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Generalized Lyapunov exponents for products of correlated random matrices
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We give the exact expressions for the generalized Lyapunov exponents of products of random
matrices extracted with a Markovian rule. In analogy to the uncorrelated case, these expressions are
obtained via a replica trick method, and exponents are given by the largest eigenvalue in modulus of
appropriate matrices. As an application we study the distribution of the electronic dc conductance
in the random dimer model, which is of interest because it possesses an extended state. We find that
in the vicinity of this state the distribution is lognormal and characterized by one single parameter,
which is the localization length.

PACS number(s): 05.40.+j, 72.10.Bg, 71.23.An

Products of random matrices play an important role in
many areas of physics [1], such as, for example, magnetic
disordered systems, chaotic dynamical systems, and elec-
tronic, vibrational, or optical disordered systems; gen-
erally speaking, in all systems which are described by
coupled linear equations with random coeKcients. For
instance, the dc conductance of a disordered electronic
system can be obtained, by means of the Landauer for-
mula, from the knowledge of the maximum character-
istic Lyapunov exponent of the product of appropriate
random matrices. The maximum Lyapunov exponent of
a similar product of random transfer matrices is related
to the thermodynamic properties of one-dimensional ran-
dom Ising models. In addition, a first approximation of
the behavior of chaotic systems can also be obtained in
terms of products of convenient random matrices.

At the same time, the dynamics of these systems can
be sensibly affected by the presence of correlation in the
disorder [2]. Development of computing techniques ap-
propriate for these cases is therefore important for the
understanding of the consequences of disorder correlation
on the system properties. In this Brief Report we derive
the expressions for the generalized (maximum) Lyapunov
exponents of a product of random matrices when finite
range correlations are introduced in the disorder through
a Markovian process.

The generalized Lyapunov exponents describe the fluc-
tuations of the Lyapunov exponent due to finite system
size, i.e. , when only a finite number of matrices is in-
volved, and also those of some non-self-averaging quanti-
ties in infinite systems, such as dc electronic conductance,
as we shall see below. Averages over realizations of dis-
order are obtained via a replica trick, generalizing the
method which is used in the uncorrelated case [3,1]. In
order to see how this works in practice, we use our results
for computing the electronic dc conductance g of the ran-
dom dimer model [4], which is a one-dimensional model
with correlated disorder that is particularly interesting
because it is a one-dimensional random system with an
extended state. It turns out that, for energies approach-
ing that of the extended state, g possesses a lognormal

probability distribution described by a single parameter,
the localization length.

The (maximum) Lyapunov exponent of an infinite
product of random matrices is a nonrandom quantity,
describing the rate of exponential growth of the largest
product's eigenvalue when the number of matrices in-
volved approaches infinity. It is defined as

1 A~A~ g A2Aguo
lim lnN' N' uo

It can be shown that A = lim~~p BI (q)/Bq, and
Eq. (2) implies that for a large enough K (~uiv/up~ )

exp[RE(q)] (with uiv = AivAiv i A2Ai). This
quantity constitutes the continuation of the character-
istic function (e'" ) to imaginary values of k with x =
~uiv/up~. Owing to the central limit theorem, finite
fluctuations of A~ for large 2V are generally well approx-
imated by a Gaussian distribution,

P(A~) = (A~ —XA)2
exp

/2vro2 2lVa'' )
However, for large values of the argument (Aiv —NA),
such a distribution can fail in describing the tail of the
actual distribution and cases are known in which this

where A; are random d x d matrices, uo is a generic vector
of R, and ( ) is the average over the possible realizations
of disorder. It can be shown under very general assump-
tions [5] that A is a self-averaging quantity, so that the
brackets in the above expression can be dropped in al-
most any realization. On the other hand, when only a
finite number of matrices is considered the corresponding
exponential growth rate A~ can display very large sample
to sample fluctuations. These fluctuations can be char-
acterized through the generalized Lyapunov exponents,
which in turn are related to the exponential growth rates
of the moments of the matrix product:

q
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X . B(E2)T(E2, el)B( el) PI( el)

where T(e~ E~ ) ls 'the sf ocllastlc IIlatl'lx element, glvlIlg
the conditional probability of getting A(e;) after A(e~).
The sum is extended over all the possible sequences {e,f,
and Pi is the probability for the sequence to start with

Let us now introduce the matrix V whose elements
Y'(l, e; l', e') are given by

Y(l) e; l', ~') = B«~ (e)T(&, & ). (6)

This is an Ld~ x Ld~ matrix in which we preserve the
indices of the parent matrices for more clarity in compu-
tations. For increasing N, the average Eq. (5) becomes
less and less dependent on the initial matrix B(el)Pl (el).
For this reason, we can choose PI(el)—:P T(el, eo),
and rewrite the above equation as

((XN')I &
= ) ) Y (l eN, , m eo)

&o

so that, at least for even q,

(IT [XN 'll& = (T [XN ']&

&N eo

For large N, the last expression is dominated by the
largest eigenvalue y(q) in modulus of Y, that is,

discrepancy affects also the core of the distribution [1].
Therefore in general A and o are not suFicient to fully
describe the probability distribution of AN, and only rep-
resent the first and second order terms in the Taylor ex-
pansion of I (q):

I(q) = Aq+ —a q +1 22
2

We are interested here in finding expressions for com-
puting I (q) in the case of Markovian correlated ran-
dom matrices. Apart from exceptional cases, the prod-
uct in the Eq. (2) is dominated for large K by its
largest eigenvalue in modulo. Thus I (q) can be deter-
mined by computing lilnN K I ln(l Tr XN I'I&, with
XN = ANAN I . A2AI [3]. Moreover, we can use the
identity (holding for any matrix M and for positive in-
teger q) (Tr M)~ = Tr( M ~), where I3 indicates the
direct product, and

M~ = Mg Mg. . . g M.
q times

The point is now to evaluate the average (ITr( XN ~) I).
Let each matrix be identified by an index e, and let e;

be chosen from a discrete set of L values. By defining for
shortness B = A~, in the case of a Markovian correlated
process the average of XN~ is obtained as

(XN ) = ) B(eN)T(EN)EN 1)B(EN 1)T(eN I, CN 2)
(e')

and the generalized Lyapunov exponents are given by

L(q) = lnl~(q) I. (8)

Equation (7), obtained for q even, is valid for every inte-
ger q whenever Y;z ) 0, Vi, j. In the case of independent
matrices, the stochastic matrix T(e, e~) reduces to a ma-
trix with identical columns, and it is easy to verify that
the usual expression [3,1] for uncorrelated disorder is re-
covered.

The expressions of the generalized Lyapunov expo-
nents derived above can be used, for instance, to study
the dc conductance statistics of electronic systems with
correlated disorder. As an example we consider here
the random dimer model [4], which has been introduced
for explaining the exceptionally high electronic trans-
port properties of some conjugated polymer chains [6],
and which is particularly interesting because it is a one-
dimensional disordered system with an extended state.

The stationary equation for one electron in one dimen-
sion in the base of the atomic orbitals can be written in
the matrix form

where

Here E is the system energy, e the site energy, and @
plays the role of the wave function amplitude at site n;
moreover i ) 1 and go ——0. The typical conductance s
at T = 0 for a system with Fermi energy E and length
N )) 1 is given by the Landauer formula [7]

28= eqe —2NA

6

where q, is the charge of the carriers, h, the Planck con-
stant, and A the Lyapunov exponent of the matrix prod-
uct appropriate to the electronic system. It is well known
that the typical conductance of a disordered electronic
system s = exp( —(lng)) is a physical quantity that can
be considered statistically meaningful, whereas on the
other hand the conductance g itself can exhibit very large
fluctuations, leading eventually to a distribution function
with infinite variance [8]. The self-averaging properties
of s are a direct consequence of those of A, Eq. (1),
whereas the probability distribution of g can be charac-
terized through its moments (g I& that, in analogy with
Eq. (10), are also related to the generalized Lyapunov ex-
ponents Eq. (2). Thus calculation of conductance statis-

(IT [ xN ']I& = ~le(q) I,
where a is a constant independent of N. Therefore we get
Anally

»m —ln(IT XN I'& = »m —'nT ~ =»lv(q)l
1 1

N~~ N N~~ 1V

(7)
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ties essentially consists in computing I (q).
In the random dimer model the site energy e;, Eq. (9),

assume randomly two values, e and ~b, but one of them,
say eg, can appear only in pairs. When ep is in the energy
band of the pure e system (i.e. , e —eb ~& 2), such a
random model possesses one extended state at the energy
E0 ——ep, and exhibits quantum diffusion, which on the
contrary does not take place in one-dimensional systems
with uncorrelated disorder [5,9]. This is therefore a very
remarkable example of how Markovian correlations can
modify drastically the properties of disordered systems.

It can be verifi. ed by direct inspection that for the ran-
dom dimer model the transition matrix of the Markovian
process is

f p
1 —p 0 1 —p

O 1 O )
The matrix element T /3 yields the probability of hav-
ing a site of type n after one of type P. Here p is the
probability of having e, which can appear only after an
integer number of ~b pairs, or after another e . On the
whole, the relative frequency of sites with energy e and
ep is given by f = p/(2 —p) and fg = 2(l —p)/(2 —p),
respectively, and according to Eq. (6) we have

( pA o
Y = (1 —p)A, ' 0 (1 —p)A~'

o A' o

We have computed I (q) through Eq. (8) numerically,
by selecting y(q) through iterated application of Y on
an arbitrary initial vector v. It can be seen that the
eigenvalues of Y are the same as those of the matrix

( &A~ A' l

the remaining eigenvalues being zero. This reduces con-
siderably the amount of required numerical resources.

Figure 1 shows the behavior of L(q)/q up to q = 8
at some different energies for the case e = —0.5 and
~b ——0.5, and transition probability p = 0.5. A linear
behavior of L(q)/q indicates a Gaussian distribution of
A~, Eqs. (3) and (4), whence a lognormal distribution of
the conductance. It is seen that this is indeed the case
when the energy approaches the "mobility edge" E0 ——

0.5, while far from this energy higher terms in expression
(4) become more and more important. It can be useful
to recall that L(q) is in general a convex function of q. In
the energy range where the linear behavior is observed,
the parameters of the distribution can be derived from
two values of L(q). In fact in this case A and 0 in Eq.
(4) are the only nonzero cumulants of the distribution.
Thus the two quantities

L(2)
4 1 4

must be, respectively, equal to A and o . Computed val-
ues for the energy range around E0 are reported in Fig.
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FIG. 1. Behavior of L(q)/q for the random dimer model
at some different energies. For energies approaching the ex-
tended state, Eo ——0.5, the behavior becomes more and more
linear, implying a lognormal distribution of the conductance
probability. The two lines spanning the whole E range are
the lines L(q)/q = [1 + (1/2)q]A, where A is the I yapunov
exponent obtained by Monte Carlo simulations for F = 0.3
and E = 0.4.

It is interesting to recall that the same peculiar behavior
has been observed in several disordered systems under
many different circumstances [10].

We have also computed the Lyapunov exponent via
a Monte Carlo method, and compared the values ob-
tained in this way with those given by n, Eq. (11).
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FIG. 2. Quantities n (continuous line) and P (dashed line)
from Eq. (11) in the energy range around Ro = 0.5; o. ap-
proximates better and better the Lyapunov exponent A (di-
amonds) as the energy approaches Eo, implying a lognormal
distribution of conductance in this region. A and its statisti-
cal error at each energy have been computed by Monte Carlo
simulations of 10 chains made of 10 sites.

2. Interestingly, in this region the values of A and 0. so
obtained are about equal. This indicates that the distri-
bution P(g~) of the conductance of a chain of K sites
depends only upon one parameter. By recalling that the
Lyapunov exponent A is a measure of the inverse of the
localization length [5], such a distribution can be written
as

1 (ln g~ —N/() 2

P(g~) = exp
2~( 2%
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Such values are reported in Fig. 2, together with the
corresponding statistical error. It can be seen that the
agreement between the two determinations of A is excel-
lent in the range of energies around the extended state.
Monte Carlo values of A have also been used for fitting
L(q)/q in the linear cases. In fact, A being the only pa-
rameter of the probability distribution, L(q)/q takes the
form L(q)/q = [1+ (1/2)q]A. This quantity is shown in
Fig. 1 for E = 0.3 and E = 0.4 (lines spanning the whole
x range). Again the agreement is found to be very good
as E approaches Eo.

In conclusion, we derived exact expressions for com-
puting the generalized Lyapunov exponents L(q) for the
product of Markovian correlated matrices. These expres-
sions take into account all the possible realizations of the
disorder and can be easily employed in numerical compu-

tations. As an example, we investigated the Huctuations
of dc conductance statistics of the random dimer model,
and found that in the vicinity of the extended state the
conductance has a lognormal distribution, characterized
by a single parameter, i.e. , the localization length. The
expressions for the moments given here are of a general
form, and can be used in those problems where products
of large numbers of random matrices with Markovian cor-
relations are involved.
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