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Pade approximants are able to sum effectively the Rayleigh-Schrodinger perturbation series for
the ground state energy of the quartic anharmonic oscillator, as well as the corresponding renor-
malized perturbation expansion [E.J. Weniger, J. Cizek, and F. Vinette, J. Math. Phys. 34, 571
(1993)]. In the sextic case, Pade approximants are still able to sum these perturbation series, but
convergence is so slow that they are computationally useless. In the octic case, Pade approximants
are not powerful enough and fail. On the other hand, the inclusion of only a few additional data from
the strong coupling domain [E.J. Weniger, Ann. Phys. (N.Y.) (to be published)] greatly enhances
the power of summation methods. The summation techniques that we consider are two-point Pade
approximants and effective characteristic polynomials. It is shown that these summation methods
give good results for the quartic and sextic anharmonic oscillators, and even in the case of the octic
anharmonic oscillator, which represents an extremely challenging summation problem, two-point
Pade approximants give relatively good results.

PACS number(s): 02.70.—c, 03.65—w, 02.30.Lt

I. THE SUMMATION OF DIVERGENT
PERTURBATION EXPANSIONS

Perturbation theory is one of the few principal meth-
ods of approximating solutions to eigenvalue problems
in theoretical physics [1—4]. Accordingly, there is an ex-
tensive literature. Mathematical aspects of perturbation
theory are treated in monographs by Friedrichs [5], Kato
[6], Maslov [7], Rellich [8], and in Sec. XII of Reed and
Simon [9]. Numerous applications of perturbation theory
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are described in books by Adams [10],Arteca, Fernandez,
and Castro [11],Le Guillou and Zinn-Justin [12], Kumar

[13],and Nicolaides, Clark, and Nayfeh [14].
Rayleigh-Schrodinger perturbation theory is designed

for systems whose Hamiltonian H(P) can be partitioned
into a completely solvable part Ho with known eigenvalues
and eigenfunctions, and a perturbation PV according to

H(P) = Hp + PV.

E(P) = ): -P-
m=o

(1.2)

In the early days of quantum mechanics, the limited
computational resources made it normally impossible to
compute more than a few terms of a perturbation expan-
sion. Consequently, physically meaningful results could
only be obtained for small values of the coupling constant
P, and it did not matter too much whether a perturba-
tion series converges in some neighborhood of P = 0 or

The formalism of Rayleigh-Schrodinger perturbation the-
ory expresses an eigenvalue E(P) of H(P) as a formal
pointer series in the coupling constant P:
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whether it is only asymptotic as P m 0. Accordingly,
convergence questions were largely ignored in the older
literature. Because of the dramatic increase of computing
power, perturbation expansions can now often be com-
puted to extremely high orders, in particular if symbolic
manipulation systems such as MAPLE [15,16] are used.
Thus it is now in principle possible to obtain high pre-
cision results with the help of perturbation theory and
the question whether a perturbation series converges or
diverges and what can be done to improve its numerical
properties is of greatest practical relevance.

The convergence of the perturbation series (1.2) in a
neighborhood of P = 0 is only guaranteed if the domain
of Ho is contained in the domain of V,

'D(Hp) C 'D(V),

and if the inequality

IIV&II & aIIIIplll + bll4II (1 4)

is satisfied for all g C 'D(Hp), with a and 6 being suitable
positive constants (compare the Lemma on p. 16, Theo-
rem XII.9 on p. 17, and Theorem XII.11 on p. 21 of Ref.
[9], and further references quoted therein). If the pertur-
bation operator V does not satisfy conditions (1.3) and
(1.4), the perturbation series (1.2) is only asymptotic as
P -+ 0 and diverges. In such a case, summation tech-
niques are needed to give a divergent perturbation series
(1.2) any meaning beyond a mere formal expansion.

The summation of divergent series has been a con-
troversial topic in mathematics. The classic books on
divergent series are those by Borel [17] and by Hardy
[18]. However, there is still a lot of mathematical re-
search going on, as documented by the recently published
monographs by Candelpergher, Nosmas, and Pham [19],
Ramis [20], Balser [21], and Shawyer and Watson [22].

In many perturbation problems of quantum mechan-
ics or quantum field theory, the perturbation operator V
does not satisfy conditions (1.3) and (1.4) and the result-
ing perturbation expansion diverges. Consequently, there
is extensive literature on the summation of divergent per-
turbation expansions. Pade approximants [23—27] have
become a standard tool to overcome problems with slowly
convergent or divergent power series. Borel's summation
method [17] is also of considerable importance. An ex-
tensive bibliography on contemporary applications of the
Borel method can be found in the book by Shawyer and
Watson [22]. Recently, nonlinear sequence transforma-
tions have also been used with considerable success for
the summation of strongly divergent series [28—37].

The formalism of Rayleigh-Schrodinger perturbation
theory produces so-called weak coupling expansions,
which are expansions around P = 0. If such an expan-
sion diverges and has to be summed, there is the very
annoying problem that summation methods only work
well if the coupling constant is small or at most moder-
ately large. If the argument of a divergent power series
becomes very large, a straightforward application of a
summation technique is not possible because then the
terms of the perturbation series diverge individually [38].

These problems in the strong coupling regime can of-
ten be overcome with the help of renormaltization tech-
niques, which are essentially variable substitutions. In
this way, a weak coupling expansion is transformed into
a new expansion with hopefully better numerical prop-
erties. A discussion of the advantages and disadvantages
of various renormalization schemes can be found on pp.
126—135 of[11].

In this article, we want to proceed difFerently. There
are cases in which both weak coupling and strong cou-
pling expansions can be constructed [35,37,39—47]. In
such a case, it should be possible to apply summation
techniques that use simultaneously information from the
weak coupling as well as from the strong coupling expan-
sion. Obviously, such a dual approach should at least in
principle be capable of producing better results than a
summation technique, which only uses information from
either the weak coupling or the strong coupling expan-
sion.

If both a weak coupling and a strong coupling ex-
pansion is available, it is an obvious idea to use tmo-

point I ade approximants as done, for instance, in Refs.
[39—41,48,49]. However, other approaches are also pos-
sible In .this article, we shall also study effective char-
acteristic polynomials, which were used with consider-
able success for the description of electron correlation in
certain model systems [42—47,50]. Since we feel that ef-

fective characteristic polynomials should be useful com-
putational tools also in difFerent contexts, we shall use
them for the summation of strongly divergent perturba-
tion expansions and compare them with two-point Pade
approximants.

EfFective characteristic polynomials are not necessarily
as efficient as two-point Pade approximants. However,
efFective characteristic polynomials are in certain cases
more fIexible than two-point Pade approximants because
the symmetry of the exact Hamiltonian can be taken into
account in an easy way [43], which may not be possible
in the case of two-point Pade approximants [44,39].

In this article, anharmonic oscillators are considered
which are defined by the Hamiltonians

Hl l(P) = p + x +Px, m = 2 3 4, . . . . (1 5)

A rigorous analysis of the mathematical properties of
these Hamiltonians was done by Simon [51]. Ever since
the seminal work of Bender and Wu [52—54], the per-
turbation expansions of the anharmonic oscillators have
been the textbook examples of extremely strongly diver-
gent perturbation expansions.

Harmonic oscillators and their anharmonic counter-
parts are extremely important model systems in all
branches of quantuin physics [55] and in particular
in quantum field theory. Accordingly, their large or-
der Rayleigh-Schrodinger perturbation expansions are
treated in many textbooks on quantum field theory and
related topics (see, for instance, pp. 467—473 of Itzyk-
son and Zuber [56], pp. 189—196 and 577—583 of Kleinert
[57], pp. 376—382 of Negele and Orland [58], pp. 311—
313 of Parisi [59], pp. 92—107 of Schulman [60], and pp.
835—847 of Zinn-Justin [61]).

I"inally, we would like to emphasize that the goal of this
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article is not the construction of summation techniques,
which give extremely accurate results for anharmonic os-
cillators. Instead, it is our aim to analyze and apply some
unconventional and at the same time remarkably simple
summation techniques. We want to investigate whether
these techniques are, in spite of their simplicity, capable
of producing reasonably accurate summation results in
the case of the anharmonic oscillators. If this is true, it
should be possible to apply these techniques also to sys-
tems that are not as well understood as the anharmonic
oscillators and are too complicated to permit the use of
more sophisticated and therefore computationally more
demanding summation techniques.

II. PERTURBATION EXPANSIONS FOR THE
ANHARMONIC OSCILLATORS

The anharmonicity x with m = 2, 3, 4, . . . grows for
x ~ +oo much faster than the harmonic oscillator po-
tential z2. Consequently, there are wave functions v/r(z)

belonging to 17(HO) = 17(p ) fl 17(z ) that do not belong
to D(z '). Accordingly, the inequality (1.4) cannot be
satisfied by all g E 17(HO) and it is to be expected that
the perturbation series

E(m) (p) ) b(m) pn
n=o

(2.1)

E{m)(p) pl/(m+1) $ It (m) p
—2n/{m+1)

n
n=O

(2.2)

Simon proved that this series converges in the quartic

for the ground state energy eigenvalue of the Hamilto-
nian (1.5) diverges for every P g 0. This divergence was
confirmed numerically by Bender and Wu [52—54], who

also found that the terms b behave in the quartic,
sextic, and octic case essentially like n!/n /, (2n)!/n /,
and (3n)!/n /, respectively, as n ~ oo [compare, for
instance, Eqs. (3.5)—(3.7) of Ref. [34]].

The summation of the perturbation series (2.1) is a
very diFicult problem, in particular in the sextic and oc-
tic case and for large values of P. There is an extensive
literature on the Pade summation of this perturbation
series. In the quartic and sextic cases, it could be proven
rigorously that the perturbation series (2.1) is a Stielt-
jes series and that Pade approximants are able to sum
it [51,62]. In the quartic case, Pade approximants give
satisfactory results if the coupling constant is small. The
sextic anharmonic oscillator seems to be a borderline case
since Pade approximants converge so slowly that they are
computationally useless [51,62,63]. In the octic case, it
was proven rigorously by Graffi and Grecchi [64] that
Pade approximants are not able to sum the perturbation
series (2.1).

With the help of Symanzik scaling, which is described
in Sec. II.2 of Ref. [51] or in Sec. II of Ref. [65], it can be
shown that the ground state energy eigenvalue E{ )(P)
of the Hamiltonian (1.5) possesses also a strong coupling
expansion

E(m) (p) pl/(m+1) (2.3)

A summation method has to be able to model this frac-
tional power behavior in order to be effective in the strong
coupling regime. In the case of the perturbation series
(2.1), there is no easy way of extracting the fractional
power behavior (2.3) from a finite number of terms or
partial sums. Accordingly, it is extremely difFicult to
sum this series effectively if P is large. In contrast, the
terms and partial sums of the strong coupling expan-
sion (2.2) automatically possess the correct asymptotic
behavior (2.3) as P -+ oo and a few terms suffice to com-
pute E( )(P) accurately in the strong coupling regime
(compare Table II of Ref. [66]).

The main disadvantage of the strong coupling expan-
sion (2.2) is that the computation of the coefficients K
is very diKcult. Symanzik scaling replaces the Hamilto-
nian (1.5) by a strong coupling Hamiltonian

pl/(m+1) H(m) (p)
pl/(m+1) "2 + p

—2/(m+1) "2 + 2m (2.4)

which can be partitioned into an unperturbed Hamilto-
nian p2 + z and a perturbation p /{ + )z (more
details can be found in Sec. 10.3 of Ref. [35] or in Refs.
[37,51]). However, the eigenvalues and eigenfunctions of
the unperturbed Hamiltonian p + x are not known
and the usual formalism of Rayleigh-Schrodinger pertur-
bation theory for the computation of the coefIicients of
the perturbation series cannot be used.

There are alternative approaches for the computation
of the coefficients K [66—72]. In the quartic case, the
best results were obtained by Janke and Kleinert [66].
Other good results were obtained by Guardiola, Solis,
and Ros [71], who were able to compute coefficients of
the strong coupling expansion (2.2) for the ground state
energy of an anharmonic oscillator with an x, x, x, and
even x anharmonicity. Nevertheless, the computation
of the coeKcients K remains in particular for larger
values of m a very difFicult problem, and further progress
would be highly desirable.

The perturbation series (2.1) is a power series in P
and the strong coupling expansion (2.2) is a power series
in P /{ + ). Consequently, these two expansions have
incompatible variables and cannot be used to provide si-

case if P is sufficiently large (Lemma II.1 on p. 81 and
Theorem II.1.2 on p. 82 of Ref. [51]). The extension of
Simon's convergence proof to m = 3, 4, . . . is straightfor-
ward (see Theorems 10-1 and 10-2 of Ref. [35]). Hence
the use of the perturbation series (2.2) in the troublesome
strong coupling regime is in principle highly desirable.
However, the strong coupling expansion (2.2) cannot be
used for all physically relevant p E [0, oo) since the pow-
ers of P 2/{ +1) become singular as P ~ 0. Moreover,
the infinite series on the right-hand side of Eq. (2.2) has
to approach plus infinity as P ~ 0 in order to satisfy the
normalization condition E{ ) (0) = l.

It follows from the strong coupling expansion (2.2) that
the energy eigenvalue E{ ) (P) behaves in the strong cou-
pling regime like a fractional power of P:
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multaneously information from the weak coupling and
strong coupling regime to efFective characteristic polyno-
mials and two-point Pade approximants, which will be
discussed in the following sections.

Alternative perturbation expansions, which are suited
for our purposes, can be constructed with the help of a
renormalization scheme which was first used by Cizek and
Vrscay [73] in the case of the quartic and sextic anhar-
monic oscillator, and which was worked out in full detail
in an article by Vinette and Cizek [74]. This renormal-
ization scheme was first used for the construction of ra-
tional approximants yielding upper and lower bounds for
the ground state energy E( )(P) of the quartic, sextic,
and octic anharmonic oscillator [74]. Later, it was used
to facilitate the summation of perturbation expansions of
anharmonic oscillators with the help of sequence trans-
formations [31,33—37] and also for the computation of en-
ergy eigenvalues of anharmonic oscillators with the help
of an iterative scheme based on the generalized Bloch
equation [75].

The renormalization scheme of Vinette and Cizek [74]
may be viewed as a variable substitution that replaces the
coupling constant P by a renormalized coupling constant
K according to [Eq. (3.19) of Ref. [34]]

The renormalized Harniltonian 'R( )(r) can be par-
titioned into an unperturbed Hamiltonian p + x and
a perturbation r[(x /H ) —x ], which implies that
ER( )(r) possesses the following perturbation series in K

[Eq. (3.31) of Ref. [34]]:

(2.10)

The computation of the coeKcients c~ is described in
the Appendix of Ref. [34]. In the quartic, sextic, and

octic case, the coeKcients c„grow similarly to the co-
efficients 6 of the perturbation series (2.1) essentially
like n!/n /, (2n)!/n /, and (3n)!/n /, respectively, as
n ~ oo [compare Eqs. (3.33)—(3.38) of Ref. [34]].

Thus the renorrnalized perturbation series (2.10) di-
verges quite strongly for every v g 0 and it looks as if
the main achievement of the renormalization scheme of
Vinette and Cizek [74] would be the bounded domain of
the renormalized coupling constant v. . If, however, the
ground state energy E( ) (P) is expressed via Eqs. (2.8)
and (2.10) according to [Eq. (5.3) of Ref. [34]]

l K

(1 —K) (~+i)/2 m=2, 34, (2.5)
@(m) (P) (1 )

—i/2 ) ~ (vn) n

n=O
(2»)

where

m (2m —1)!!
2 —1 m, = 2, 3, 4. (2.6)

It follows from Eq. (2.5) that the semi-infinite interval
[0, oo) for P is mapped onto the unit interval [0, 1) for I".
Moreover, P = 0 corresponds to K = 0 and P ~ oo to
KM l.

The renormalization scheme of Vinette and Cizek [74],
which is also based on Symanzik scaling, replaces the
Hamiltonian (1.5) by a renormalized Hamiltonian (com-
pare, for instance, Sec. 4 of Ref. [37])

(2.7)

Scaling is a unitary transformation [51,65]. Conse-
quently, the eigenvalues of the Hamiltonians (1.5) and
(2.7) are identical and the ground state energy E( )(P)
is partitioned into a prefactor (1 —v) / multiplied by
a renormalized ground state energy E& (v) [Eq. (3.30)
of Ref. [34]]:

E(nx) (p) (1 )
—r/2 E(m)

( ) (2.8)

It also follows from Eq. (2.5) that

Pl/(en+1) (I )
—i/2 (2.9)

as P ~ oo. Thus E& (K) remains finite as K ~ 1,
whereas (1 —v) / diverges as v ~ 1 like Pr/( + ) as

OO.

k~ = lim E( )(P)/P
phoo

(2.12)

which is identical to the ground state eigenvalue of the
Hamiltonian p + x and with the leading term Ko
of the strong coupling expansion (2.2). The infinite cou-
pling limit k cannot be computed by a straightforward
summation of the weak coupling expansion (2.1). How-
ever, it can be computed comparatively easily via the
perturbation series (2.11), since one only has to sum the
divergent series [Eq. (3.44) of Ref. [34]]

]i/(~+r) y
- (m)

n=O
(2.13)

With the help of the sequence transformation h& ((, 8 ),(n)

which is defined in Eq. (8,4-4) of Ref. [28], this series can
be summed efBciently and in particular k2 and k3 can
be computed with remarkable accuracy (compare Tables
I—III of Ref. [31], Table 2 of Ref. [33], and Tables VII—IX
of Ref. [34]).

Moreover, the results in Tables IV—VI of Ref. [34], Ta-
bles 10-9 through 10-11of Ref. [35], Tables 1 and 2 of Ref.
[36], and Table 1 of Ref. [37] show that the renormalized
perturbation series (2.11) can also for nonzero but finite
values of P be summed much more effectively than the
perturbation series (2.1). Particularly good summation

the prefactor (1 —K) / guarantees that the terms and
partial sums of this perturbation series possess automat-
ically the correct asymptotic behavior (2.3) as P ~ oo.
This has far-reaching numerical consequences. A very
convincing example is the infinite coupling limit
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Hl')(p) = p'+*'+ p*-' (2.i4)

results were again obtained with the help of the sequence
transformation 8'&~ l ((, s„).

The summation results mentioned above show that
the renormalization scheme of Vinette and Cizek [74]
is extremely useful in the context of perturbation the-
ory. However, it can also be very helpful in variational
calculations. In Table I, we determine variationally for
different values of P approximations to the ground state
eigenvalues of the Hamiltonians

rate approximation to the ground state eigenfunction of
the Hamiltonian Hl ) (P). In contrast, the trial function
(2.17) gives good variational results for the renormalized
Hamiltonian (1 —v) ~ 'Rl l(K) even if p is very large.
Loosely speaking, we may say that (1 —r) i~2'R(2l(r) is
in the strong coupling regime closer to the unperturbed
Hamiltonian pz + x than Hl i(p).

The renormalized Hamiltonian 'R( l(v), which is de-
fined in Eq. (2.7), can also be partitioned into an un-
perturbed Hamiltonian p + x /B and a perturbation
(1—v) [x —x /B ] [Eqs. (5.1)—(5.3) of Ref. [37]]. Con-

sequently, E& (r) possesses also a perturbation series in
1 —v. [Eq. (5.4) of Ref. [37]]:

= (1 —~) '~' (ji' + T' + —]T' —3T']) .
3

(2.15)

El-l( ) = ) rl-) (i — )".
n=o

(2.i8)

Since these two Hamiltonians are connected by Symanzik
scaling, their eigenvalues are identical. However, in par-
ticular for large values for P, the numerical properties of
the two Hamiltonians dier substantially.

As basis functions we use in both cases the eigenfunc-
tions of the harmonic oscillator, which are defined by

g„(x) = 2"n!vr' e H„(x) . (2.16)

Here H (x) is a Hermite polynomial.
The ground state eigenfunctions of the Hamiltonians

(1.5) and (2.7) are even. Consequently, only eigenfunc-
tions @ (x) with even indices n have to be used in the
variational calculation. In Table I the trial function

(2.i7)

was used, which contains five linear variational parame-
ters. The "exact" results in Table I were obtained from
Table I of Ref. [74]. For a given value of P, the cor-
responding renormalized coupling constant K was com-
puted by solving Eq. (2.5) numerically with the help of
the MAPLE command fsolve (see p. 97 of Ref. [16]).

The results in Table I show that the ground state eigen-
value of the Hamiltonian H( ) (P) can only be determined
accurately with the help of the trial function (2.17) if
P is small or at most moderately large. If P is large,
the anharmonicity x dominates and the trial function
(2.17) is no longer able to provide a sufficiently accu-

0.2
1.0
4.0
100.0
2000.0

1.118 293
1.393 371
1.909 023
8.084 644

122.041 397

~(2) (~)
(1 —~)1/2

1.118 294
1.392 375
1.903 219
4.999 800

13.389 537

Exact

1.118 293
1.392 352
1.903 137
4.999 418

13.388 442

TABLE I. Variational determination of the ground state
energy E~ l(P) of the quartic anharmonic oscillator via the
Hamiltonian H~ l (P), Eq. (2.14), and the renormalized
Hamiltonian (1 —K) 'R (K), Eq. (2.15).

Since r ~ 1 corresponds to P —+ oo, it follows from
Eq. (2.8) that E( )(P) possesses a renormalized strong
coupling expansion [Eq. (5.5) of Ref. [37]] that becomes
trivial as P ~ oo:

l (p) = (1 —r.)
'~ ) I „(1—v)" .

n=o
(2.19)

The coefficients I of the expansions (2.18) and (2.19)
are defined by the divergent series [Eq. (5.12) of Ref.
[371]

1 n,) (v+ i)„c„l-,'. .
v=O

(2.20)

In Tables 2—4 of Ref. [37], the coefficients I o, I'i(2) (2)

(2) (3) (3) (3) (4) (4) (4)I 20 I 0 I 1, . . . , I', and I 0 I 1 I 5 are
listed, which were computed by summing the divergent
series (2.20) with the help of the sequence transformation

((, s ) [Eq. (8.4-4) of Ref. [28]].
In Theorems 1 and 2 of Ref. [37] it was proven that

the renormalized energy EII (r) is analytic in a neigh-
borhood of v = 1. This implies that the perturbation
series (2.18) for E& (r) converges in a neighborhood of
v = 1 or, equivalently, that the renormalized strong cou-
pling expansion (2.19) for E( l(P) converges for suffi-
ciently large P. Moreover, there is strong numerical ev-
idence that the perturbation series (2.18) converges for
all v C [0, 1], which implies that the renormalized strong
coupling expansion (2.19) converges for all physically rel-
evant P E [0, oo) (compare Tables 5—8 of Ref. [37]).

Unhke the perturbation expansion (2.1) and the strong
coupling expansion (2.2), the two renormalized perturba-
tion expansions (2.11) and (2.19) have compatible vari-
ables. Therefore, they are able to provide numerically
useful information from the weak coupling and the strong
coupling regime simultaneously to effective characteristic
polynomials and two-point Pade approximants.

In all calculations involving the renormalized perturba-
tion expansions (2.11) and (2.19), we retain the prefactor
(1 —K) i~z since it guarantees that our summation re-
sults automatically have the correct asymptotic behavior



2930 CIZEK, WENIGER, BRACKEN, AND SPIRKO 53

(2.3) as P ~ oo. Consequently, we essentially try to de-

termine the renormalized energy E& (r), using a certain
number of input data from the weak coupling expansion
(2.10) around v = 0 as well as from the strong coupling
expansion (2.18) around v = 1.

III. EFFECTIVE CHARACTERISTIC
POLYNOMIALS AS A SUMMATION

TECHNIQUE

Let us assume that we try to determine an approxi-
mation to the ground state eigenvalue of the Hamilto-
nian (1.1) variationally. U the trial function is a linear
combination of n orthonormal basis functions C with
v = 1, 2, . . . , n, the secular problem

det (C„~H(P)~C„) —Eb„„= 0 (3 1)

n n —k

P„(E) =) E") f,"P =0. (3.2)

The coefficients f" can be c. onstructed from the matrix el-

ements (4 ~H(P)~4„) = (4 ~HO~4 ) +P(@„~V~4 ). Ob-
viously, we must have fs = 1 for all n ) l.

A reasonable accuracy can only be achieved if the di-
mensionality n of a variational calculation is suKciently
large. Alternatively, one could use small values of n and
replace the Hamiltonian (1.1) by a suitably chosen ef-
fective Hamiltonian leading to an effective characteristic
polynomial P (E) of the same general structure as the
one in Eq. (3.2).

In this article we choose the coefficients f" of the ef-
fective characteristic polynomial in such a way that the
Taylor expansion of the e8'ective characteristic polyno-
mial around P = 0 reproduces the Taylor expansion of
the characteristic polynomial of the exact Hamiltonian
(1.1) up to a given order.

This can be accomplished by substituting the pertur-
bation expansion (1.2) for the energy into the characteris-
tic polynomial (3.2) of the effective Hamiltonian, yielding

P„) c P
m=o

—k).c p- ).f,"p
m=o q=o

0 (3 3)

For a fixed value of n, the efI'ective characteristic poly-
nomial (3.2) contains (n + 1)(n + 2)/2 coefficients f".
Because of fo = 1, only n(n+ 3)/2 of these coefficients
are unspecified and have to be determined. For that pur-
pose, we compute symbolically the Taylor expansion of
the substituted characteristic polynomial (3.3) around
P = 0 including terms up to the order n(n + 3)/2 —1

results, which is a polynomial P (E) of degree n in the
unknown energy E. It can be shown easily that the re-
sulting characteristic polynomial in E has in the case of
the Hamiltonian (1.1) the general structure

in p:
ooP„) c P

n(n+3)/2 —1

pt g (p ( +s)/2)

This can be done conveniently with the help of the MAPLE
commands taylor and coefr (see pp. 213 and 19, respec-
tively, of Ref. [16]). Then, we set the coefficients A& with
0 ( t ( n(n + 3)/2 —1 of this Taylor expansion equal to
zero. This leads to a system of n(n+3) /2 linear equations
At ——0 for the urispecified coefficients f", which is solved
symbolically with the help of the MAPLE command solve

(see p. 200 of Ref. [16]).
In this way, we can construct the efI'ective character-

istic polynomial (3.2) with unspecified energy eigenvalue
E and unspecified coupling constant P. After substitut-
ing the desired numerical value of P into the effective
characteristic polynomial (3.2), we determine its roots
numerically with the help of the MAPLE command fsolve

(see p. 97 of Ref. [16]).
Thus our approach relies heavily on the symbolic ma-

nipulation language MAPLE [15,16] both for the construc-
tion of the system of linear equations leading to the ef-
fective characteristic polynomial (3.2) as well as for the
numerical determination of its roots. This extensive use
of MAPLE is both an advantage as well as a disadvan-
tage. With the help of MAPLE, we are able to perform
complicated mathematical operations symbolically, i.e. ,
free of rounding errors. Since, however, the symbolic
solution of large systems of nonlinear equations is quite
demanding with respect to computer time and even more
so with respect to memory, the complexity of our calcu-
lations is very much limited by the available computer
resources. Consequently, our approach seems to be par-
ticularly suited if only relatively few terms of a pertur-
bation series are available.

Another potential problem of our approach is the nu-
merical determination of the roots of the efI'ective charac-
teristic polynomial with the help of the MAPLE command
fsolve. As is well known, the numerically determined roots
of a polynomial can be extremely susceptible to small
perturbations of the polynomial coefficients (compare,
for instance, the example on p. 305 of Ref. [76]). Ac-
cordingly, we observed that the accuracy of our results
depended in some cases quite strongly on the accuracy
of our input data.

It is important to note that we reconstruct only the
characteristic polynomial of the efFective Hamiltonian
but not the effective Hamiltonian itself. If we would in-
stead try to reconstruct the effective Hamiltonian, we
would end up with a complicated system of nonlinear
equations.

The approach described above can be used to sum ei-
ther the perturbation series (2.1) or the renormalized per-
turbation series (2.11), which are both weak coupling ex-
pansions. The only difference is that in the case of the
renormalized series the prefactor (1 —v) ~ is retained.
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Thus we consider effective characteristic polynomials in

the renormalized ground state energy E& (K),
n n —v

u=O j=O
(3.5)

which have formally the same structure as the character-
istic polynomials (3.2). Again, we must have Xo = 1 for
all n) 1.

Next, we replace E& (K) by its perturbation series(m)

(2.10), yielding

(oo )" n —v)-,( )„
p, =O j=0

(3.6)

and compute a Taylor expansion of the substituted char-
acteristic polynomial around K = 0 symbolically, includ-
ing terms up to the order n(n + 3) /2 —1 in r:

p 5 (m. ) y.

p=O

n(n+3)/2 —1

~ „~ + ~(„( +s)/2) (3.7)

This leads to a system of n(n + 3)/2 equations Ai ——0
for the unspecified coefficients W. in Eq. (3.5).

In this way, the effective characteristic polynomial
P (E& ) is constructed symbolically with unspecified
renormalized energy and unspecified r. Then, the nu-
merical value of K is computed for a given value of P
by solving Eq. (2.5) numerically with the help of the
MApLE command fsohe and substituted in the effective
characteristic polynomial. In addition, E& (K) is re-

placed by (1 —r) ~ E( )(P) according to Eq. (2.8). Fi-
nally, the roots of the resulting characteristic polynomial
in E( )(P) are determined numerically using fsolve.

In Table II both the perturbation series (2.1) as well
as the renormalized perturbation series (2.11) for the
ground state energy E(2) (P) of the quartic anharmonic
oscillator is summed by effective characteristic polynomi-
als of degrees n = 3 and n = 4, respectively. The exact
results in Table II were obtained from Table I of Ref. [74].

As mentioned above, an effective characteristic poly-
nomial with degree n of the type of Eq. (3.2) or (3.5)
contains n(n + 3)/2 unspecified coefficients. Hence, for

n

(m)(p) ) 5(m) pj
j=O

(3.8)

with m = 2 of the perturbation series for the energy shift
AE( )(P), and the partial sums

(3.9)

with m = 2 of the perturbation series for the renormal-

ized energy shift (1 —v) ir AE& (v).
In Table III the Pade approximants 1 + @[6/6] and

1 + /[7/6] obtained from the series (2.1) and the Pade
approximants (1—r) ~ (1++[6/6]) and (1 —r) ~ (1+
+[7/6]) obtained from the renormalized perturbation se-

ries (2.11) are listed, which use only the coefficients 6„
and c with 0 & v & 14.

A comparison of Tables II and III shows that the renor-
malized perturbation series (2.11) can again be summed
much more efFectively than the perturbation series (2.1)
unless P is very small. For small or moderately large

P, the Pade approximants (1 —rc) ~ (1 + r[6/6]) and
(1 —r) i~2(1+ K[7/6]) seem to be roughly equivalent to

n = 3 and n = 4. only the coefficients 6 and c of the&2) (2)

perturbation series (2.1) and (2.11) with 0 ( v ( 8 and
0 & v & 13, respectively, are needed for the construction
of the effective characteristic polynomials.

The results in Table II show once more that the sum-
mation of the perturbation series (2.1) in the strong cou-
pling regime is very difFicult. In contrast, the summation
of the renormalized perturbation series (2.11) by effective
characteristic polynomials gives very good summation re-
sults even if P is very large.

In order to be able to estimate the quality of our sum-
mation results for the ground state energy E( ) (P) of the
quartic anharmonic oscillator, we transform the partial
sums of the perturbation series (2.1) and (2.11), respec-
tively, into Pade approximants. To make our Pade results
comparable with the summation results in Table II, we
consider only those Pade approximants that use at most

the coefFicients 6 and c with 0 & v & 14.(2) (2) ~

We do the Pade summations as we did it in Ref. [34]:
The Pade approximants are computed. with the help of
Wynn's e algorithm [77]. Moreover, we only sum the
perturbation series for the energy shifts AE( )(P) and

(1 —K) ~ EE& (r), which are defined by E( )(P)
1+AE( )(P) and E( )(P) = (1 —K) ~ 1+ AE (r)
respectively. Consequently, the input data for Wynn's e

algorithm [77] are the partial sums

TABLE II. Summation of the perturbation series (2.1) and (2.11) for the ground state energy E (P) of the quartic anhar-
monic oscillator by efFective characteristic polynomials (3.2) of degrees n = 3 and n = 4.

0.2
1.0
4.0
100.0
2000.0

Perturbation series (2.1)
n= 3 n=4

1.118 288 834 1.118 292 667
1.390 507 568 1.392 394 574
1.831 571 465 1.907 139 788

152.258 104 738 7.254 843 292
3025.897 452 512 96.996 696 154

1.118 292 550
1.392 344 429
1.903 094 833
4.999 147 313

13.387 638 106

1.118 292 655
1.392 351 832
1.903 138 679
4.999 431 869

13.388 485 529

Renormalized perturbation series (2.11)
n= 3 n= 4 Exact

1.118 292 654
1.392 351 642
1.903 136 945
4.999 417 545

13.388 441 701
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TABLE III. Summation of the partial sums (3.8) and (3.9) of the perturbation series (2.1) and (2.11), respectively, for the
ground state energy Z (P) of the quartic anharmonic oscillator by Pade approximants.

Perturbation series (2.1)
1 + P[6/6] 1+P [7/6]

Renormalized perturbation series (2.11)
1 + K[6/6] 1+ ~[7/6]

(1 —K)1/
Ewact

0.2
1.0
4.0
100.0
2000.0

1.118 293 197
1.394 169 246
1.995 346 220

16.951 874 831
311.178 693 279

1.118 292 278
1.389 827 745
1.635 372 857

-417.324 934 162
-178 342.1.30 076 040

1.118 292 655
1.392 351 850
1.903 138 615
4.999 430 177

13.388 479 935

1.118 292 655
1.392 352 240
1.903 141 052
4.999 446 387

13.388 528 318

1.118 292 654
1.392 351 642
1.903 136 945
4.999 417 545

13.388 441 701

p„) r(-&(1 —~)
~=0

n

) r(-)(I —~)~
~ ) ~;K~ = o

v=0 p, =O j=O
(3.1o)

and by doing a Taylor series of the substituted polyno-
mial up to powers of order E —1 in 1 —v:

) r(-)(I —~).
p.=0

= ) Bg(I —K) + 0((1 —v)~) . (3.11)

We now determine the n(n+ 3)/2 unspecified coefficients

of the efFective characteristic polynomial 'P (ER )
by using n(n+ 3)/2 —t' conditions A&

——0 with 0 ( t (
[n(n+ 3)/2] —I, —1 from the Taylor expansion (3.7) and
8 conditions 8~ ——0 with 0 & A & E —1 from the Taylor
expansion (3.11).

the efFective characteristic polynomial of degree n = 4.
However, for P = 100 or P = 2000, the efFective char-
acteristic polynomial gives better results. Similarly, ef-
fective characteristic polynomials sum the perturbation
series (2.1) more effectively than Pade approximants un-
less P is very small.

The quality of our summation results can be improved
considerably if some of the n(n+ 3)/2 conditions needed
for the construction of the unspecified coeKcients T". in
Eq. (3.5) are provided by the renormalized strong cou-
pling expansion (2.19). This is accomplished by substi-
tuting the renormalized strong coupling expansion (2.19)
into the efFective characteristic polynomial (3.5) accord-
ing to

Hence, in Table IV we use for the construction of ef-
fective characteristic polynomials of degrees n = 3 and
n = 4 not only the terms of the perturbation series (2.11)
but also also the leading terms (Table 10-19 of Ref. [35]
or Table 2 of Ref. [37])

r,") = 0.735 214010331216080 772 291445 276 89,

(3.12)

I1:0 277 055 672 879 946 971 403 937 539 329 61

I'2( ) ———0.011 178 897 209 645 025 734 252 454 055 43

(3.14)

of the renormalized strong coupling expansion (2.19) for
the ground state energy E( )(P) of the quartic anhar-
monic oscillator as input data. One, two, or three con-
ditions, respectively, are supplied by the renormalized
strong coupling expansion (2.19) at v = 1 according to
Eqs. (3.12)—(3.14) and the remainder of the n(n+ 3)/2
conditions are provided by the weak coupling expansion
(2.11) at K = 0.

A comparison of the results in Tables II and IV shows
that the inclusion of additional conditions at K = 1
greatly enhances the efIiciency of efFective characteristic
polynomials, in particular in the strong coupling regime.

If we compare in Table IV the accuracy obtained by
the difFerent efFective characteristic polynomials of degree
n = 4, we observe that the characteristic polynomial,
which uses three conditions at K = 1, produces less accu-
rate results than the polynomial, which uses two condi-
tions at r = 1. Since this deteriorati~ of accuracy is not
observed in the case of the polynomials of degree n = 3,
we suspect that it is a consequence of rounding errors:

TABLE IV. Determination of the ground state energy E~ l(P) of the quartic anharmonic oscillator by effective characteristic
polynomials of degrees n, = 3 and n = 4. One, two, or three conditions, respectively, are supplied by the renorrnalized strong
coupling expansion (2.18) according to Eqs. (3.12)—(3.14) and the remainder of the n(n + 3)/2 conditions are provided by the
renormalized perturbation series (2.10).

0.2
1.0
4.0
100.0
2000.0

1.118 292 666
1.392 351 487
1.903 136 059
4.999 416 588

13.388 441 300

1.118 292 655
1.392 351 664
1.903 137 054
4.999 417 669

13.388 441 753

One condition at rc, = 1
n= 3 n=4

1.118 292 701
1.392 352 104
1.903 137 416
4.999 417 589

13.388 441 703

1.118 292 654
1.392 351 628
1.903 136 925
4.999 417 543

13.388 441 701

Two conditions at ~ = 1
n=3 n=4

Three conditions at m = 1
n= 3 n=4

1.118 292 567 1.118 299 592
1.392 351 432 1.392 354 530
1.903 136 871 1.903 139 480
4.999 417 544 4.999 422 556

13.388 441 701 13.388 454 676

Ewact
1.118 292 654
1.392 351 642
1.903 136 945
4.999 417 545

13.388 441 701
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The coefficients of the weak coupling expansion (2.11)
are exact rational numbers, whereas the coefBcients of
the renormalized strong coupling expansion (2.19) are
fioating point numbers with a not completely known ac-
curacy.

The sextic anharmonic oscillator is a much more de-
manding summation problem than the quartic anhar-
monic oscillator. Thus we also tried to determine the
ground state energy E( i(P) of the sextic anharmonic
via effective characteristic polynomials, which were con-
structed from the terms of the perturbation series (2.11)
and also from the leading terms (Table 10-22 of Ref. [35]
or Table 3 of Ref. [37])

IV. TWO-P OINT PAD E AP PROXIMA NTS

Let us assume that a function f possess a formal power
series

f(z) = ) a z".
m=0

(4.i)

proved considerably —in particular for larger values of
P if in addition to the conditions at r = 0 a single con-
dition at v = 1 is also included.

I' ) = 0.625089812561,
I'( = 0.407 659 180 68,
I'2 ———0.031 516 476 79

(3.i5)

(3.i6)

(3.17)

Its Pade approximant

[l/ ]f ( ) = P, ( )/Q ( )

is the ratio of two polynomials

(4 2)

of the renormalized strong coupling expansion (2.19).
However, these coefIicients are at best accurate to nine
places. Accordingly, we observed numerical instabilities
when we tried to use up to three conditions at K = 1 for
the construction of effective characteristic polynomials
for Ei i(P). In order to avoid problems with numerical

instabilities, we determined the leading coeKcient I'0 of
the renormalized strong coupling expansion (2.19) by a
combined symbolic and numerical approach described in
Ref. [78] with an accuracy of 35 places:

I'0~ = 0.625 089 812 558 373 247 732 471 182 898 955 62 .

(3.18)

In Table V effective characteristic polynomials for the
ground state energy E~ ) (P) were constructed using ei-
ther all conditions at v = 0 from the renormalized pertur-
bation series (2.10) or one condition from the renormal-
ized strong coupling expansion (2.18) at K, = 1 according
to Eq. (3.18) and the remaining n(n + 3)/2 —1 condi-
tions from the renormalized perturbation series (2.10).
The exact results in Table VII were obtained from Table
II of Ref. [74].

The results in Table V show that effective charac-
teristic polynomials apparently work even in the very
demanding case of the ground state energy El i(P) of
the sextic anharmonic oscillator. However, Table V also
shows that the quality of the summation results is im-

Pg(z) = pp+ p]z+ p2z + '+ p(z (4.3)

and

Q (z) = 1+qi +q2z + . +q~z (4 4)

it leads to a system of I+m+1 linear equations for the co-
efficients of the polynomials Pg(z) and Q (z) [compare,
for instance, Eq. (1.16) of Ref. [24]]. If this linear system
has a solution, the Pade approximant can be represented
as the ratio of two determinants that depend on the coef-
ficients ao, ai, . . . , ay+ of the formal power series (4.1)
[compare, for instance, Eq. (1.27) of Ref. [24]].

Hence Pade approximants utilize only information
from the expansion of f around the origin up to a given
order. This has far-reaching numerical consequences. As
is well known, the numerical properties of power series of
the type of Eq. (4.1) can frequently be improved consid-

of degrees 8 and m, respectively. The E+ m+ 1 poly-
nomial coefFicients pG, p1, . . ., pp and q1, q2, . . ., q are
chosen in such a way that the Taylor series of the ratio
PI(z)/Q (z) agrees as far as possible with the formal
power series (4.1):

f() — ()/Q-() = o('+ +') (. )

If this relationship is rewritten as

Q (z) f(z) —Pg(z) = O(z + + ), z m 0, (4.6)

TABLE V. Determination of the ground state energy E( i(P) of the sextic anharmonic oscillator
by efFective characteristic polynomials of degrees n = 3, n = 4, and n = 5. Either all n(n + 3)/2
conditions are provided by the renormalized perturbation series (2.10) at r = 0 or one condition
is supplied by the renormalized strong coupling expansion (2.18) at m = 1 according to Eq. (3.18)
and the remaining n(n+ 3)/2 —1 conditions are provided by the renormalized perturbation series
(2.10).

P
0.2
1.0
4.0
100.0
2000.0

n=5
1.173 904
1.436 143
1.832 385
3.725 831
7.723 080

n=3
1.201 633
1.501 199
1.943 220
4.013 010
8.347 784

1.173 603
1.433 353
1.823 952
3.691 068
7.640 275

All conditions at K = 0
n=4 n=3

1.174 340
1.437 088
1.832 415
3.718 544
7.702 576

1.173 849
1.435 419
1.830 118
3.716 713
7.701 600

1.173 817
1.435 311
1.829 973
3.716 608
7.701 545

One condition at m = 1
n=4 Exact

1.173 889
1.435 625
1.830 437
3.716 974
7.701 738
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erably by Pade approximants if z is small or moderately
large. However, Pade approximants usually do not ac-
complish much if z is very large.

There are functions f that also possesses an asymptotic
series in powers of 1/z:

. b
f(z) - ) zMoG.

Asymptotic series of that kind are usually divergent for
every ~z~ ( oo and have to be summed. Also in this case
Pade approximants to f can be constructed by solving a
system of linear equations. In this way, it is frequently
possible to sum a divergent asymptotic series of the type
of Eq. (4.7) efficiently if z is not too small. However,
Pade approximants, which only use information from the
expansion (4.7) of f around infinity, normally produce
bad results if z is very small.

The concept of Pade approximants can be generalized
in such a way that information from both the origin as
well as from infinity can be utilized simultaneously if a
function f possesses both a power series expansion (4.1)
around the origin and an inverse power series expansion
(4.7) around infinity. Such a two point Pad-e approximant
is again defined as the ratio of two polynomials PI(z)
and Q (z) of degrees E and m, whose coefficients are
defined by a system of E + m + 1 linear equations. The
only di8'erence between a one-point and a two-point Pade
approximant is that now some of the E+m+ 1 conditions
are provided by the power series (4.1) and the remaining
conditions are provided by the inverse power series (4.7).

A generalization to multipoint Pade approximants is
also possible if the function f possesses several power
series expansions around the points zo, zi, . . .,

Oy 1
y

e e ~ ~ (4.8)

In this case, each expansion for f contributes a certain
number of conditions to the system of linear equations
for the coefficients of the polynomials Pt(z) and Q {z).

Additional material on two-point and multipoint Pade
approximants can for instance be found in Sec. 8 of [24],
in Sec. 1.1 of Ref. [26], in Sec. 2.9 of Ref. [79], in Sec.
VIII.2.1 of Ref. [80], and in Ref. [81] and [82].

The perturbation series (2.1) for E& &(P) is a weak
coupling expansion around P = 0 and the strong cou-
pling expansion (2.2) is an expansion around infinity.
Nevertheless, these two expansions cannot be used for
the construction of two-point Pade approximants since
the strong coupling expansion (2.2) is an expansion in

P 2~~ +il. Consequently, these two perturbation series
have incompatible variables. In contrast, the two renor-
malized strong coupling expansions (2.11) and (2.19) for
E~ l(P) are suited for the construction of two-point Pade
approximants, since they are expansions in v and 1 —v,
respectively.

In all calculations involving two-point Pade approxi-
mants, we partition. the ground state energy E~ l (P) into
the prefactor (1 —v) ~ and the renormalized ground
state energy ERl ~(v) according to Eq. (2.8). We always

retain the prefactor (1 —v) ~ and only transform the
perturbation expansions (2.10) and (2.18) for E& (v)
into two-point Pade approximants. This approach guar-
antees that the resulting two-point Pade approximants
for El l(P) possess the correct asymptotic behavior as
P —i oo according to Eq. (2.3).

Moreover, we only consider diagonal two-point Pade
approximants with numerator and denominator polyno-
mials of equal degrees. Hence we approximate E&~ l( v)

by rational functions of the type

P„(v) pp + piK + + p K"

Q (v) 1+qiK+ + q
(4.9)

Such a two-point Pade approximant P (v)/Q (v) con-
tains 2n+ 1 unspecified coefBcients qo, qi, . . ., q~ and p~,
p2, . . ., p which have to be determined.

As in the case of the effective characteristic polynomi-
als, we use MApLE [15,16] for both the construction and
the solution of the system of 2n+ 1 linear equations. I.et
us assume that 2n —Z + 1 conditions are to be supplied
by the weak coupling expansion (2.11) around v = 0 and
E conditions by the renormalized strong coupling expan-
sion (2.19) around v, = 1. Thus, for a fixed value of n
we compute 8ymbolica/ly the first 2n —E+ 1 terms of the
Taylor expansion of P (v)/Q {v) around v = 0,

2~—e
~( ) ) ~

(v t O( 2n —X+1)
Q„(v)

(4 1o)

and the first E terms of the Taylor expansion of
P„(v)/Q„(v. ) around v. = 1,

Q„(v.)
= ) D, (l —v)' + O((l —v) ). (4.11)

We obtain our system of 2n + 1 linear equations by
requiring that the first 2n —E+ 1 coeKcients of the Tay-
lor expansion (4.10) agree with the corresponding coeffi-
cients of the renormalized perturbation series {2.10),

(4.12)

and that the first E coefficients of the Taylor expansion
(4.11) agree with the corresponding coefficients of the
renormalized strong coupling expansion (2.18)

0& A&I —1. (4»)
This system of 2n+ 1 linear equations for the coeKcients
qo, qz, . . ., q~ and pz, p2, . . ., p is solved symbolically.

Multiplication of the resulting two-point Pade approx-
imant for E& (v) by (1 —v) i~2 yields the correspond-

ing two-point Pade approximant for El l(P). Finally,
the numerical value of K is computed for a given value
of P by solving Eq. (2.5) numerically with the help of
the MApLE command absolve and substituted in the two-
point Pade approximant, yielding an approximation to
the numerical value of E~ l(P).

In Table VI the ground state energy E~ l(P) of the
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TABLE VI. Determination of the ground state energy E~ l(P) of the quartic anharmonic oscillator with the help of two-point
Pade approximants P„(r)/Q„(r) with n = 2 and n = 3. One, two, or three conditions, respectively, are supplied by the
renormalized strong coupling expansion (2.18) at K = 1 according to Eqs. (3.12)—(3.14), and the remainder of the 2n + 1
conditions are provided by the renormalized perturbation series (2.10).

/3

0.2
1.0
4.0
100.0
2000.0

1.118 306 014
1.392 417 302
1.903 224 982
4.999 465 097

13.388 460 175

1.118 293 521
1.392 360 250
1.903 151 447
4.999 426 485

13.388 445 227

Gne condition at K = 1
n=2 n=3

1.118 281 115
1.392 334 677
1.903 128 332
4.999 417 016

13.388 441 673

1.118 291 928
1.392 349 367
1.903 135 463
4.999 417 440

13.388 441 695

Two conditions at rc = 1
n=2 n=3

1.118 303 882
1.392 356 608
1.903 137 904
4.999 417 552

13.388 441 701

1.118 293 331
1.392 352 312
1.903 137 115
4.999 417 547

13.388 441 701

Three conditions at v = 1
n=2 n=3 Exact

1.118 292 654
1.392 351 642
1.903 136 945
4.999 417 545

13.388 441 701

quartic anharmonic oscillator is approximated by two-
paint Pade approximants P ( K)/Q (ic) with n = 2 and
n = 3. One, two or three conditions, respectively, are
supplied by the renormalized strong coupling expansion
(2.18) according to Eqs. (3.12)—(3.14), and the remaining
of the 2n+ 1 conditions are provided by the renormalized
perturbation series (2.10).

If we compare the results in Tables III and. VI, we see
that two-point Pade approxirnants give remarkably accu-
rate results, which are clearly better than the results ob-
tained by effective characteristic polynomials. The two-
point Pade approximants in Table VI are ratios of poly-
nomials of degrees n = 2 and n = 3. Hence the pertur-
bation expansions (2.10) and (2.18) have to provide only
five and seven conditions, respectively. Ordinary Pade
approximants are not nearly as effective. If we use the
partial sums (3.9) with m = 2 as input data for Wynn's
e algorithm 77], we find that the following Pade approx-
imants to E )(P) have, for P = 2000, approximately the
same accuracy as the two-point Pade approximants in
Table VI:

1 + K[23/23] 13.388 441 701 389,
1 —K

i + ~[24/23] 13.388 441 700 575.
1 —K '/'

(4.14)

(4.i5)

The second approximant containing the Pade approxi-
mant [24/23] needs all coefficients c of the renormal-(2)

ized perturbation series (2.10) with v ( 48.
The remarkable efFiciency of two-point Pade approx-

imants becomes also quite evident in the case of the
ground state energy Ei i(P) of the sextic anharmonic
oscillator. In Table VII we use for the construction of
two-point Pade approximants P„(K)/Q„(K) with n = 2,
n = 3, and n = 4 not only the terms of the perturba-
tion series (2.11) but also also the leading terms of the
renormalized strong coupling expansion (2.19) according

i + ~[82/si] 1.173 988,
1 —K

(4.16)

i + ~[82/82]
(1 —ic)'/2

(4.i7)

to Eqs. (3.15)—(3.17). One, two, or three conditions, re-

spectively, are supplied by the renormalized strong cou-
pling expansion (2.19) at K = 1 and the remmainder of
the 2n+ 1 conditions are provided by the weak coupling
expansion (2.11) at v = 0. The exact results in Table
VII were obtained from Table II of Ref. [74].

An effective characteristic polynomial of degree n con-
tains n(n+ 3)/2 unspecified coefficients, whereas a two-
paint Pade appraximant P (r)/Q (ic) contains 2n + 1
unspecified coeKcients. Thus we can expect that two-
point Pade approximants should, for the same value of
n, be less strongly affected by inaccuracies of the input
data than effective characteristic polynomials. Moreover,
the summation results obtained by effective characteris-
tic polynomials are affected by inaccuracies of the input
data not only via the solution of the system of linear
equations but also via the numerical determination of the
roots of the characteristic polynomials. Accordingly, we
observed in Table VII at most some minor numerical in-
stabilities in the case of the two-point Pade approximant
P (r)/Q (K) with n = 4, which uses three conditions at
K=1.

It was mentioned before that the sextic anharmonic
oscillator is a borderline case for Pade approximants: It
can be shown rigorously that Pade approximants are able
to sum the perturbation series (2.1). However, Pade ap-
proximants converge so slowly that they are computa-
tionally useless [51,62,63 . The renormalization scheme
of Vinette and Cizek [74 does not change the situation
substantially. If we use the partial sums (3.9) with m, = 3
as input data for Wynn's e algorithm [77], we obtain, for

P = 2/10, the following approximants to E(si (P):

TABLE VII. Determination of the ground state energy E (P) of the sextic anharmonic oscillator with the help of two-point
Pade approximants P (v)/Q (r) with n = 2, n = 3, and n = 4. One, two, or three conditions, respectively, are supplied by
the renormalized strong coupling expansion (2.18) at K = 1 according to Eqs. (3.15)—(3.17), and the remainder of the 2n+ 1
conditions are provided by the renormalized perturbation series (2.10).

p
0.2
1.0
4.0
100.0
2000.0

One condition at
n=2 n=3

1.174 710 1.174 215
1.436 829 1.436 162
1.831 603 1.830 981
3.717 644 3.717 297
7.702 070 7.701 899

1.174 057
1.435 928
1.830 755
3.717 168
7.701 835

Two conditions at m = 1
n=2 n=3 n=4

1.173 706 1.173 818 1.173 852
1.435 513 1.435 574 1.435 594
1.830 385 1.830 412 1.830 422
3.716 969 3.716 972 3.716 973
7.701 738 7.701 738 7.701 738

Three conditions at m = 1
n= 2 n= 3 n=4

1.173 949 1.173 913 1.173 901
1.435 640 1.435 632 1.435 628
1.830 441 1.830 439 1.830 437
3.716 975 3.716 975 3.716 971
7.701 738 7.701 738 7.701 731

Exact
1.173 889
1.435 625
1.830 437
3.716 974
7.701 738
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and for P = 2000 we obtain the approximants

1+~[82/81] 7.705 569,
1 —K

1+ ~[82/82] 7.702 155.

(4.18)

(4.19)

The approximants containing the Pade approximants
[82/82] need all coefficients c of the renormalized per-(3)

turbation series (2.10) with v ( 165. Hence renormal-
ization does not help much to speed up the prohibitively
slow convergence of Pade approximants to the ground
state energy E( )(P) of the sextic anharmonic oscillator.

In contrast, the two-point Pade approximants in Table
VII converge remarkably rapidly. For instance, the two-
point Pade approximant I (K)/Q (r) with n = 2, which
uses only two conditions at r = 0 and three conditions
at r = 1, reproduces E( ) (P) with an accuracy of at least
four places in the interval 0.2 ( P ( 2000.

The ground state energy El l(P) of the octic anhar-
monic oscillator is an extremely demanding summation
problem. As mentioned before, it was proven rigorously
by Graffi and Grecchi [64] that Pade approximants are
not able to sum the perturbation series (2.1) in the octic
case. In this context, Fig. 1-c of Ref. [74] is also quite
instructive. The results published in Table VI of Ref. [34]
indicate that the renormalization scheme of Vinette and
Cizek [74] does not change the situation. Thus Pade ap-
proximants are not able to sum the renorrnalized pertur-
bation series (2.11) for the ground state energy El l(P)
of the octic anharmonic oscillator.

If we want to apply two-point Pade approximants in
the octic case, we are confronted with the problem that
the coeKcients I' of the renormalized strong coupling
expansion (2.19) are at best accurate to seven places
(compare Table 10-24 of Ref. [35] or Table 4 of Ref. [37]).
In order to avoid problems with numerical instabilities,
we determined the leading coeKcient I. 0 of the renor-
malized strong coupling expansion (2.19) by a combined
symbolic and numerical approach described in Ref. [78]
with an accuracy of 27 places:

I'o = 0.555 130236 018 265 911014 365 275. (4.20)

In Table VIII we constructed two-point Pade approxi-
mants P (r)/Q (r) with 2 ( n ( 6. One condition was
provided by the renormalized strong coupling expansion
(2.18) at r = 1 according to Eq. (4.20) and the remaining
2n conditions were provided by the renormalized pertur-
bation series (2.10). The exact results in Table VIII were

obtained from Table 5.10 of Ref. [75].
The results in Table VIII indicate that two-point Pade

approximants using only a single additional condition at
v. = 1 are indeed able to produce convergent results for
the ground state energy E( l (P) of the octic anharmonic
oscillator. More detailed investigations would certainly
be highly desirable. So far, the bottleneck is the accurate
computation of the coefFicients I' of the renormalized(4)

strong coupling expansion (2.19) with n ) 1.

In this article we consider two unconventional sum-
mation methods for divergent perturbation expansions:
efFective characteristic polynomials, which are described
in Sec. III, and two-point Pade approximants, which are
described in Sec. IV. These two summation methods are
designed for systems in which both a weak coupling ex-
pansion and a strong coupling expansion are available,
since they can utilize simultaneously information from
both expansions. Such a dual approach should at least
in principle be capable of producing better results than
a summation technique that uses only information from
either the weak coupling or the strong coupling expan-
sion.

In both cases, we accomplish a summation by con-
structing and solving systems of linear equations. We do
this with the help of the symbolic manipulation language
MApLE [15,16].

The quantum mechanical systems that we treat in
this article are the anharmonic oscillators defined by the
Hamiltonians (1.5). The perturbation series (2.1) for the
ground state energy E( l(P) of an anharmonic oscilla-
tor with anharmonicity x is a so-called weak coupling
expansion in P that diverges quite strongly for every
P g 0 and has to be summed. The ground state en-

ergy E( l(P) possesses also the so-called strong coupling
expansion (2.2), which is a power series in P ~l +~l and
converges if P is sufficiently large.

The perturbation expansion (2.1) and the strong cou-
pling expansion (2.2) have incompatible variables. Con-
sequently, they cannot be used for the construction of
effective characteristic polynomials or two-point Pade ap-
proximants, which use simultaneously information from
the weak and the strong coupling expansion.

However, this aim can be accomplished with the help
of alternative perturbation expansions for E( l(P) that
are based on a renormalization scheme worked out in
full detail by Vinette and Cizek [74]. This renormaliza-

TABLE VIII. Determination of the ground state energy E( l(P) of the octic anharmonic oscillator
with the help of two-point Pade approximants P (r)/Q (r) with 2 ( n ( 6. One condition is
supplied by the renormalized strong coupling expansion (2.18) at r, = 1 according to Eq. (4.20)
and the remaining 2n conditions are provided by the renormalized perturbation series (2.10).
p
0.2
1.0
4.0
100.0
2000.0

1.245 144
1.495 243
1.825 939
3.190 961
5.667 524

1.243 919
1.494 035
1.824 882
3.190 323
5.667 160

m=4
1.243 359
1.493 478
1.824 393
3.190 027
5.666 991

1.243 039
1.493 157
1.824 110
3.189 855
5.666 894

1.242 831
1.492 947
1.823 925
3.189 743
5.666 829

Ewact
1.241 028
1.491 020
1.822 180
3.188 654
5.666 204
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tion scheme is essentially the variable substitution (2.5),
which maps the semi-infinite interval [0, oo) for P onto the
unit interval [0, 1) for the renormalized coupling constant
v. This renormalization scheme, which was originally de-
signed for other purposes, also simplifies variational cal-
culations in the strong coupling regime, as shown in Table
I.

Our renormalization scheme partitions E( ) (P) ac-
cording to Eq. (2.8) into (1 —K) ~, which behaves
like P r( + ) as P i oo according to Eq. (2.9), mul-

tiplied by a renormalized ground state energy E& (r).
The renormalized energy E& (rr, ) can be expanded into
a weak coupling expansion (2.10) or a strong coupling
expansion (2.18).

Thus the ground state energy E( )(P) possesses also
the renormalized weak coupling expansion (2.11) [Eq.
(5.3) of Ref. [34]], which is a strongly divergent power
series in K, , and. the renormalized strong coupling expan-
sion (2.19) [Eq. (5.5) of Ref. [37]],which is a power series
in 1 —K and apparently converges for all P C [0, oo) (com-
pare Secs. 6 and 7 of Ref. [37]).

The two renormalized perturbation series (2.11) and
(2.19) are expansions in rc and 1 —K, respectively. Conse-
quently, they have compatible variables and can be used
for the construction of effective characteristic polynomi-
als and and two-point Pade approximants.

Effective characteristic polynomials can also be used
for the summation of the weak coupling expansions (2.1)
and (2.11) for the ground state energy E(2)(P) of the
quartic anharmonic oscillator. The results in Tables II
and III indicate that they do this at least as effectively
as Pade approximants. However, the results in Table IV
show that the summation power of efFective characteristic
polynomials is greatly enhanced if also some conditions
at K = 1 are included.

The principal advantages of simultaneously using con-
ditions at r = 0 and at v = 1 are also demonstrated
in Table V. Effective characteristic polynomials are ap-
parently able to sum the renormalized weak coupling ex-
pansion (2.11) for the ground state energy E( ) (P) of the
sextic anharmonic oscillator, albeit slowly. The inclusion
of a single condition at v. = 1 improves the summation
results considerably, in particular in the strong coupling

regime.
Even better summation results are obtained by two-

point Pade approximants. The results in Tables VI—VIII
show that two-point Pade approximants, which simulta-
neously use information at v = 0 and at v. = 1, clearly
outperform ordinary Pade approximants that only use
information at v = 0.

For example, ordinary Pade approxirnants are able to
sum the renormalized strong coupling expansion (2.11)
for the ground state energy E( )(P) of the sextic an-
harmonic oscillator. However, Eqs. (4.16)—(4.19) show
that Pade approximants to E(s)(P) converge too slowly
to be practically useful. In contrast, the two-point Pade
approximants P (r)/Q„(rr) in Table VII produce al-
ready for n = 2 remarkably accurate approximations to
E(s) (P)

In the octic case, it was proven rigorously by GraK
and Grecchi [64] that Pade approximants do not con-
verge. However, the results in Table VIII provide strong
evid. ence that two-point Pade approximants, which only
use a single condition at K = 1, converge to E( ) (P).

Our numerical results indicate that effective character-
istic polynomials are less eKcient than two-point Pad.e
approximants. However, this does not imply that effec-
tive characteristic polynomials are necessarily less useful.
It was already mentioned before that there are situations
in which the symmetry of the exact Hamiltonian can be
taken into account easily in the case of efFective charac-
teristic polynomials [43], but not in the case of two-point
Pade approximants [44,39].
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