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Finite-size scaling and critical exponents in critical relaxation
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We simulate the critical relaxation process of the two-dimensional Ising model with the initial
state both completely disordered or completely ordered. Results of a method to measure both the
dynamic and static critical exponents are reported, based on the 6nite-size scaling for the dynamics
at the early time. From the time-dependent Binder cumulant, the dynamical exponent z is extracted
independently, while the static exponents P/v and v are obtained from the time evolution of the
magnetization and its higher moments.
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I. INTRODUCTION

For statistical systems in equilibrium or near equilib-
rium critical phenomena arise around the second-order
phase transition points. Due to the infinite spatial and
time correlation lengths there appear universality and
scaling. The universal behavior of critical systems is
characterized by the critical exponents. The determina-
tion of critical exponents has long been one of the main
interests for both analytical calculations and numerical
simulations.

Numerically critical exponents are usually measured
by generating the con6gurations in the equilibrium with
Monte Carlo methods. To obtain the critical exponents
from the finite-size scaling, Binder s method is widely ac-
cepted [1, 2]. The dynamical exponent z is traditionally
measured. from the exponential decay of the time corre-
lation for finite systems in the long-time regime [3, 4].
As is well known, numerical simulations near the criti-
cal point sufFer from critical slowing d.own. Much efFort
has been made to circumvent this difIiculty. To study the
static properties of the system, some nonlocal algorithms,
e.g. , the cluster algorithm [5, 6], have proved to be very
efficient compared. to the normal local algorithms. How-
ever, in this case the original dynamic universality class
is altered by the nonlocality of the algorithm. Properties
of the original local dynamics cannot be obtained with
nonlocal algorithms.

In recent years the exploration of critical phenomena
has been broadened. Universality and scaling are also
discovered for systems far from equilibrium. Better un-
derstanding has been achieved of the critical relaxation
process even up to the early time. A representative ex-
ample for such a process is that the Ising model initially
in a random state with a small magnetization is suddenly
quenched to the critical temperature and then evolves ac-
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cording to the dynamics of model A. Janssen, Schaub,
and Schmittmann [7] have argued by an e expansion up
to two-loop order that, besides the well known universal
behavior in the long-time regime, there exists another
universal stage of the relaxation at early times, the so-
called critical initial sLip, which sets in right after the mi-
croscopic time scale t;,. The characteristic time scale
for the critical initial slip is to mo ', where mo is
the initial magnetization and xo is the dimension of it.
It has been shown that xo is another independent critical
exponent for d.escribing the critical dynamic system.

The characteristic behavior of the critical initial slip
is that, when a nonzero initial magnetization mo is gen-
erated, due to the anomalous dimension of the operator
mp, the time-dependent magnetization M(t) undergoes
a critical initial increase

M(t) - mp t,
where 0 is related to xp by zp ——Oz + P/v. The expo-
nent 0 has been measured with Monte Carlo simulation
for the Ising model and the Potts model both d.irectly
from the power-law increase of the magnetization in (1)
[8, 9] and indirectly from the power-law decay of the au-
tocorrelation [10]-[12].The results are in good agreement
with those from an r expansion and the scaling relation
is con6rmed. For the two-dimensional Ising model, the
numerical simulation gives 0 = 0.191 [10, 11,13].

In a preceding paper [14] we proposed to measure
both the dynamic and static exponents from the finite-
size scaling of the dynamic relaxation at the early time.
The idea is demonstrated. for the two-dimensional Ising
model. Since the measurement is carried out from the be-
ginning of the time evolution, the method is efFicient at
least for the dynamic exponent z. Even though certain
aspects of this dynamic approach should. still be clari-
Ged, the results indicate a possible broad. application of
the short-time dynamics since the universal behavior of
the dynamics at early time is found. to be quite general
[13, 15—19].

One of the purposes of the present paper is to give a de-
tailed and complete analysis of the data briefly reported
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in [14]. While in that Letter we have extracted the expo-
nents by the optimal fit of two curves in a certain time in-
terval ("global" fit), we propose here in addition another
approach by which the critical exponents are obtained for
each time step separately ("local" fit). Furthermore, the
simulation has been extended to a longer time interval in
order to confirm the stability of the measurements in the
time direction and to see how the scaling possibly passes
over to the long-time regime.

On the other hand, we may easily realize that for the
scaling of the short-time dynamics a small initial magne-
tization is important besides the short initial correlation
length. This is because mp ——0 is a fixed point for the
renormalization-group transformation. However, there
exists also another fixed point corresponding to m, p = 1.
Therefore one may like to know whether around that
fixed point universality and scaling are also present or
not. Actually some trials have been made with Monte
Carlo simulation [20, 21]. For a large enough lattice, one
may expect a power law decay of the magnetization

before the exponential decay starts. From this behavior
the exponent P/(vz) can be estimated. However, the
results are not yet conclusive.

Therefore another purpose of this paper is to present a
systematic investigation of the finite-size scaling for the
critical relaxation starting from mp ——1. It will be shown
that scaling is observed in the early stage of the time
evolution and with the help of the finite-size scaling all
the critical exponents z, P, and v can be obtained from
the lattices which are much smaller that those in [20, 21].

Section II is devoted to the critical relaxation with
mp = 0 and Sec. III to mp ——1. The final section contains
some discussion.

II. THE CRITICAL REI AXATION
WITH ZERO INITIAL MAGNETIZATION

The Hamiltonian for the Ising model is

R/kgyT = K)— S; S, ,

(ij)
S, = +1

with (ij) representing nearest neighbors. In the equi-
librium the Ising model is exactly solvable. The critical
point locates at K, = ln(1 + g2)/2, and the exponents
P = 1/8 and v = 1 are known. In principle any type of
the dynamics can be given to the system to study the
nonequilibrium evolution processes. Unfortunately up to
now none of them can be solved exactly.

In this paper we consider only the dynamics of model
A. For the numerical simulation, typical examples are the
Monte Carlo heat-bath algorithm and the Metropolis al-
gorithm. For the analytical calculation, the Ising model
should be assumed to be described by the AP theory.
Then the Langevin equation can be introduced as a dy-
namic equation. For the Langevin dynamic system the
renormalization-group method may be applied to under-
stand the critical behavior as universality and scaling.
For the critical relaxation with the initial condition of a

assuming that the initial correlation length is zero and
the initial magnetization mp is small enough. Here t is
the dynamic evolution time, w = (T —T,)/T, is the re-
duced temperature, L is the lattice size, and 6 is the
spatial rescaling factor. It has been discussed that un-
der certain conditions the effect of mp remains even in
the long-time regime of the critical relaxation [25]. This
modifies the traditional scaling relation where the effect
of mp has usually been suppressed.

In this paper we are only interested in the measurement
of the well-known critical exponents z, P, and v. To make
the computation simpler and more efIicient, we set mp to
its fixed point mp ——0 in this section. Therefore the
exponent xp will not enter the calculation. Furthermore,
now the time scale tp ——mp

' —+ oo, and the critical
initial slip gets most prominent in time direction even
though the magnetization itself will only fluctuate around
zero.

The initial state with mp ——0 is prepared by start-
ing from a lattice with all spins equal, then the spins of
randomly chosen sites are switched, until exactly half of
the spins are opposite. This initial state is updated with
the heat-bath algorithm to 300 time steps for I = 8,16,
and 32, and to 900 time steps for L = 64. The average
over 50000 samples of this kind with independent ini-
tial configurations has been taken in each run, and eight
runs are used to estimate the errors. The critical value
K, = 0.4406 has been used and, in order to fix 1/v sepa-
rately, we have repeated all simulations with K = 0.4386.
In each case the observables ~M(t) ~,

M( i (t), and M( i (t)
have been measured.

To determine z independently, we introduce a time-
dependent Binder cumulant

(5)

Here the argument ~ has been set to zero and skipped.
The simple finite-size scaling relation

U(t, L) = U(t', L'); t'=6 t, L' =6L (6)

for the cumulant is easily deduced from Eq. (4).

very short correlation and small magnetization, Janssen,
Schaub, and Schmittmann [7] have performed a pertur-
bative renormalization calculation with an e expansion
up to two-loop order. They have obtained the scaling
relation which is valid even in the short-time regime, and
all the critical exponents including the new dynamic ex-
ponent 0 which governs the initial behavior of the critical
relaxation.

Of special interest here is the extension of the scaling
form in Ref. [7] to finite-size systems [22, 8]. In accor-
dance to the renormalization-group analysis for finite-size
systems, after a microscopic time scale t;, we expect a
scaling relation to hold for the kth moment of the magne-
tization in the neighborhood of the critical point starting
from the macroscopic short-time regime [23, 7, 24],

M("l(t, r L mo) = b"~~ M"(l(b't, b "w, bL b 'mo)

(4)



2942 ZHIBING LI, LOTHAR SCHULKE, AND BO ZHENG

M( )(t L) = b ~/ M( )(t', L'); t'=b t, L'=bL,

can be used to estimate the exponent 2P/v in a similar
way. The results have been included in Table I. The

The exponent z can easily be obtained through search-
ing for a time scaling factor 6' such that the cumulants
from two difFerent lattices in both sides in Eq. (6) col-
lapse. We call this global scaling fitting. Actually, using
the evolution time t as a scaling variable has been dis-
cussed in the determination of the dynamic exponent z
with the Monte Carlo renormalization method [26]. The
idea of measuring the exponents from the nonequilibrium
state can also be found with respect to damage spreading
[27, 13] and in the application to spin glass [28].

Here the cumulant U(t, L) obtained from each of the
eight runs for lattice size L has been compared with each
run for L' = 2L. The best scaling factor 2 has been es-
timated by the method of least squares. Figure 1 shows
the cumulants for L = 8, 16, 32, and 64 by solid lines.
The dots fitted to the lines for L up to 32 show the results
for L' = 2L rescaled in time with the best-fitting scal-
ing factor 2'. Only a selected number of 30 equidistant
points has been plotted. One sees the remarkable scaling
collapse even in the short-time regime. Compared with
the figure shown in the preceding paper [14] the evolution
time for L' = 64 has been extended up to t' = 900.
The average value for z and the error estimated from this
procedure have been given in Table I for different pairs
of lattices using Eq. (6). In the first steps of the time
evolution, the values of M~ ~ and M~ ~ are quite small.
A careful view of the data shows that their accuracy and
in particular the accuracy of the cumulant U(t, L) is not
so good as for larger t. One may expect that skipping
the region of smaller t will give more reliable results.
Therefore we have performed fits for different time in-
tervals [t';„,t' „]. The results in Ref. [14] correspond
to t';„= 1 and t' = 300. Figure 1 is from a fit with
t,';„=50 and t' = 900. The longer evolution time of

= 900 for lattice L = 64 shows also the stability of
the scaling in the time direction. From the results we can
see that z for larger time t is slightly bigger than that for
smaller time t. Later we will come back to this point.

With z in hand, the scaling relation for the second
moment

0.7

U(t, L)
0.6

L=8

0.5
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0
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FIG. 1. The cumulants U(t, L) for L = 8, 16, 32, and
64 for initial magnetization mo ——0 plotted versus the time

The dots fitted to the lines show the cumulants with lat-
tice size 2L rescaled in time by the best-Bt value 2 given in
Table I.

with t' = b't and L' = bL, the exponent 1/v can in-
dependently be calculated. The derivative is approxi-
mated by taking the difference of the values for M~ ~ at
K = K = 0.4406 and. K = 0.4386, divided by its value
at K . It is clear and can also be seen in Fig. 3 that the
result for this related quantity fluctuates more than that
for M( )(t, L) and U(t, I), in particular for small t The.
results of this calculation have also been included in the
last column of Table I.

curves for M~ ~ for the different lattice sizes and the cor-
responding scaling fits can be found in Fig. 2. We have
cut the time scale at t = 220 in order to show the data
relevant for the scaling fit more clearly.

Slightly more complicated appears the determination
of 1/v. One can use the derivative with respect to w

either of U or of M~ ~. Here the latter gives more stable
results. From

g. i Mn(')( , trL)~. , =b '/"a. , i Mn(')(t', 'rL')~. =.

TABLE I. Results for z, 2P/v, and 1/v, respectively, from the two-dimensional Ising model with
initial magnetization mo ——0. The values are obtained from a global scaling fit for two lattices.

Lattice
8++ 16
16m32

32++64

32++64

trnin

10
10
50

200
50

200

50
200

300

300

900

900

2.1oo(2)
2.140(2)
2.134(4)
2.140(4)
2.151(2)
2.153(2)
2.151(3)
2.152(3)

2P/v
0.2473 (02)
0.2404(06)
0.2510(11)
0.2488(ll)
0.2531(08)
0.2523(08)
0.2515(l1)
0.2521(11)

1/v
1.13(l)
1.08(4)
1.00(5)
1.03(4)
1.02(2)
1.O2(2)

1.03(2)
I.O3(2)
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FIG. 2. The second moments M (t, L) for I = 8 16 32) 7

and 64 for initial magnetization mp ——0 plotted versus the
time t. The dots fitted to the lines show the second moments
with lattice size 2L rescaled in time by the best-fit value 2
and 2P/v given in Table I.

It is interesting to point out, see Table I, that the re-
sults from the scaling fit of I = 16 and L = 32 are already
quite good. This is probably due to the fact that the
spatial correlation length in the short-time regime of the
dynamic evolution is very small and therefore from small
lattices one can already obtain reasonable results. We
also like to mention that the procedure of comparing each
run for the small lattice with each run for the big lattice
may underestimate the errors, since these measurements
are probably not completely independent. Therefore the
data including the errors given in Table I do not always
cover the exact values. The real errors may be a factor 2
or 3 bigger. For example, one may think of grouping the
eight runs for the small lattice and the eight runs for the

big lattice into eight independent pairs and carrying out
the measurements with them.

In order to have more rigorous understanding of the dy-
namic scahng, we alternatively present a local approach
for estimating the critical exponents, in contrast to the
global scaling fitting procedure discussed above. For ex-
ample, comparing the functions U(t, L) and U(t', 2L),
for each time step t we search for t' such that U(t, L) =
U(t', 2L), and from the ratio t'/t = 2' the value of z is
obtained according to Eq. (6). For the same time step t
this particular value of z can be used to estimate 2P/v
from Eq. (7) and 1/v from Eq. (8). Then we obtained
all the exponents as functions of the time t. The result
is shown in Fig. 4 for a pair of lattices with L = 32
and I = 64. In order to guide the eye, three horizontal
lines z = 2.14, 2P/v = 0.25, and 1/v = 1 are included,
the latter two values being the exact results for the two-
dimensional Ising model. The figure shows clearly that
the fluctuations for smaller time t are big. But for z and
in particular for 2P/v the curve tends very nicely to a hor-
izontal line for t &30. The situation is less satisfactory
for the curve of 1/v where it shows still some Quctuations
up to a fairly late time t. The reason may be either less
statistics or &om the approximation of the di8'erentiation
by a difference. The exponents z, 2P/v, and 1/v can be
obtained by averaging over the time direction. To show
the e8'ect of the Huctuations for smaller t, one takes the
average starting from diferent initial times. The values
of the exponents obtained in this way have been given
in Table II. The errors have again been estimated by
a comparison of each run for L and with each run forI' = 2I.

In Fig. 4, when t &30 the exponent z is somewhat

small. This might be due to the efFect of t;,. In some
cases, e.g. , in the measurement of 0 [8, 9, 29] and P/v in
the next section, this eÃect hardly shows up. However,
in some other cases it can remain until t 20 —30 [9, 29].
This kind of eKect probably comes from the fact that the
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FIG. 3. 8 in M~ ~(t, L) for I = 8, 16, 32, and 64 for initial
magnetization mp ——0 plotted versus the time t. The dots
fitted to the lines show those with lattice size 2L rescaled in
time by the best-fit values 2* and 1/v given in Table I.

FIG. 4. The curves show the values for z, 2P/v, and 1/v
calculated for initial magnetization mp = 0 with the local
scaling fit.
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l f m the two-dimensional Ising modelTABLE II. Results for z, ~& v,z 2P/v and 1/v, respective y, rom e
time direction with a local scaling= 0. Values are from an average in time iree iowith initial magnetization m0 —— . a u

fit.

Input
U

Lattice
8++16

16++32
32m64

32++64

I
min

10
10
50

200

50
200

tmax
300
300
900

900

2.333(4)
2.143(2)
2.148(3)
2.155(2)
2.144(4)
2.153(3)

2P/v
0.2372(08)
0.2448(11)
0.2510(16)
0.2488(10)
0.2541(28)
0.2501(14)

1/v
1.11(1)
1.19(5)
1.07(2)
1.05(2)
1.07(2)
1.05(2)

l a netization density is not uniform enough. As
we have already mentioned before, from Fig. one

f t &30 that the exponent z slightlysee explicitly even or

l E n though the reason is not clear,rises as time evo ves. ven
it is interesting to no e at that the tendency of z to rise does
nota ec ernefF t th asurement of the static exponents, espe-
cially 2P/v. They are quite stable. On the ot er an

lf l%%u of the fluctuation in the time direc-
tion should also be not too bad. It may be due to e
fi 'i — fF ct or some technical reasons.

'ces 8 ~ 16The curves from a scaling fit of the lattices
d 16 ~ 32 which are not shown in gthe fi ures herean

Fi . 4 but thelook qualitatively the same as those in ig.
fluctuations for 1/v are somewha ghat lar er. The curve for

continuously for t &20, thus showing that such a lattice
size is too sma or is inll f this kind of analysis. The result of
an average o ese vaf th lues is also included in Ta e II.

To measure z, 2P/v, and 1/v, instead of U, M, an
cl M( ) one can also use U, ~M~, and Br~M~ with

d' d d state. From a measurement of thecompletely isor ere s a e.
(2) tI,

and M( ) (t, I) together with the scaling relation (4) the
critical exponents z, v, an

results. Th'are in goo agreed greement with the known resu ts.
~ ~ ~

is a strong suppor or et f the scaling relations derived by
Janssen, Schaub, and Schmittmann [7].

At this stage one may ask whether there is also a scal-
l t' f the critical relaxation starting from a

u d t te i.e. with initial magnetization
mo ——1. It has been known for some time that, e-
fore the exponen iat' l decay of the magnetization starts,

ere the ma netization be-there exists a time regime w ere
haves nonlinearly and decays according to a power-law.

a scalin behavior starts.The question is only when suc a '
g

S ff t has been made in this direction [20, 21] withSome e or as e
Monte Carlo simulation. The authors have simu a e e
critica re axa ion wil l t' ith an extremely big lattice but on y
up to a qui e s or e't h t volution time and have estimate

fM t.the exponen vzt &/ ( ) from the power-law decay of M
nd a so otherHowever, the result has not been so clear and a so ot er

U(t, l) = 1—

From q.
holds for U as well as for U, and (8) holds as well for
0 ln ~~M~. Only Eq. (7) is slightly modified toT

We do not plot the curves here, since they look very much
me as F' 1—4 for the global and local analysis.

d onl the two latticeFor simplification we have compareu. on y e wo a
sizes $ = 32 ansi = d I = 64 where we have used the full

= 900 for L = 64. The resultstime scale up to t = or
f th l b l 6.t have been included in the ower paror ego a

remarkablof Ta ebl I. All the values in the table are remar y
calconsistent. e same o. Th h lds for the results from the loca

approach. They are shown in Table II.

III. THE CRITICAL RELAXATION
WITH INITIAL MAGNETIZATION ONE

0.7

0.6

0.4 I I I I I

0 20 40 60 80 100 120 140 160 180 200 $ 220

In the preceding section we have in gvesti ated the Bnite-
l of the critical relaxation of the Ising model upsize sca ing o e cri

to even the macroscopic short-time sca e, s ar ing
a random s a e wid t t th zero initial magnetization, i.e. , a

L, = 32 and 64 forFIG. 5. The second moments I or I =
ini ia ma't' 1 a~netization m0 ——1 plotte versus time t. The dots

s t withfitted to the curve or = sf L = 32 show the second moment w
est-fit va ue 2l I = 64 rescaled in time by the best-fit va ue

and 2P/v given in Table III.
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FIG. 6. The cumulants U(t, I) for L = 32 and 64 for
initial magnetization m0 ——1 plotted versus time t. The dots
fitted to the line of L = 32 show the cumulant with lattice size
2L rescaled in time by the best-fit value 2 given in Table III.

FIG. 7. 8 ln M( l(t, L) for L = 32 and 64 for initial mag-
netization mp = 1 plotted versus time t. The dots fitted to
the line for L = 32 show that with lattice size L =- 64 rescaled
in time by the best-fit values 2' and 6 given in Table III.

exponents such as z and 1/v have not been obtained.
In this section we study systematically the scaling be-

havior of the critical relaxation from a completely ordered
initial state, but in finite systems, following a procedure
parallel to that discussed in the preceding section. The
advantage is that a not too big finite system allows for
longer evolution time even though the power-law decay
of the magnetization will not be perfect. Prom our re-
sults we confirm that the scaling appears in a quite early
stage of the relaxation as in the case of mo ——0.

Here we will only present data from the scaling collapse
for lattice sizes I = 32 and L = 64. Also we confine
ourselves to four runs with 50000 updates each, instead
of eight runs in the preceding section.

The curves for the second moment of the magnetiza-
tion start with the value one for t = 0 and decrease for
later time. This is seen in Fig. 5. A similar decrease is
found for the curves for the cumulants U(t, L) in Fig. 6,
while 8 ln M(2)(t, L) in Fig. 7 shows a rising behavior.
In all three figures points mark the values for L = 64
rescaled in time by the best-fit values of z, 2P/v, and
1/v. Surprisingly here we also observe very nice dynamic
scaling. Table III shows the results of the global fitting
procedure up to t' = 300 or t' = 900, respectively.

Since the values of U, M( ), and 6 M( ) for smaller t are
large now compared with those in the case of mo ——0 in
the preceding section, the results show fewer fluctuations
for smaller time t,. Actually one may also expect that
due to the unique initial configuration less statistics is
needed to obtain stable results. This is also supported by
Fig. 8 from the local approach. It is very interesting that
the exponent 2P/v shows almost invisible fluctuations
in the whole time regime even up to the very beginning,
although z has some similar unstable behavior as that
in the case of m0 ——0. Especially in the first 30 time
steps its value is also a bit small. The fact that in the
first steps of t the exponent z is quite near to 2.0 might
indicate that at the very beginning of the time evolution
the system is "classical. " Similarly to Table II of the pre-
ceding section, Table IV gives the averages over the time
direction, starting at difFerent initial values t

As in the preceding section, we carry out also the anal-
ysis with U defined in (9), ~M~ and O~~M~. The results
have been included in the lower parts of Table III from
the global fit, or in Table IV from the local approach,
respectively. They again have a similar quality as those
reported above. In comparison. with the results in [20, 21,
30], the value of z we obtained is definitely smaller and

TABLE III. Results for z, 2P/v, and 1/v, respectively, from the two-dimensional Ising model
with initial magnetization mo ——1. The values are obtained from a global scaling fit for two lattices.

Input
U

U

)M/

Lattice

32&-+64

32++64

I
~min

50
200
50

200

50
200

300

900

900

2.121(4)
2.122(5)
2.129(5)
2.129(5)
2.140(5)
2.141(5)

2P/v
0.2489 (4)
0.2491(5)
0.2503(5)
0.2505(6)
0.2514(6)
0.2515(7)

1/v
1.O3(2)
1.02(2)
1.O4(2)
1.04(2)
1.o7(2)
1.o7(2)
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FIG. 8. The curves show the values of z, 2P/v, and 1/v

obtained for initial magnetization m0 ——1 from a local scaling
fit for L =32 and L =64. FIG. 9. The quantities In M(t, L) for I = 64 and mo ——

1 plotted (a) versus t and (b) versus cln(t). The factor c
has been chosen such that at 900 of the abscissa both curves
coincide.

near to the one &om the e expansion and other traditional
measurements [4, 31]. In case of mo ——0, the results for
z measured from U and U are almost the same. How-
ever, in case of mp ——1, the value measured from U is
somewhat smaller than that measured from U. In the
construction of U we have not subtracted the odd mo-
ments. This may have some effect on the measurement
of z.

Here we would like to point out that the exponent I/v
measured in this section as shown in Table III and Table
IV (as well as in Table I and Table II) is somewhat big-
ger than the exact value I/v = 1.0. This is probably due
to the approximation of the differentiation by the differ-
ence. To improve this situation, either a simulation with
a smaller difference in the coupling K should be carried
out, or one expresses the derivative in terms of higher
moments [32].

As compared to those in the preceding section for the
case of mp = 0, the results here are somewhat more sta-
ble. This may really indicate that it is also promising
to measure the critical exponents from the critical relax-
ation process starting from an ordered state even though
some more theoretical arguments like that by 3anssen,
Schaub, and Schmittmann [7] are still needed. It is clear
that in case of a random initial state with mp ——0 all the
observables discussed start their evolution from zero and
therefore the fiuctuations at the beginning of the time

evolution are naturally bigger. Besides this, the effect
of the nonuniformity of the magnetization density in the
practically generated initial configurations is not com-
pletely negligible for not too big lattices. Another way
to measure the critical exponents is to study the critical
relaxation starting from an initial state with small but
nonzero initial magnetization [9, 29]. However, the situ-
ation is not so clear since the new dynamic exponent 0
enters the calculation. Further investigation is needed.

Finally we plot the time evolution of the magnetization
with both double-log scale and semilog scale in order to
see whether it has entered the regime of linear decay or
not. In Fig. 9 the straight line shows definitely that the
magnetization is still in the regime of nonlinear decay.
From the slope of M(t) in. double-log scale one can obtain
the exponent P/(vz). For each time t we have measured
it by a least-squares fit within a time interval [t, t + 50].
In Fig. 10 instead of P/(vz) the exponent z is plotted vs
time using the exact value P/v = 1/8. Note that the time
scale in Fig. 10 is different from that in Fig. 8. Figure 10
shows that in the regime 150 & t &t;, —30 the values

for z are rather consistent with those obtained before,
especially those measured from U in Table III. However,
the lattice size I = 64 seems not to be big enough to

TABLE IV. Results for z, 2P/v, and 1/v, respectively, from the two-dimensional Ising model
with initial magnetization m0 ——1. Values are obtained from the average in the time direction from
t'; up to t' „=900 with a local scaling fit.

Input
U

M
U

[Mf

Lattice
32m64

32++64

I
~min

50
200
50

200

2.122(7)
2.122(8)
2.133(6)
2.134(7)

2P/v
O.25O8(3)
0.2510(4)
0.2516(4)
0.2520(5)

1/v
1.04(2)
1.04(2)
1.O6(2)
1.O6(3)



FINITE-SIZE SCALING AND CRITICAL EXPONENTS IN. . . 2947

2.2

2.1
V z = 2.14

1.8

1.7

1.5

1.4
0 100 200 300 400 500 600 700 800 g 900

FIG. 10. The exponent z calculated from the slope of the
magnetization M(t) in a double-log scale. The slope P/(vz)
has been fitted for each time step within the time interval

[t, t + 50]. In order to calculate z we have used P/v = 1/8 as
input.

present a rigorous power-law behavior in the whole time
region.

IV. DISCUSSIGN

z = 2.143(5).

This should be compared with the existing numerical re-

%le numerically simulate the critical relaxation pro-
cess of the two-dimensional Ising model with the initial
state both completely disordered or completely ordered.
Based on the finite-size scaling for the dynamics at the
early time, both the static and dynamic critical expo-
nents are measured. To determine z independently, a
time-dependent Binder cumulant is constructed. The
value of z measured from the critical relaxation from
a completely ordered state is slightly smaller than that
from a completely disordered state. The reason is not yet
clear. Taking the average of the four measurements of z
from the global scaling fit of U and. U within the time
interval [50, 900] of t' for both relaxation processes, see
Table I and Table III, we get

suits z = 2.13(8) from [4], z = 2.14(5) from [31], and
z = 2.13(1) f'rom [26], and also with z = 2.126 obtained
from an e expansion in [33], even though the value of z is
still a matter of controversy [34, 35], and especially some
bigger values are also reported recently [20, 21, 30, 36, 13].
It is remarkable that from the short-time dynamics one
cannot only eKciently measure the dynamic exponent z,
but also the static exponents. Especially the quality of
the exponent 2P/v is very good. All these results provide
strong confirmation for the scaling relation at the early
time of the critical relaxation process. Compared with
the traditional methods, the advantage of our dynamic
Monte Carlo algorithm is that the measurement is car-
ried out in the beginning of the time evolution rather
than in the equilibrium where critical slowing down is
more severe. Therefore our method is eKcient. Com-
pared with the nonlocal algorithms, our dynamic algo-
rithm can study the properties of the original local dy-
namics. On the other hand, it has recently been sug-
gested that the critical exponents can also be measured
from the power-ram behavior of the observables including
the autocorrelation in the macroscopic short-time regime
in a large enough lattice [9, 29]. Compared with that ap-
proach, the advantage of estimating the exponents from
the dynamic finite-size scaling as reported in this paper
is that one needs not too big lattices. However, the re-
sult has to be obtained by comparing two lattices and
longer time of the evolution for the bigger lattice should.
be carried out.

It is somewhat surprising that for the critical relax-
ation from the completely ordered initial state there ex-
ist also universality and scaling in such an early stage of
the time evolution. Further investigation especially on a
more general critical relaxation process from an ordered
state with initial magnetization mo smaller but near to
one can be interesting. One might expect that a new
dynamic exponent should be introduced in order to com-
plete the scaling relation.
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