method [12,6] with only minor modifications, and
without going into computational details one can pass to
the final result

D = —(U„fo~(JFp+R —a) '(U„fo)), (25)

(28)

Evidently, o; is identified as the reaction rate constant,
and D as the diffusion coeScient.

The corrections to the rate coe%cients induced by the
chemical reaction are related to the deviation of the ve-
locity distribution from the equilibrium Maxwellian g
The relative correction to the quasiequilibrium reaction
rate constant, e = —v*, is given by

——(1+v) 5
1 2

SI exp( s)
(29)

The corrections to the unperturbed di6'usion coe%cient,
Do =kT/m„go, and to the temperature of species 2 (re-
lated to the mean kinetic energy per molecule), are, re-
spectively,

D Do s/ exp( —E)—
(30)

Do 2 —s~ exp( —E)
'

Tg T
T

(31)

It is only the correction g which vanishes as
mc /m „—+0. In the limit of slow reaction,
s/exp( —s) (& I, the above equations confirm the results
derived by the perturbation method [6(b),13]:

sI exp( —e)( —,'+ e)2, (32)

where R is the reactive term of the operator of right side
of Eq. (10) [so that J„p+R is the complete operator of
the right side of (10)]. Calculation of (25) is easily per-
formed, as U„go is the eigenfunction of J„p+R,

kT'D=
m„g'

The hydrodynamic equation associated with FP equation
(10) governs the concentration of molecules

n(x, t)= If(x,v, t)dv . (27)

It is readily found that n (x, t) calculated from the hydro-
dynamic solution (24) satisfies the equation

assuming that the nonuniformity is only x dependent.
Transformation (23) in Eqs. (10) and (15) changes only
the term which accounts for the spatial inhomogeneity,
and its resulting form iqu P in the hydrodynamic regime,

y~
=—,'sI exp( —c, ),

8~ = —
—,'s& exp( —c, )( —,'+e) .

(33)

(34)
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It is interesting to note that the diffusion coefBcient is
increased in the reactive system, while the corrections to
the temperature and reaction rate constant are negative.
As discussed previously [6], the decrease of Tz and a can
be explained by the fact that the studied reaction model
preferably consumes molecules with a higher energy.
However, Eq. (26) indicates that the diffusion coefficient
is affected both by cooling of the reactant and by the
modification of the friction coeKcient, which according
to Eq. (12) is smaller in the reactive system. As this
second factor prevails, the resultant correction to D is
positive. To find a physical explanation for the decrease
of g, one can notice that only the elastic collisions con-
tribute to the friction mechanism, and that the magnitude
of the force is proportional to the frequency of collisions.
In the system considered, introduction of the reactive col-

lisions reduces a number of the elastic collisions. More-
over, the reactive collisions preferably substitute the elas-
tic collisions in which velocities of molecules are op-
posedly oriented (that is, v.vc &0), because condition (8)
for the reaction favors this configuration. This is the
kind of collisions which oppose the motion of a molecule

and actually form the friction force. With a
significant deficiency of the appropriate elastic collisions,
the effect of weakening of the dissipation mechanism can
dominate the opposite infIuence of a lowering of the mean
thermal velocity of molecules. While this relation be-
tween the both factors holds in the Rayleigh limit, it can-
not span the whole range of the mass ratio. At least for
the Lorentz range m ~ /mc && 1, the perturbative solution
of Eq. (1) predicts the prominent negative correction for
the diffusion coefficient [6].
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