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We present a microscopic theory for multiple light scattering occurring in inhomogeneous three-
dimensional inedia subject to an external magnetic field. Magneto-optical efFects (the Faraday efFect
and the Cotton-Mouton effect) occur inside the small iuhomogeneities. Using point-interaction
models and the diffusion approximation. , we are able to do qualitative and quantitative predictions
for this rather complex problem. We can take into account the spatial anisotropy, time-reversal-
symmetry breaking, and birefringence caused by the magnetic field, and discuss the consequences for
the diffusion tensor and the polarization characteristics of the diffuse light. We frequently compare
our findings to a similar phenomenon in dilute polyatomic gases: the Beenakker-Senftleben effect.
Coherent backscattering and the fleld-field correlator (F, (B) E~ (0)) are addressed, which have both
been obtained experimentally by the group of Maret et al. All modifications in transport theory
due to the magnetic field exhibit a rather sensitive dependence on the scattering phase shift of the
individual scat terers.

PACS number(s): 42.25.Bs, 05.60.+w

I. PHYSICAL CONTEXT

Multiple scattering of light is a fascinating topic having
much overlap with other branches of physics such as solid-
state physics, atomic physics, and astrophysics. Most in-
teresting aspects are due to the persisting role of interfer-
ence in multiple scattering of light, together with the rel-
ative ease to observe and manipulate it in controlled lab-
oratory experiments. For electrons this is more difFicult
due to phase-destroying mechanisms such as electron-
phonon coupling that are not so easy to eliminate. The
interference in multiple light scattering manifests itself
in by now rather well understood phenomena as co-
herent backscattering [1] and universal fluctuations [2].
Other applications, such as localization of light, are still
under speculation.

One perhaps unexpected conclusion is that interfer-
ence in multiple light scattering is in fact very difIicult
to suppress. Experimentalists have put a great deal of
effort into undoing the effect of speckles in light measure-
ments and extracting an average value of some transport
variable. Absorption is known to suppress multiple light
scattering but not the relative importance of interference.
A finite coherence length of incident light does not de-
stroy all interference and some experiments, like coherent
backscattering can even be done with sunlight.

The only known way to manipulate interference exter-
nally is by applying a magnetic field. In the solid state a
magnetic field breaks the charge symmetry between holes
and electrons, destroying the weak localization correction
and giving rise to a negative magnetoresistance. In the
case of light, magneto-optical effects in the dielectric con-
stant have a similar impact on coherent backscattering of
light. The physics of the latter, constructive interference

of time-reversed waves is sometimes believed to be similar
to the weak localization of electrons [3]. The dominant
magneto-optical effect is the Faraday effect. Mathemati-
cally it is due to an antisymmetric term in the dielectric
tensor linear in the external field vector B [4]. In a ho-
mogeneous medium it is well known that this causes a
rotation of the polarization vector of a linearly polarized
plane wave proportional to traversed length and mag-
netic field. Equivalently, two opposite circularly polar-
ized light beams achieve different speeds. As such it is
often a means to determining interstellar magnetic fields.

The study of the Faraday effect in inhomogeneous me-
dia is much more recent. The inclusion of Faraday rota-
tion into a transport equation of light has been carried
out by plasma astrophysicists [5,6] in order to understand
the combination of emission and absorption of polarized
synchrotron radiation in optically thick ionized plasmas.
However, in that case the light scattering is inelastic. In
sharp contast to the light processes in plasmas, elastic
scattering in disordered dielectric media conserves the
phase so that interference can take place. After initi-
ating work by Golubenstev [7], MacKintosh and John
[8] found, in their rather profound study, that the co-
herent backscattering of light will be suppressed by the
time-reversal-symmetry-breaking character of the Fara-
day effect. As has been shown by Martinez and May-
nard [9,10], elastic multiple light scattering &om inho-
mogeneities in a dielectric background with Faraday ac-
tive material is under some approximations —extremely
suited for numerical simulation. These simulations also
work for the cases of higher magnetic fields and the in-
homogeneities replaced by genuine Mie spheres, both of
them being difIicult to attack analytically.

Experimentally the coherent backscattering of light in
magnetic fields is studied extensively by Erbacher, Lenke,
and Maret [11,12]. Some of these results will be discussed
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&om a theoretical point of view in Sec. V. In these ex-
periments it is diIIicult to distinguish between "medium"
and "scatterers. " Nevertheless, roughly speaking, they
can be divided into two kinds. In some of them the
magneto-optical effects occur in the medium and not in
the immersed particles. This is the situation envisaged
in the theory of MacKintosh and John and the numeri-
cal simulations of Martinez and Maynard. In other work,
the magneto-optical effects occur inside the particles and
not in the surrounding medium. For this case, to the best
of our knowledge no theory exists and the present paper
aims to fill this gap. We will show that this case allows
in the conventional Boltzmann approximation of trans-
port theory —an analytical solution incorporating all as-
pects of the magneto-optical effects in multiple scattering
of light. Most of them, like the Cotton-Mouton effect and
the anisotropic diffusion tensor, have not been discussed
before to our knowledge.

In pursuing analogies with other branches of physics we
wish to mention the Beenakker-Senftleben effect in dilute
gases [13]—[15]. This efFect embodies the field-dependent
and anisotropic nature of transport coefIicients for para-
magnetic and even diamagnetic polyatomic gases in an
external magnetic Beld. This is caused by the precession
of the magnetic moment of the molecules between the
collisions. This rotation tends to average out the non-
spherical collision cross section between the molecules,
and thereby lowers transport properties like viscosity and
heat conductivity. The magnetic influence on the scat-
tering cross section itself is known not to be responsible
for the Beenakker-Senftleben effect, since it can be shown
to be negligible [16].

In our case it is the electric polarization vector that
rotates between the collisions of the light with the di-
electric particles. If one assumes that the cross sec-
tion is unaffected by the magnetic field indeed a great
resemblance with the Beenakker-Senftleben effect turns
up. One property of this phenomenon, the presence of
a one-parameter scaling variable ~„v. (~„ is the preces-
sion frequency and 7 is the mean free collision time) has
also been seen in multiple light-scattering experiments
[12]. Although some diff'erences will nevertheless show
up, we will demonstrate that the basic transport variable
for multiple light scattering the diffusion constant
becomes anisotropic in a magnetic field, quite similarly
as in the Beenakker-Senftleben effect. Even an antisym-
metric part of the diffusion constant appears, generating
a transverse current, perpendicular to both density gra-
dient and magnetic field [17]. An antisymmetric diIFusion
tensor (signifying a transverse current) is best known for
conduction electrons and ionized plasmas [6], where the
Lorentz force gives rise to the Hall conductivity (and a
less well-known transverse heat conductivity called the
Righi-Leduc efFect). On the other hand, in previous
treatments of magneto-optical effects, the direction of the
magnetic Beld was not noticed to play a role in the dif-
fusive regime. The existence of a transverse current has
been confirmed experimentally in the case of Beenakker-
Senftleben [38].

The outline of the paper is as follows. In the next sec-
tion we derive the scattering properties of one magneto-

optical particle and define most of our notation. In
Sec. III we obtain the average electric-Beld amplitude and
find the dispersion relation u (k, 0) of a coherent beam
with wave vector k and helicity o..

In Sec. IV we calculate the incoherent energy den-
sity by summing —following conventional techniques
the ladder diagrams in the Boltzmann approximation.
In the diffusion approximation we obtain the diffusion
tensor for the light in the magneto-optical medium. The
associated eigenfunction the "Goldstone mode" —turns
out to be anisotropic in polarization space. The transla-
tion of bulk results to finite media is crucial to compare
to experiments. It will turn out that the role of the "skin
layers" [18] for incoining and outgoing light is very impor-
tant. Due to the anomalous step length distribution in
these skin layers, the Stokes parameters in diffuse trans-
mission will not be equal to zero in a magnetic field. We
will show that the magnetic Beld can induce oscillations
in the Stokes parameters as a function of the slab thick-
ness and the Beld strength. Similar oscillations have been
reported on the base of numerical work [9], but have not
yet been observed.

In Sec. V we discuss coherent backscattering by con-
sidering the most crossed diagrams. We find the dephas-
ing length due to the change of reciprocity relations (the
Faraday effect). The absence of the usual reciprocity
also causes the diffusion constant featuring in the most
crossed diagrams to be different from the one in the lad-
der diagrams, as is also known to be true for electrons in
the solid state [19,20]. Attention is paid to polarization
properties of coherent backscattering, as well as to the
anisotropy of the line shape for various directions of the
magnetic Beld. Again, we rely on a strict diffusion ap-
proximation, and ignore (eight) nondiff'usive eigenvalues
of the most crossed diagrams. So far, this has also been
done in the interpretational analyses of the data [12]. Let
us recall that the angular behavior in the center of the
backscattering peak is due to long-range diffusion only.

In Sec. VI the correlation function (E; (B)E~ (0)) is
considered, that is the correlation function of the elec-
tric field with and without external magnetic field (in
transmission). In the Ci approximation this correlation
function is related to the intensity correlator (I (0) I (B)),
which is experimentally obtainable [11].We find a difFer-
ence in phase between E (0) and E (B) (showing up as a
complex eigenvalue near zero), giving rise to a phase fac-
tor in the Beld correlation function itself. The Beld cor-
relation function (E; (B)E~ (0)) has not yet been mea-
sured but recent advances in heterodyne detection meth-
ods may facilitate this.

Although the model is perhaps too simplistic to pro-
vide a quantitative theoretical picture for present exper-
iments, it is the simplest approach starting directly from
Maxwell's equations. Along the way, no approximations
other than the usual ones will be made (independent scat-
tering approximation, difFusion approximation). There-
fore we hope that this paper will be a guide to inter-
preting existing data qualitatively and perhaps will even
initiate future experiments.

We want to draw attention to Appendix A where we
define our tensor notation.
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II. SINCLE SCATTERINC

In this section we derive the scattering properties of
one magneto-optical dielectric scatterer located in vac-
uum. By taking the scatterer pointlike we are able to ob-
tain these scattering properties in analytic form so that
they can be used for multiple scattering in principle with-
out further approximations [21,22]. In this model we are
even able to add a scattering resonance, being charac-
terized by a relatively large cross section, together with
a delay and out-of-phase response of the scattered wave.
The phase function of this model is only influenced by
anisotropy in polarization indices caused by the magnetic
Geld, and not by anisotropy in wave numbers as common
for Mie scatterers.

Throughout this paper we set cp = 1/~s'p = 1. The
refractive index a tensor of rank two of a particle in
an external magnetic Geld is assumed to be given by

n(B) = mI+ —@+MBB.

= 8'I + E'P 4 + E'M BB. (2)

In typical optical experiments [12] at room temperature
the Verdet constant is 90'/mm T. In a field of 15 T
the relative magneto-optical perturbation of the dielec-
tric constant VoB/w 0.002 for one single scatterer is
still small. It seems therefore rather safe to ignore or-
ders higher than B in the dielectric tensor. Both the
Faraday (order B) and the Cotton-Mouton effect (order
B ) remain present and no physics is lost. Note, however,
that in multiple (and even resonant single) scattering the
magneto-optical effects may augment since they are ba-
sically proportional to the length of the traversed path.

Two properties of the dielectric tensor are of funda-
mental importance for the rest of this paper. First, when
all material parameters e, Vo, and M are real valued, the
dielectric tensor is Hermitian: s (B) = [e (B)] . This is
crucial for multiple scattering since it will Gnally guaran-
tee long-range diffusion. The second property is caused
by the antisymmetric term only: s'(B) = [s (—B)]
[s (B)] . This property destroys time-reversal symmetry
and. modifies reciprocity relations. As such it is quite sim-
ilar to the Lorentz force in electronic systems where the
symmetry between electrons and holes will be broken.

A point scatterer with dielectric constant e (B) located
at position r in vacuum is characterized by the Hermitian
operator

In this formula m is the normal isotropic index of re-
fraction, Vo is the Verdet constant of the Faraday effect
(we added a frequency factor w to be consistent with the
experimental definition and to give it the proper dimen-
sion), which is described by the antisymmetric Hermitian
tensor 4,.~=i~;~kBk. The third term is uniaxial birefrin-.
gent and associated with the Cotton-Mouton effect [4].
The dielectric tensor r = n is given by

V2B2

)
Vo+

~

2mM — ', +M'B'
~

BB

t„(B,~) = (t, —t, ) I+ t, @+t,BB,
in which to is the normal Rayleigh t matrix with phase
shift n (ur),

—4~r~' 6~t p (~) = = ——exp (in) sin n . (5)——iI w3

At low frequencies the phase shift goes to zero propor-
tional to ~ . Near the resonance ~o the phase shift
changes rapidly from —m/2 towards 7r/2. Up to orders
B the other t matrices are given by

CO

ti ((u, B) = ——ptp,
6m

2
t2 (~, B) = (~ —() t,'— — p, 'to,

67r 6m

t& (~ B) = ~to — P to.
(d 2 ~ 23
6' 6m

For future use we define the dimensionless variables g, =
t;/ (—Im tp) and (, = t;/tp. In Eq. (6) we introduce three
other dimensionless variables that are used in the rest of
this paper:

(6)

67rs J; B 67i E+B
(s —1) ~ v (e —1) ur v

6vre M B
(c —1)' ur'v

The absolute value of the magnetic field has been in-
cluded here and from now on we denote by B a nor-
malized field with ~B~ = 1. The dimensionless variables
p, , g, and m will finally determine the role of magneto-
optical effects in multiple scattering. Their magnitude is
discussed separately in Appendix C. The variable p can
be argued to be the dominant one, and. essentially equal
to the variable q~g V,rrBZ (E is some incan free path)
introduced by Lenke [12]. Since the Faraday effect in

(» ) =I+ [ (B) —I] I )( I (~)
where v can be interpreted as a typical physical vol-
ume associated with the point scatterer. The abstract
Dirac notation ~r) (r~ is used for a local interaction with
the profile of a h distribution b(r) T. he t matrix of
this particle is most conveniently obtained by noting
that the Helmholtz equation for the electric Geld at fre-
quency ~ resembles a Schrodinger equation with poten-
tial V (r,u1) = [I —c (B,r)] w and energy w . As a result
the t operator here also a second-rank tensor is given
by the Born series

t (B,~) = V ((u) + V (u)) Rp (~, p) . V ((u) + .

Here Gp (u, p) is the free Helmholtz Green's function
C p (~, p) = 1/ u)2I —p2&p, with (Ap), , = b;~—
p,p~. /p2. For a point scatterer the Born series can be
transformed into an ordinary geometric series [22]. Us-
ing the matrix identity (~v~ = 1)

1 vv
PI + Q (ze v) + Rvv P + B

(I —vv) 8 —Q (ze . v)
P2 Q2

it follows that



2884 van TIGGELEN, MAYNARD, AND NIEUWENHUIZEN 53

t (B,ur) —t* (B,(u) = t (B,ur) ) AGo (cu, p) t' (B,(u)

. t (B,(u) t* (B,(u)
3%i

(8)

In this paper we frequently denote the anti-Hermitian
second-rank tensor A —A* by AA. The summation sign

is a short notation for I d p/(27r)

our case occurs inside the particles, the efFective medium
Verdet constant is proportional to the number density of
the particles. For that reason q~X is independent on the
number density (in the dilute regime).

The t matrix does not depend on incoming and outgo-
ing wave numbers due to its pointlike origin. In this case
we encounter anisotropy only in polarization indices and
not in wave numbers. In a magnetic field the resonant
scattering matrix mimics the classical Becquerel model
for the atomic, diamagnetic origin of the Faraday effect
[x2].

The optical theorem is an identity for the t matrix that
follows 6.om energy conservation and is a mathematical
consequence of e = e*. For our point object it is readily
checked that

III. AVERAGE CREEN'S FUNCTION

In this section we consider an infinite nhedium ran-
domly filled (number density n) with the magneto-optical
scatterers discussed in the previous section. The average
field is determined by the average (Dyson) Green's func-
tion which —by translation symmetry —takes the form in
momentum space,

~ (8, r) ~' —y'&p )
& (p —p')

~2I —p2&p —Z (~, p, B)
—= G(p B) ~(p —p') (9)

In the independent scattering approximation the self-
energy Z (~, p, B) is given. by nt~~ (cu, B) . We note that
the tensors Z (w, p, B) and A& do not commute. Using
Eqs. (9) and (4) a rather lengthy tensor analysis reveals
that

G (p, B) = oI+ Zi@+
1 R(B,p) + S(B,p)

a2 —Z2i

(IO)

with

K(B,p) = —(Z, —oZ2) (a + oJ) —Z, ) BB+a (Z, —aZ2) (B.p) (pB+ Bp)
—a' (a —Z, ) pp —aZi (a —Z2) [(4 p) p —p (4 p)] + Z,' (a —Z2) (4 p) (4 p),

S(»p) = -Zi (Zl —~Z2) (B p) [B(@'.p) —(@.p) B]
det G ' (B,p) = (a —Z2) (o, + ap —Zi) —(B p) (Z, —«2)

We abbreviated detC (B,p) = 0,

~ = ~' —p' —(Zo —Zs),

and defined the various components of the self-energy as
Z;—:nt, where the t, have been defined in Eq. (6)

The complex dispersion law is determined by the poles
of the Green's function, that is

usually called Fresnel's equation [4]. With the explicit
expression for the determinant given above we find two
solutions in the upper sheet. [Frequencies for which
z —Z2cos 0 = 0 need special attention. They have
one propagating solution given by o ZIjz and one
nonpropagating solution z = Z2 (z), with p along B.] If
we write z = w —Zo + Z3 and cos 0 = B.p, these are
explicitly,

(Zi + z Z2)»n 0 + (&i + z Z2) sin 0 + 4Zi (z —Z2 cosz 0) (z cos2 0 —Z2)

2 (z2 —Z2 cos2 0)

—Z2sln 0 6 —Z2 sin 0+ Zi cos 0+ 0 (n )2 4

+Zi (B p) + 0 (B,n )

In the third equality all birefringent terms are ignored
and the propagating modes obey a dispersion relation
similar to that found in Ref. [8]. However, for directions

nearly perpendicular to the- magnetic field or for larger
fields, bire&ingence cannot be ignored and the modes
achieve "ordinary" and "extraordinary" character. We
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FIG. 1. Polar plots for the dispersion law at low frequencies, in various directions of propagation in an inhomogeneous
medium exposed to a magnetic 6eld. The direction of the magnetic field is indicated by the arrow. The dashed circle represents
the isotropic case, without magnetic field. On the left-hand side is the wave number for the two solutions, on the right is the
inverse scattering mean free path. We adopted a packing fraction of f = 30%, a dielectric constant s = 1.2, and a magnetic
field such that VOR/u = 0.005. The degeneracy of the wave number is not resolvable but since the mean free path is very large,
the dephasing between successive collisions is nevertheless considerable (see Fig. 3).

emphasize that Z~ is a complex number and thus modi-
fies both wave number A: and scattering mean free path 8
according to p~ = k~ + i/2E~. In former treatments [7]—
[9] the diff'erence between 8+ and E caused by the Fara-
day effect (even without Cotton-Mouton birefringence)
has not been taken into account. This will cause many
diferent results compared to previous work. We show the
dispersion law for the low-frequency case, Fig. 1, and the

resonant situation, Fig. 2. In the low-frequency regime
the difference in wave number between the two modes is
very small, and the Faraday rotation is almost entirely
contained in the mean free path. As evident from Fig. 3
the accumulated phase shift between two successive col-
lisions can nevertheless be large, because the mean free
path is large at low frequencies.

The following exact identity can be derived directly
from the Dyson equation (9),

G p+ — —G* p —— = G p+ — . AZ+2p. qI —pq —qp . G* p ——

Using more compact Liouville notation (Appendix A) this becomes,

1,(B=O) / ),(B)
I

I
I I I )

J
I I 1 I

I
I I I I

I
I I I I I I I )

J
I I

I ) ) ) ) J ) ) ) ) J

0 1

I I l ) I I J I ) I I J ) )

0 1

FIG. 2. As in Fig. 1 but now on resonance (a scattering phase shift of 7r/2 has been given to the scattering particles). We
adopted a size parameter 2: = 1, dielectric constant s = 1.3, packing fraction 30%, and VsB/m = 0.005. The degeneracy of
both wave number and scattering mean free path is severe, and suffers from Cotton-Mouton birefringence.
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n gb . ( n ~l ( n ~l . ( n
&

I
~+ —p+ —

I

—c
I

~ ——p ——
I

= G
(
~+ —p+ —

I

c*
I

~ ——p ——
I2) ( 2' 2) I, 2' 2) q

2' 2)
x [AZ+ 2p. gi —pg —clp —2u)OI+ O(nO)] (14)

in which (AB),. I, I is considered as the four-rank tensor A;~.BIk. Identity (14) has also been generalized for a finite

kequency 0 difference between the two Green's tensors on the left-hand side. This becomes necessary to discuss
dynamics in multiple scattering.

IV. AVEH. ACE INTENSITY

The propagation of the average intensity —for electromagnetic waves more generally the complete set of nine Stokes
correlations (E;Ez)—is characterized by the ladder diagrams (Fig. 4). In the Boltzmann approximation the ladder
diagrams are formally equivalent to the solution of the Bethe-Salpeter transport equation. If the t matrices do not
depend on incoming and outgoing momenta (as is true for our case), the ladder diagrams for an infinite medium
generate a simple geometric series in the four-rank tensor,

g l . ( 0 q ) ( 0 ) . ( 0
Q+(~ ~ »&) =).C

I
~+ —p+ —B

I

G*
I
~ ——,p ——+B I.n t

I
~+ —B I»*

I
~ ——+B

I

.
) 4 2 ) 4 2 )

Explicitly,

( 0 g 5 . ( 0 g & ( 0 i, ( 0
Q+. .„, (cu, q, B,B) = ) G;, (

co+ —,p+ —,B
)

(G*)iI,
(

cu ——,p ——,+B
)

. nt, ~ (
su+ —,B

[
(t*)ii

(
cu ——,kB

[2' )

For later use, the bottom line of the ladder diagram is
allowed to have a reversed direction of the magnetic Beld.
The ladder diagrams sum up to

C+ (~, g, B,O) = n t
~

~ + —,B
~

t*
~

~ ——,+B
I

( & l „(
)

1

1 —Q+ (u), ci, B,O)

Usually, this can be worked out by decomposing
Q (O, g) = Qo + 8Q (O, g) into the various eigenfunc-
tions and eigenvalues of QII thereby treating hQ (0, g)
as a Rayleigh-Schrodinger perturbation [8,23]. We want

k(EI) I(EI)/k(O) I(O)
I I

]
I I I I

]
I I I I

]
I I

j p + q/2 $- X

k p- q/2 X X',

+/- B g- 0/2

X—X

X 1Ip- q/2

=L;&(QI, P,y'iQ, Ii, 8)

p+ q/2 X X X X X X j p'+ q/2

k, p- q/2 X X X X X X 1, p'- q/2

+/- B m- 0/2

=C;+(m, p,p'IQ, q, B)

I l I I I I ] I I I I I I I

FIG. 3. The parameter k~1~ as a function of orientation
w'ith respect to the magnetic field. The same parameters have
been adopted as in Fig. 1 for Rayleigh scatterers. It can be
seen that despite the fact that the degeneracy in +rave number
is small, the phase difFerence (k/)+ —(kE) that accumulates
between two successive collisions is severe, especially for prop-
agation along the magnetic field.

FIG. 4. Ladder diagrams C,~I,~ and most crossed diagrams
C,~I,~ in a magnetic field. We allow in both cases two opposite
directions for the magnetic field of the bottom wave. The var-
ious possibilities are related by reciprocity relations discussed
in the text. For pointlike scatterers (whose t matrices are in-
dicated by crosses) the ladder diagrams do not depend on p
and p', and the crossed diagrams do not depend on g. Bold
lines denote the Dyson Green's tensor; dotted lines connect
identical particles. The four-rank tensor Q+ is the "building
block" for the ladder diagrams.
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to note here that, due to the magnetic field, Qo is not
a normal operator and therefore does not necessarily al-
low an orthogonal set of eigenfunctions. For this reason
Rayleigh-Schrodinger perturbation theory cannot simply
be applied here. In fact, the tensor Qo is not necessar-
ily diagonalizable, and at most isomorphic to a 9 x 9
Gauss-Jordan matrix. If we let AG = AG(r = 0)

AG (p) then Eqs. (8) and (14) imply that

Qo I&G) = I&G&

(AzI Q+ = (AzI

Since in a magnetic field AZ g AG, this means that
Qo+ has on the basis of energy conservation an eigen-
value 1 with geometric multiplicity 1 but with algebraic
multiplicity 2. In our case the magneto-optical effects
only occur in the particles. As a result the "effective
medium" described by LC is only inHuenced indirectly
and AG, i,= (~ /3mi) 8;i, + 0 (n). It is convenient to nor-
malize both eigenfunctions and write

of reciprocity relations in a magnetic field, Qo no longer
has an eigenvalue 1 and —as it turns out later also does
not have an algebraic multiplicity 2. The tensor Qo is
intimately related to coherent backscattering and is in
that sense also an "observable. " This will be discussed
in Sec. IV.

In what follows we will focus on the diffusive two-
dimensional (2D) eigenspace of Qo+ and ignore seven
other dimensions in polarization space in which the prop-
agation is nondiffusive. Let N+ be the 2 x 2 Gram matrix
of these vectors, constructed from the scalar product de-
fined in Appendix A. For simplicity we first set 0 = 0,
and consider the perturbation in the variable q only. To
this end we let

p+ & (II Q+(q) II) (rl Q+(q) II) &

(q) —
I& (lI Q+(q) Ir) (rl Q+(q) Ir&

& q. Dii q K+(&)+q. Di2 q&
(q D2iq q D22q )

in which

K+ (&) = (rl 1 —Qo II) - &' (2o)

The ladder tensor (17) can now be written as

1 (1+Im gs) II) —Im (qi) I4»
A

—Im (g2) IBB)

where g, was defined in the first section, and A
3 (1+ 2Im qs) + 2 (Im i1i) —2Irn q2, IICII—:(CIC) ~

denotes the norm of the matrix C (Appendix A).
The eigenvalue 1 of Qo+ implies that 2+ (q) will be

singular in the hydrodynamic limit q ~ 0. This is the
origin of long-range diffusion. Due to the modification

The matrix N+ —P+ (q = 0) is obviously in Gauss-
Jordan form. After inverting the matrix N+ —P+ (q),
the diffusive mode can be found by looking for the diver-
gent entry as q ~ 0 . To associate a diffusion tensor to
the diffusive mode, dynamics has to be introduced in the
form of a Laplace frequency 0, as indicated in Fig. 4. (For
0 = 0 the difFusion tensor can never be obtained. ) The
dynamical expression can be obtained without explicit
calculation using the tensor identity (14) for 0 g 0. The
result is

8+ (q,O) = hatt* Ir) (II—6icuA (IIAXII +3) + q D2i q ~ '~+ q' Da ( ) q

where the Boltzmann diffusion tensor is defined as

q. D+~ (B) .q:— 6' q D2i q

(&ZI ~Q+(q, B) II) . (22)

In the dynamic treatment we did not incorporate 0 ex-
pansions of scattering matrices t(tu +0/2). This becomes
necessary if we want to be consistent with the correct con-
served quantity [24], which is not (E;E*)as would follow.
Rom Eq. (21) but rather (s,.gEi, E,*.

&
. This will modify the

transport velocity in the diffusion tensor, which is nec-
essarily a scalar. Therefore the diffusion tensor is here

basically (one-third times) the "transport mean free path
tensor. " Keeping in mind this aspect, we will neverthe-
less continue to use the more common word "diffusion
tensor. " Expression (22) can be shown to be equiva-
lent to a dc Kubo-type formula for the "electromagnetic"
conductivity tensor (i.e. , density of states times diffusion
tensor), applied to the special case of point scatterers.

The left-hand eigenfunction IAZ& must be a lin-
ear combination of the complete set of orthogonal
eigenfunctions (Ii) ) i o of the Hermitean tensor
Qo (B = 0, q = 0,0 = 0) obtained in Refs. [8] and [23].
A contribution of any of the last six of these will cause
the diffusion tensor to be anisotropic. In fact I@) is equiv-
alent to I7) and IBB) is a linear combination of the first
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four (see also Sec. IV C 2).
It is convenient to consider the symmetry of the tensor

8+ implied by reciprocity. Reciprocity of both wave and
conjugate wave in the intensity requires the ladder tensor
8+ to obey, in general,

the ladder tensor to a slab geometry by adding bound-
ary conditions. %le will discuss polarization properties
(Stokes parameters) due to the impact of the magnetic
field on both the difFusive and the nondifFusive modes in
transmission.

8,+„i (q, B,Q) = C+,,q (—q, —B,O) A. Calculation ef ladder tenser

By applying this symmetry to the diffusion approxima-
tion found in (21) we conclude that the difFusive mode
must satisfy 1(B) = 1(—B) and the difFusion tensor
D& (B) = D& (—B) . The representatioii of the difFu-
sive mode of 8 (identified as the left-hand eigenfunction)
must be a linear combination of the tensors I, 4, and
BB, with real-valued coeIIIicients. This will seen to be
di8'erent for the di8'usive mode of 8 . The general form
of the difFusion tensor is given by

D~ (B) = D;, (B) I + D „;(B)BB . (24)

The coeKcients are only dependent on the absolute value
of B. We emphasize that the ladder diagram (21)
only provides the symmetric part of the diffusion ten-
sor. The antisymmetric part is proportional to the tensor
—iC;~ =e,.~I, BA, and responsible for a transverse Hall-type
current, which can be found only by looking directly at
the current [17]. More generally, reciprocity guarantees
the "Onsager relation" D+& (B) = . D&+ (—B)
which requires the antisymmetric part to be odd in the
magnetic field.

A reciprocity relation between 8+ and C+ can be ob-
tained by transposing only the conjugate wave. From
e (B) = e' (—B) it follows that

C,+,„,(q = p + p', B,O) = 8,+,„(q= p —p', B,O), (25)

where the tensor C+ is given by the sum of the most
crossed diagrains (Fig. 4). Thus this reciprocity relation
relates two sets of topologically diIII'erent diagrams.

The regime for which the difFusion approximation dis-
cussed here becomes valid can be characterized by the
criterion,

det N+ —P+ (q, B) « K+ (B)

This is equivalent to q (( [1+2(B.q) ]E /5 . A similar
criterion holds to guarantee the irrelevance of all other
modes [8].

In the next subsections we will calculate explicitly the
four-rank tensor Q+ (u, q, B) for our model and &om
that in particular the diffusion tensor. Next we translate

To find the explicit form of the four-rank tensor
Q+ (w, q, B) defined in Eq. (15) one must perform mo-
mentum integrals over the product of two Green's tensors
(9). The exact expression (10) is quite cumbersome for
general multiple-scattering calculations. In the Boltz-
mann approximation one considers only the "most di-
vergent terms, " that is the terms that become divergent
for very low density. Keeping in mind that in all momen-
tum integrals in the next sections the various divergences
occur near the dispersion law (a = 0) we can consider
a n. Furthermore E; n. Another dramatic simplifi-
cation can be obtained by consequently expanding in B
and B . Altogether this replaces the Green's function by
the expression,

(1 Z',
C(B,p) m

~

—+
(ao ao

( ao
~

H (B,p) —
s V (B,p)

ao ao

(26)

in which ao ——u —p —Zo and2 2

L (»p) = -@'+(+ p) p-p (+ p)
H (B p) = BB+(B p) pp —(B p) (Bp + pB)
V(B P) = (O'P) (O'P)

are three transverse tensors of rank two. Only the first is
linear in the field and antisymmetric, signifying the Fara-
day rotation of a spherical wave; I and V are bire&in-
gent parts quadratic in the field that preserve reciprocity.
In the simplification procedure outlined above, the lon-
gitudinal part of the Green's function has been lost. As
a result an ultraviolet singularity has disappeared and
C (p —+ oo) 1/p . Leading orders in the number den-
sity of the calculations in the next sections will not be
afFected. In what follows powers in the magnetic field
higher than two will frequently be ignored without ex-
plicitly saying so.

The radial momentum integrals for q = 0 all take a
form frequently encountered in speckle calculations [25],

(27)

The q expansion can be done using the radial momentum integral,

4m ) = I(n, m) + 0 (p q) + 4 (p.q) u nm I(n + 1,m + 1) .
ao p+q 2 ao p q 2 (28)
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Hei'e I = —&/ImZp denotes the scattering mean &ee path in the absence of a magnetic field. Angular averages have
to be performed for rank-two, rank-four, and rank-six tensors. We find

(1,P,P,P, ) = (b;,b„+b,,b, , + b;, b, ,) —= V;,„„15

(S.P,S"kplIi I ) = —( ', Vkl +b'kVjl +b'lVjk + b' V, k l+b' V, kl ) =%jkl (29)

Using this information the integrals can be carried out straightforwardly and we will only quote the Anal result,

A,+. .ki ((u, B,g = 0) —= —)"G,j ((u, p, B) Glk (u), p, +B)
P1) i i 1(1

1 ——Re qi —Im»
I &jkl + qi&—ski + zli—&ikj + —

I

—zli
2 ) ' 15 ' 15 ' 2g2'

1(1 2 . 1 ~ 1 2 1+-
I el+ -'92

I ~lkji+ 91+ijkl+ 71+Ikji+ I'll ijkl. (3o)

Here,

Tijkl = —,'5 (6b'jbkl + b'kbjl + bilb, k)

&',kl = —@;,bki —
—, (@'ib,k —b*ic', k

—b;k@,l + @"kb,l),
0;ski = 15b,jbkl —

7 (Vijkl + B, B~V~ ski+ BjB~V~;kl + BkB~V~;, l + BlB~V~jk)

+. is (4B, Bjbik+ BiBib;k + B;Bl,b, l + B;Bibik + B,Bkb;l)

&ski = —,', (b'~bkl —B'B,bkl) + —,', (@k'@i, + @i;@k,),
~ij kl 5@ij@lk + 15@ikolj + is@il@jk + 15 (bikbj l bilbj k)

+ 15 (bj kB Bl + bilBj Bk 'bj!BBk b kBj Bi')'

It is convenient to make an isomorphic transformation
to the nine-dimensional vector space of 3 x 3 matrices.
We will restrict ourselves to the three-dimensional sub-
space spanned by the Hermitian matrices (I, 4, BB),
in which the long-range diffusion occurs. The tensor
Q+ (w, g = 0, B) is closed in this subspace Th. is base
is not orthonormal and has Gram matrix,

with

Aii = 2 —
s Re zj12 —2Im» + s Im F2 6 s izji

~

1.
A12 —A21 ——sz (zji ~ zji),

A22 =
gs

—
s~ Re zli + islni » —slm» + s ~gi ~

(3 O 1)M=020
(1 0 1)

With respect to this base the tensor A+ for z1 = 0 takes
the form

A,+, ((u, B,g = 0)—:(i
~

A (~, B,c1 = 0)
~j)

4m= —(z i ) C ((u, p, B) C *

P

x ((u, p, +B) ij),

|~

A2s —As2 ——is ' ('91 W '91) ~

A = A = ———Re zl + —,lm» —
—,Im2 1 2

433 $5 35 Re gz + 35 Im 172 y5 Im g3 ~
8

This matrix is symmetric and for the "+" choice even
Hermitean. We will also need the four-rank tensor
nt (B)t (+B)' with respect to this base. If we denote

U,+, (~, B) —= —(i~ t ((u, B) t* ((u, +B)
~j),
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we obtain the symmetric (and for the "+" choice again
Hermitean) matrix,

Ui+i = 3 —6Re (s + 2Re (~ + 2 I(i I',
U,+, = U,+, = 2 (g, + g,),
U,+, = 2 —4Re g, + 2 Ig, I',

Uss = 1 —2Re (s + 2Re (g,
U, s = Usi = 1 —2Re (s + 2Re (q.

With respect to this base the ladder sum becomes

(&II l~+(,&, ~) = t(&) t(+I)* (I», I@&,I»))
( (»I)

where L+ (g) = M —
z

A+ (g) M . U+. For g = 0 we find

Lii = —Re rli + 3Im rIs —Im rIp ~ —Iqi I + 6Re (s ~ 2 I(i I

—2Re (g + —(rji ~ gi) ((i + (i) = 0,
1 2 2 +

1 1 +Lip = 'i (gl W 'gi) —2 ((1 + (i), Lgi — Z ('gl W 'gi) ((i + (i)2 2
3 2 2 2

L~. = 1+ —« ~i —-Im ~~ + Im n. + —I~i I
+ 2Re &s + 1&iI + -i (~i + ~i) (&i + &i)l. — + 1. — 1

L,s = i (g, ~ q, )—, L„= —i (rji p rI, ) ——((i + (,),10 10 5
1 2 4 1 2L = —Re q ——Im qq + Im rjs / —lail —2Re (q + 2Re (s,10 5 10

1 2 1 2 8 +Lsi ———Re qi ——Im rh + Im gs W —I@iI, +2Re (s ~ —I(i I

——Re (z + —(gi + gi) ((a + (i) = 0,10 5 10 5 5 10
1 3 2 24 8 8I+ = —+ —Re» ——Im gg + —Im gs ——Re (g + —Re (s.
5 70 35 5 5

(33)

This matrix is not symmetric. Some entries as well as the determinant for the "+"choice are zero on the basis of the
optical theorem (8).

An extensive calculation of which we shall not mention any intermediate results and simply quote the 6.nal result
yields the q-dependent part of L+ (q) with respect to the same base

bL+ (cl) = l S+q + T+ (B . q) (34)

in which the isotropic part reads

Sii ——1 —3Re rji —3Im rjs + 5Im re + 5 lail —2Re (s + 5 I(il + 5Re (2 —ioi (gi p gi) ((i + (i),
S12 2 (gl W 91) + 5 ((1 + (1)

SA = ——;.i (~i + ~i) + 5 (&i + &.)

S~~ =
5

—5Re g, + slm rjg —
5 Im gs + s5 lail, —5Re (s + Ei I(il —i4i(qi ~ qi) ((i +(i),

3
S~s = —s5&(rIi +»)
S., ———„(~.+~,)+ —.. (~ +~,),
S,+, = -', ——,', R«,' ——,'Im &, + —",,Im &, + —,', I&, l' —-', Re g, + '-, Re g„

Ssi =
5

—s5Re gi —5Im qs + sslm gg + &'.

Ilail'

—-', Re 6 + —.'. I(il' + —.",Re 6 —», (gi ~ qi) (&i + &i)

Sss = s5
—ssRe qi + —5Im qg — sslm ps+ —sRe (g —s5Re (s36 24 24
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(35)

we obtain

Wii = 3 ——Re qi —6Im gs + 2 Im g2 6 —lgi 1

—6Re (s + 21(i
1

+ 2Re (z —i (gi p gi) ((i + (i),3 2 2

W12 i (91 T 91) + 2 ((i + (i) & W2i ~ (7i + 91) + ((i + (1) 1

9 4
W22 ——1 ——Re gi + —Im g2 —2 Im qs + —lgi 1

—2Re (s + 1(i 1

——i (gi ~ qi) ((i + (i),
1 — + 1 — 1

W2s = i (qi ~ gi), —W— s2 = ——i (i1i ~ qi) + —((i 6 (i),5 5 5
3 2 8 3 2W = 1 ——Re q + —Iin i12 —2Im qs + —lgil + 2Re (2 —2Re (s,10 5 10
3 2 8 3 2 1 2 8 i

g + Im g2 2™ns +
1 gl 1

2Re (3 + 1(11 + Re (2 (nl Tgi) ((1 + (i)10 10 5 5 5
4 3 2 6 8 8 8W+ = ———Re qi + —Im g2 ——Im qs + —Re (2 ——Re (s.
5 10 5 5 5 5

and the anisotropic part,
6 2 1 2 2 3.

Tii = ——Irn g2 4 —i@i 1

+ —1(i 1

——Re (2 ——i (gi p qi) ((i + (i),
3. 1 — ~ 3. 2T„=--'(&,~&,)+-(g, +g,), T„=--i(&,~&,)+- (g, +g,),2 5 5 5

2 6 2 3 6 48 2 4 2 2 39.T+ = ———Re gi + —Im q2 ——Im g& + —lail ——Re &s+ 161 '(~i + ~i) (&i + &i)
5 5 ' 35 5 35 70

T,s = ——i(gi ~g, ), T„= i (r—ji—~q, ) + —((i +(,),
3 2 2 2

Ti+s = ————Re qi + —Im qs ——Im q2 + lail +
5 35 5 35 35 5 5
1 3 ~ 3 24 3 2 2 1 2 16 3.

Ts+i ——————Re i1i + —Im gs ——Im q2 + —lqi 1
+ —Re (s + —1(i

1

——Re (2 ——i (gi ~ gi) ((i + (i),
5 35 5 35 35 5 35 35 70
8 24 24 16 16

Tss = ——+ —Im gs ——Im q2 ——Re (2 + —Re (s.
35 35 35 35 35

Finally we give the perturbation of the tensor Q+ in the dynamic variable O. Using G (w + 0/2) = G (u) +mO dA/dw2,
the most divergent terms (proportional to 1/n) can be obtained straightforwardly using the standard integral I(n, m)
introduced earlier in this section. If we represent the matrix elements of 8Q+ (0, B) with respect to our base by

bL+ (0) = —iOAV+ (B)

The identity (AZ1 hQ+ ( O, B) 1I) = —6u)A+0(n) fol-
lows from the optical theorem and was used earlier for
the calculation of the Boltzmann diffusion constant. The
explicit calculations (35) have been verified to obey this
identity. Since we ignored terms higher order in density
in this calculation, the inBuence of the scatterers on the
transport velocity of multiply scattered light [24] in a
magnetic Geld has been neglected.

B. Boltxmann difFusion tensor

With the calculations in the previous subsection and
using the eigenfunctions in Eq. (19) we find that the
Boltzmann diffusion tensor (22) is

1q. D~+ (B) .q = —(1+Im gs) 81 ~+, (q)

&,~1,+, (q) —I &,~1,+, (q)

D~"~ (B) = sE[d;, I +d „;BB], (36)

2 4 3 2
d;,.= 1 —3Re g, —21m g, + -Im q, + -

ilail

3 2 3 2 4——(Im gi) —2Re (3+ 1(11 + Re (2
5 5 5
4+—Im qiRe (i,
5

2 6 2 6 2 1 2d„; = ——Imp, + —
lq 1

——(Imp)
5 5 5 5
2 8——Re (2 + —Im OiRe (a
5 5

In Appendix C it is shown that the variable p, is the
most important one. Ignoring ( and m in Eq. (36) yields
d;, —1 d „; p B . The dephasing in the most

with the explicit result that the symmetric part is given
by
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crossed diagrams will later be shown to be determined
by the same variable p. In our model both phenom-
ena are thus seen to be of the same order of magnitude.
This dephasing has been measured already [11].For the
experimental verification of anisotropy in the diffusion
tensor of light in Faraday-active media we may thus be
optimistic.

In Fig. 5 we show the modiGcations to the symmetric
diffusion tensor as a function of the phase shift o. of the
Rayleigh t inatrix defined in Eq. (5). At low &equencies
and at resonance it is inferred that the diffusion con-
stant is suppressed, and relatively more perpendicular to
the field direction. At low frequencies (o. 0)—a regime
where our model should coincide with the exact Mie so-
lution at low frequencies —we find AD+/AD+ = 1/2.

II

At resonance (n a/2) this is changed into 1/3. For the
Beenakker-Senftleben effect one also finds the modiGca-
tion to be largest perpendicular to the field, and for the

heat conductivity —at low fields a ratio AA~~/AA~
2/9 [16] is obtained (for large fields this saturizes to
2/3). At intermediate &equencies we infer that the dif-
fusion may in fact increase in a magnetic field. For the
Beenakker-Senftleben effect one always finds a decrease.

C. Light propagation in a slab geometry

In this subsection we calculate multiple light scattering
in an optically thick plan-parallel slab imposed to a ho-
mogeneous external magnetic field. This is the simplest
theoretical model that includes all physics and is experi-
mentally relevant. The angular transmission tensor of a
slab with thickness 1. in (nearly normal [26]) direction k
and normal incidence is given by [27] [y = (I —z2)k, z =
ziz]

+2;,k—
L

dzi dz2 (4my) G (y) G* (y)
0

xC (I —z2, zi) (4vrzi) G (z) V* (z) (37)

Similarly the reHection tensor is y = z2k, z = z~z

0
0

-2

+s,k =

x (4z.zi) G (z) G * (z) (38)

dz2 (47ry)' G (y) G* (y) l:(z„z,)

I

0,0 0.2 0.4 0.6 0.8 1.0
SI A 9

0
Q

-2—
tD

Cl —4—
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—6—
l
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Slf1 9

FIG. 5. Leading relative modifications (in units of p, )
to Boltzmann diffusion tensor in a magnetic field. We put
t = m = 0 so that the Faraday rotation parameter p B
determines the modification of the diffusion tensors. The hor-
izontal axis: the sines of the scattering phase shift of one indi-
vidual scatterer: sinn = 0 corresponds to the low-frequency
Rayleigh regime; sinn = 1 means on resonance. Top: the
diffusion tensor featuring in the convential ladder diagrams
6+, with equal directions of the magnetic field for wave and
conjugate wave; Bottom: the diffusion tensor for the ladder
diagrams 6 w'ith opposite direction for wave and conjugate
wave. This diffusion tensor features in the most crossed dia-
grams. Due to the absence of reciprocity they are not equal;
"para" denotes the diffusion along the magnetic Geld, "perp"
perpendicular to the magnetic Geld.

Here 8 (z2, zi) is the ladder tensor for the slab geome-
try (integrated over transverse coordinates) and must be
found by adding boundary conditions to the bulk results
obtained earlier. The Green's tensors G in the equa-
tions above are Dyson Green's tensors and the Fourier
transform of G(p) defined in Eq. (9). They decay expo-
nentially in space and thus signify the light propagation
in a narrow "skin" layer, that is the first scattering mean
free path for the incident wave, and the last one for the
emerging wave. For the ladder tensor in the bulk we
obtained in Eq. (21) E(q) - ld) p(q) (dl with p(q) es-
sentially the well-documented scalar ladder sum but with
an anisotropic diffusion tensor.

The boundary effects caused by the finiteness of the
scattering geometry are coded in the Schwarzschild-
Milne integral equation for Z(zi, z2) that can be de-
rived &om the Bethe-Salpeter transport equation. For
scalar waves and isotropic scattering this was investi-
gated by Nieuwenhuizen and Luck [18]. The generaliza-
tion to anisotropic scattering was recently carried out by
Amic, Luck, and Nieuwenhuizen [29]. These methods are
not yet applicable to vector waves in anisotropic media.
Therefore we will use the (improved) difFusion approxi-
mation in which the boundary conditions are introduced
by the imaging method [8,27]. This consists of adding
trapping planes for p (z, z') at some distance zo beyond
the slab boundaries, called the extrapolation length. For
isotropic media with k-anisotropic scattering it known
from Milne theory [30] that zo 0.7108', that means al-
ways essentially one transport mean free path. A similar
conclusion is reached by considering the bulk diffusion
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equation subject to the "radiative boundary conditions"
that the incident incoherent flux on both sides of the slab
boundary vanishes (see, e.g. , Refs. [31] and [32]). This
method can also be formulated for vector waves with an
anisotropic diffusion tensor in a slab geometry,

tegration of Eq. (38) with scalar Green's functions. The
same holds true for the incoherent transmission (at for-
ward scattering) [33,34], which we shall need later also
for n g 0. We have

(—V' . D V' + n ) p (z, z') = (source),

4p(z, z') —2z D. V'p(z, z') = 0, z = 0,

-'p(z, z') + —,'z D. Vp(z, z') = 0, z = L .

(39)

1 + x —exp (—2xzo/E)B back
2Dzz Z (1+Z)

Q.E
, L=oo,

D
The source is usually supplied by single scattering; o.
is an absorption rate to be specified later. In this ap-
proach the boundary conditions efFectively locate trap-
ping planes at distances zp ——2D, = 38* outside the
slab boundaries. The relevant diffusion constant for the
slab geometry is thus D„[28].

The solution of Eq. (39) can be found in the literature.
For our purposes we need p (z, z') for n = 0 which reads
[27]

1 (L+ 2zo —~z —z'~) —(I —z —z')
p(z, z') =

4D L +2zp

(40)

The angular incoherent reflection coefIicient for L = oo
(at approximately backscattering) adopting first ordinary
scalar skin layers can be found straightforwardly by in-

1 (z + 8)' L/L
D I h I /I

L = //Qn2D„, (41)

where zp 2.1D,.
We still must deal with the polarization anisotropy

caused by the first and last skin layers. For that we need
the Dyson Green's tensor in real space C (r) . Since the
skin layer is roughly one mean free path in thickness and
kE )) 1, the far field sufIices. If we restrict ourselves again
to low fields and low density we need the Fourier trans-
form of expression (26), in which p will be transformed
to r and the remaining integrals over the absolute value
of p are standard. We find

1 1 r 12 r' 1. r
G (r, B) = — exp (ikr —r/2E) 1 + —its ———gi — A, + —i@i—L (r, B)

4vrr 8 '

r 2 1 r 1 r 2—-ig2- H r, B ——g,' — V r, B8' E 2 8
' 8' (42)

The four transverse tensors herein have been defined in
Sec. IV A.

One result; can be obtained without going into deep
calculations and concerns the "all channel in all channel
out" incoherent transmission coefFicient T. This is the
total transmitted energy flux integrated over all incident
and outgoing directions. This transport quantity is inti-
mately related to the conductance for electrons by means
of the Landauer formula [35]. It can best derived from
the diffusion formulas (39). An even simpler picture is
obtained by replacing the source by a boundary condition
as well. If u (z) is the radiation density then

—8, u (z) = 0,

J, (in, 0) = —u(0) — D,+,u' (0) = 1, —

(43)

J, (in, L) = —u(I) + D+,u'(I) = 0, —

1 1 IJ (out, I ) = T (L) = —u (L) — D+ u' (L)—

From this it follows easily that

(B L) zz ( )
L+ 4D,+, (B)

(44)

This formula also comes out in exact Milne calculations
for angular anisotropic scattering without the difFusion
approximation [18,30], though with a somewhat difFerent
numerical value for the extrapolation length. On the ba-
sis of this formula the all-channel transmission depends
on both direction and absolute value of the magnetic
field. This is a clear experimentally verifiable predic-
tion. In fact, the all-channel transmission is the only
known transport quantity that depends solely on (the
anisotropy of) the difFusion constant. In the presence of
absorption the difFusive absorption length L 1/y D+
is also dependent on magnitude and direction of B. In
Fig. 6 we have displayed the difI'erence in transmission
for two perpendicular directions of the magnetic field.
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The difference T~~
—T~ can have both signs, depending of

the phase shift. At low frequencies (zero phase shift) the
total transmittance decreases as a function of the mag-
netic field, for all directions of the magnetic field. This is
similar to normal electronic conductors. Note, however,
in Fig. 5 that there exists a phase-shift region where the
diffusion constant and thus the longitudinal conductance
increase in a magnetic Geld.

The complication in reBection is that, contrary to
transmission, short paths also contribute so that in prin-
ciple the full ladder tensor is required, and not only its
diffusive approximation. As a result polarization effects
occur even without a magnetic field. A realistic treat-
ment of polarization effects in reBection requires going
beyond the diffusion approximation. In the subsections
that follow we therefore only discuss the transmission.

Stokes parameter s in diguse transmission

For light incident along the z axis, we can use Eq. (42)
to transform the four-rank tensors C C * in Eq. (37) into
a transfer tensor Mk of the skin layers acting as

1,0

0.5

0.0

0.5

—1.0
I I I I I I I I i I I t I I I t I I I

0,0 0.2 0,4
Sl 0 Q

0.6 0.8 |.0
FIG. 6. Anisotropy of the "all channel in all channel out"

incoherent transmission (magnetoconductance) and the for-
ward one-channel incoherent transmission (the incident light
is assumed to be unpolarized). Both are measured by the
relative difference of the Poynting vector for the 6eld lines
parallel and perpendicular to the slab, expressed in units of
p IB, being the square of the Faraday rotation parame-
ter. Both transmission coeKcients can be either positive and
negative depending on the phase shift o..

L
7k = Mk+ dz„

0

L
dzze '~2(1 —z z) e ' M+ (45)

With the boundary conditions on the difFusive bulk outcome (21), the integral gives the familiar scalar result mentioned
in Eq. (41) so that, in the forward direction,

7~ k —x Mk+ . ld) (dl Mk+,
(zo++ l)' 1

D+ (46)

where the diffusive eigenfunction ld) = ~A ll) was found in Eq. (19), and zo+ 2.1D+, . The skin layer polarization
tensor in direction k is given by

1 ——f2Re g&
—fiIm rjs AkAk + —ifi ['giLk&k + gi&kLk] + f2 rI, &kH—k 'gi 8k+k1 2 1 1 --2 2

1 ~
1 -2 —2 1 2+ ~fi [ozark—Hk 9&Hk~k] f~ 91Vk+k+ gl~kVk + 2fz lail LkLk . (47)

We allowed for future need in the most crossed
diagrams —a possible opposite sign for the magnetic Geld
in the complex conjugate wave. The scalar constants f;
arise from the space integrals of the various factors (r/I)'
in Eq. (42), and depend on the direction k. For details
we refer to Appendix B. We want to emphasize here that
by arbitrarily setting f, = 0 there will be no skin layer
effects on polarization and the result JH& ——AkAi, is ob-
tained, as in Ref. [8]. On the other hand, putting f; = 1
the skin layer behaves exactly as the bulk in the sense
that (r) = 8 and (rz) = 2Iz [37]. Using the identity ( 14)
this would imply that the skin layers transform both left
eigenfunctions ld) in Eq. (46) into the transverse tensor

l Q„AC(pk)) leak) + 0 (n). In that case we would

have to conclude that the polarization obtained in the
bulk due to magneto-optical efFects will be compensated
exactly in the skin layers, and that we finally end up
with no polarization as without a magnetic Geld. From
this discussion it may be evident that the anomalous step
length distribution in the skin layers plays a crucial role
for the emerging polarization. The variables f; are fixed
by the boundary conditions. In Appendix B we calculate
that fi ——1.58 and fz ——2.16 in forward transmission.
This brings us to the interesting conclusion that polar-
ization will be present in difFuse transmission.

Polarization is usually described in terms of the Stokes
parameters I, Q, U, and V, which we can obtain
from Eq. (46). Since Eq. (46) separates the incoming
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where

(1 + Ti) I+i & + T2 ILi &

+Ts IHk& + T4 l&~&

—Im (mls) (fi —1) + (Im gi)' (f2 —fi)
T2 ——-Im(gi) (f, —1),

(48)

and outgoing Stokes variables completely, working out
~EE&t, „, Mz .

~d& will sufFice. We obtain
This difFers from the all-channel transmission (44) but
nevertheless depends on the direction of the magnetic
field. In Fig. 6 we show (T~~

—TJ ) /T for both the all-
channel transmission (44) and the forward transmission
(51), quadratic in the field.

2. Stokes parameters in nondigPuse tfansmission

Ts = +Im(g2) (fi —1) —(Im gi) (f2 —fi);
T4 ——(Im qi)' (f2 —fi) . (49)

"* = (T, T.) 2B.B„I T + Tyy
2= Im g2 (fi —1) 1 — B.k sin2$ . (5o)

The Stokes parameters can now be found by choosing a
kame with the z axis along k and the x axis and the y axis
perpendicular. Then T~~ = Ti + T3B —T4By ) TJJy

Ti+ TsB T4B and T y (Ts+ T4) B By iT2B
Ty ——(Ts + T4) B By + i T2B, . Hence,

V i(Ty Ty ) = —Im gi (fi —1)I T + Ty„

,""=(" )(:—,')
2= Im g2 (fi —1) 1 — B.k cos2$,

In this subsection we discuss the impact of a magnetic
field on polarization modes that are not subject to long-
range diffusion. These modes are known to carry po-
larization characterized by either a nonvanishing U, Q,
or V Stokes parameter. In the absence of a magnetic
field they decay exponentially in space, the characteris-
tic length scale being associated with nondifFuse eigenval-
ues of the collision operator [23]. Martinez and Maynard
[9] calculated the Miiller matrix for Rayleigh scatterers
after a given number of scattering events n using a trans-
fer matrix method. They showed that the magnetic field
pronounces the exponential decay of polarization in or-
der B and in addition causes a rotation proportional to
VoBn in the (Q, U) plane. Nothing was seen to happen
to the circular polarization V.

We will now investigate the decay of polarization in
our transport theory. Contrary to the difFusive mode,
terms linear in the Geld prevail. Therefore we restrict to
modifications linear in the field. In this approximation
the tensor Q+ (q = 0, B) reads

The Stokes parameters V, Q, and U do not depend on
the particles density, and only on the direction of ob-
servation with respect to the magnetic Beld and the fre-
quency. A circular Stokes parameter V B persists
when the magnetic field is along the slab. A linear polar-
ization proportional to B remains if the magnetic field
is perpendicular to the slab. The angle P locates the di-
rection of the magnetic field in the xy plane. Without a
magnetic field the Stokes variables would decay to zero
exponentially as exp ( I/E**) [9],—where the depolariza-
tion length E** is associated with nondi8'usive eigenvalues
of the ladder tensor. We emphasize that the imaginary
part of the variables g, signifies the tensor nature of scat-
tering mean &ee path and scattering cross section . If this
eKect were not taken into account, the Stokes parameters
would decay exponentially to zero in a magnetic field as
well. In leading (zero) order of the particle density, the
polarization in difFuse transmission is a surface effect.

Finally we want to note that the Poynting vector as-
sociated with the transmission tensor (48) can easily be
shown to be equal to Jk ——kTrTp k. If we assume that
the incident light is completely unpolarized, an additional
similar trace factor comes in due to the incident skin
layer. In forward transmission we thus obtain for the
Stokes parameter I,

I = T (forward)
("++~)'

D
1 1x 1~T, + —(T, +T,) 1 —(B.z) —. (»)
2 L

Qe (B) = —(6~', 4~ + ~'I b, i + ~'i~, a) + —igi&;, A~1P 2 2 2 1P
(i) 1 — (2)y —igiX(g~; +. —(iZ, q( + —(iZ,,q( . (52)10 10 '~ 10

Here X~y~ has been introduced earlier in Eq. (30). Fur-
thermore

+i&A,.~
= 64'i j~kl + @Ij~ik + ~il@kj

(i)

&;,g) = 6@iA~,' + C'z, ~'A: + 4,@~' .('. ) =

For B = 0 the tensor 1 —Qo (B) is Hermitian. Its
nine eigenvalues and orthonormal eigenfunctions associ-
ated with the various Stokes variables have been found
in earlier work [23],

1),.„=8,k/v 3 (I)
= 3/1O ]2 3& = ~ +'~" 'l"~'/V 3 (Q)-

A45s ——3/10, ~4, 5, 6&,.„=[h; 81,g+b, g8I, ]/v2 (U)

&v,s, g =1/2~7)8, 9&;i, = i[~, 4s —~'s4 ]/V2 (V) .

(53)
For the last six eigenvectors we have (a, 6) = (1,2), (1,3)
and (2, 3), respectively. We shall take the direction of the
magnetic field along the 3-axis. With respect to the base
(53) the tensor 1 —Qo (B), occurring in expression (17)
of the ladder diagrams, takes the form
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f o 1
Z1

3
10

1
10+1Z2

1—
10X2

X Z2 10~2Z3
1

010+1Z21p+1Z21 — 1 3
10

Lo (B) = 3
10

1
20

1
Z4

20 2
1 1

Z4

1 1 1—
Z0 0 +2Z4 +2Z4

Z4
1 1

Z5

o ——Z4
1 1

Z5

in which yi ——(3 + i~3) /2~6 and y2 ——(1 + ii/3) /2i/6. We introduced

(~, ~ ~, ) —4 ((, + (,) ,

z2 = 2 (ili + qi) +» ((i +(i),

z, = i(q, ~g, ) —7((, +(,),
z4 = i (g, p g, ) —5 ((, + (,),
z5 = i ((i W (i) .

For the normal ladder diagraxns all z; are real valued
and zp ——0. We shall focus on two parts of this matrix
outside the one-dimensional diB'usive domain (given by
some linear combination of first and seventh eigenvector).
Firstly, the "linear polarization subspace" is spanned by
(~2), ~3), ~4), ~5), ~6)) . Secondly, the circular polarization
space is spanned by ~8) and ~9) . For brevity, we do not
discuss the (birefringent) coupling between both trans-
forming linear and circular polarization in general into
elliptically polarized light.

The matrix Lo (B) restricted to the five-diinensional
nondiÃusive subspace with linear polarization can be di-
agonalized. It is inferred that the magnetic Geld lifts the
fivefold degeneracy of the eigenvalue 3/10. We find for
the eigenvalues and eigenvectors,

3 1 . 1
A3 4 ———+ —iz2, e3 4 ——

10 10

(+ xi)
+iy1

1
0

)

3 1 1
A5 6 ———+ —iz2, e5 6 ——

10 20

( 0
0
0
1

(+')
Quite convenieiitly this set is again orthonormal, al-
though the eigenvalues have become complex valued. As
a result, the change of the eigenvalues for a small vari-
able q g 0 can be obtained with Rayleigh-Schrodinger
perturbation theory,

3 1
10'

1
——,

' + —,'ii/3
0

)

bA; (q, B) = —(A;i hQ+ (q, B) iA;) . (54)

For B = 0 most matrix elements in Eq. (54) have already
been obtained in Ref. [8]. Up to terms linear in the field
and for low density we have

+,ttt(tt' ) ((P tt) ttl + (t t' 'll 6 '' t 'I t Ittt t tl T ttt t tl) (55)

As before L;~ = b;~ —p;p~ and I;~ = —C';~ + C';~@~@~ —4~ p,p are two transverse tensors used earlier. The angular
average can be expressed into the tensors V,~i, i and W,~i, i introduced in Eq. (29). The matrix elements (54) have
been obtained with a symbolic processor. We find
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»2 (q, B) /I. = q ——qs,

13 2 1 2
— (13 2 1 2b . (57 2 9». (q B)/&' = 70q'+ 7~s+ ((i +(i) I 70q'+ 7Vs I+ (ni +ni)1,40q'+ 70~a I,

»4(q B)/&' = —q'+ -Vs —(&i +(i) I

—q'+ -V'
I

—i(~i +ni) I

q'+ —
Vs I70 7

b&s (q, B) /&' = —q' ——
Vs + (6 + (i) I

—q' ——
Vs )

+ i (ni + 91) I

—q' + —
Vs i35 14 (70 28 q56 35(9, 1,1 . (9, 18,)»s (q, B) /& = —q ——

Vs
—((i + (i) I

—q ——
Vs I

—'(ni + ni) I

—q + —
&s I35 14 i 70 28

(56)

For the ladder diagrams we find that only A2 (B) is real valued and independent of B. The other four occur in complex
conjugates. The eigenvalues of Q {q,B) remain real valued.

Writing A,. (q, B) = A; (B) + D; (q, B)q and by using the formal identity,

exp(iq r) „~ 1 ( A,
{57)

the ladder sum for linear polarization can be transformed into real space. The result is

(L, (r, B)
Ls (r, B)

Lp (r) U

in which the unitary matrix U is given by

I4 (r, B)
L5 (r, B)

Ls(r, B) )

(58)

1
——+ -ii/32 2

0
0
0

iyi —iyi 0 0

iraq
—

iraq

0 0
1 1 0 0
0 0 1 1
0 0 i —i

The complex value of the eigenvalues A; (B) and "difFusion constants" D, (r, B) will give rise to oscillations in the
Stokes parameters Q and U as a function of B and r. To determine these we can consider the special case that
initial and final wave vectors are directed both along the B axis and find Q (r) and U (r). Although this is still a
calculation valid in the bulk, it will approximately be valid for transmission in a slab geometry with length r = Lz.
If the initial light is 100%%uo linearly polarized (U = 0) we can take the initial polarization matrix ~E; (0) E~(0)) =
s (~1);i + ~2);~ + ~3};~). Using Eq. (58) we get for the propagated light,

E, (r) E~ (r)) (difFuse) +
~

———ii/3
~

I 2 (r) +
~

—+ —ii/3
~

(1 (3 1. ) Ls (r) + L4 (r)
(2 2 r (2 2 ) 2 U

(1 1 ~) (3 1 .~) Ls (r) + L4 (r) ~ I4 (r) —L3 (r)

Prom this expression one can infer that

Q (r)
I{r)

e ' cos (kpr + lpo)

U (&)

I(r)
e ~ & sin (kpr + po) (59)

The linear Stokes parameters are exponentially small in the optically thick regime as is well known &om other work.
In a magnetic field the U and Q acquire an oscillatory character: the linear polarization rotates along B proportional
over the traversed distance. Although this may be evident in view of the Faraday e8'ect standing at the base of this,
we nevertheless want to emphasize that we are addressing a (damped) diffusive mode and not the coherent beam.
Since incident and outgoing wave vector are both parallel to B, the difFusive contribution (50) vanishes, and Eq. (59)
contains the only linear polarization of the light.

From Eq. (57) we find the explicit result that Ep and kp, determining the propagation of the linear polarization,
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are given by

23 1 21 & 133 10 ) p 21 f 133
k~ = — —

~

— Re@i ——Im(i
~

=—
21' E 23 ( 138 3 ) I. 23 (138

112
23 )

sin o. (60)

In the low-&equency regime the variable k~ does not depend on &equency and has the value k~ —— 1.29 x
9~e/ (e + 2) fVOB Th. is is 1.29 larger than the rotation of linear polarization of the coherent beam.

A similar calculation is possible in the two-dimensional subspace spanned by the eigenvectors ~8) and ~9) which
carry circular polarization:

1 1. 1 1 — (1 1 i . /3 6
~s (q B) = —+ —its + &' -q' ——

Vs
—(&i W &i) I

—q' ——
Vs I

—'i (ni + ei) I

—q' + —
Vs

2 4 5 10 (10 20 ) (40 40

1 l. 1 1 — (1 1 ) . (3 6
&. (q, B) = ——-~z. +&' -q' ——Vs+ (&i +&i) (

—&' ——
&s I+&(&i +&i) I

—q'+ Vs I

2 4 5 10 q10 20 q40 40 )

(61)

(62)

For the normal ladder diagrams these eigenvalues are
again complex conjugate. Writing As (q, B) = As (B) +
Ds (q, B) q2 and I,s (r) as in Eq. (57) we obtain in real
space,

The eigenvectors ~8) and ~9) couple in when the magnetic
field is perpendicular to the direction of propagation. By
taking a circular wave as initial wave it is easily shown
that the Stokes variable V (r) is given by

Explicitly,

V (r)
I(r)

e cos (k~r + po) (64)

c ——e

13
A:e ———

E8
p 3

Re gg
—————

E8 (1 —2sin n) .

We thus infer that the amount of circular polarization
oscillates as well as a function of distance. However, for
the circular polarization the exponential decay is much
faster and the wave number associated with the oscilla-
tion is much smaller.

V. COHERENT BACKSCATTERING

After the theoretical predictions in Refs. [7] and [8]
the coherent backscattering in a magnetic field has been
studied intensively by Erbacher, Lenke, and Maret and
a vast amount of experimental data is now becoming
available [11,12]. So far the cone is the only multiple-
light-scattering phenomenon investigated thoroughly in
relation with a magnetic Beld. As has been predicted
theoretically the enhancement of the cone was seen to go
down proportional to the magnetic Geld and good agree-
ment was found between experimental data, theoretical
predictions and numerical simulations [9].

New features emerged &om the experiments, which
mainly concern very high fields, up to 30 T. The de-
crease of the coherent backscattering peak due to the
Faraday effect turned out to be very well described by
the exponential step length distribution between succes-
sive collisions [37]. So far coherent backscattering in a
magnetic field seems to be the only phenomenon explic-
itly sensitive to the whole distribution and not to only
its two lowest moments [39]. In addition, a saturation of
the enhancement factor was seen to occur for very large
Gelds that also comes out of the numerical simulations
by Martinez and Maynard. It turned out that only one
single dimensionless variable is needed to describe the de-
phasing up to high fields, being the product of an average
Verdet constant, the magnetic field strength, and some
mean &ee path. This is quite similar to the Beenakker-
Senftleben eÃect for which the magnetic impact on the
heat conductivity turned out to be a function of only
the product 6 = uzi of precession velocity of the mag-
netic moment and the molecule's mean &ee collision time
[13,15]. It seemed necessary to introduce a length scale
E& diferent &om both scattering and transport mean free
path. It describes the loss of circular polarization in mul-
tiple scattering (being relevant for the average Faraday
rotation between collisions). Due to spin Hips it is in
general larger than the transport mean free path (which
determines the memory of momentum). Initially some
optimism existed to have the Faraday eKect enhanced by
resonant scattering [11] but restoration of a numerical
factor in the formulas made the eKect less pronounced,
leaving it as an open question. Our approach will contain
a theoretical attempt to incorporate the eKect of resonant
scattering on the Faraday rotation of polarization.

Concerning polarization, it is found that in opposite
helicity hardly any coherent backscattering is found (even
for large magnetic fields). This is in agreement with pre-
dictions first made by MacKintosh and John [8]. Fur-
thermore, the azimuthal line shape of the cone was seen
to remain perfectly rotationally symmetric. For linear
polarization channels there is a special angle between in-
coming and outgoing polarization vectors for which the
cone is maximal. This has been explained by the Fara-
day rotation in the skin layers. In all these experiments
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the magnetic field was directed perpendicular to the slab,
which is the most convenient setup in the magnet, .

To interpret the experimental data one focuses only
on the difFusive mode. In that case an almost scalar
picture emerges with some polarization efFects included
to describe the Faraday rotation. In the following we
will look in more detail at what remains of the dift'usive

picture for coherent backscattering in a magnetic field.
We will not address the role of nondift'usive modes. It
is clear that they do not inHuence the angular behavior
close to the peak.

A. Most crossed diagrams

ordinates r, and l,. of right- and left-hand eigenfunction
become

"s = ' (~ —I-si + I.s212i),

lg ——1,
lg ——L~2

l, = 5 4 —L„+L„L„.
(67)

Due to the algebraic complexity it is convenient to ex-
press everything in terms of the phase shift a (sin n:—s)
introduced in Eq. (5). Using the explicit form of L
obtained in the previous section and the dimensionless
variables p, , (, and m defined in Eq. (8) we obtain

The most crossed diagrams associated with coherent
backscattering can be obtained by reversing the direction
of propagation of the bottom line in the ladder diagrams.
For vector waves the bottom polarization indices have to
be reversed as well, just like the direction of external
magnetic fields, in order to remain consistent with the
reciprocity relation a (B) = s (—B) . This gives relation
(25) and brings us to study the ladder sum 8 (w, q, B,O)
defined already in Eq. (17). Let us first set 0 and q equal
to zero and treat them later as perturbative variables.
We expect that both left- and right-hand. eigenfunction
of the eigenvalue of Qo (B) closest to 1 is some linear
combination of the independent vectors I, 4, and BB
(with Gram matrix M). In the notation of Sec. IV A the
eigenvalue equations

A = —p' (2s'+1), (68)

and

r, = i y, , l, = i p (2s'—+ 1),

r3 ——5A —2p,

l, = 5A+ p' (4s' + s' —2) —(m —&) sin 2n. (60)

Notice the explicit occurrence of the scattering phase shift
o. in these forms, especially the one for the dephasing A.
Contrary to what was found earlier for the normal ladder
diagrams 8+, the coeKcients of the eigenvectors turn out
to be complex valued. For zero phase shift (valid at low
frequencies) we infer that r; = l;.

Having found both eigenfunctions and associated
eigenvalue for 8 in the diffusive regime, we can obtain
the algebraic expression for 8 (q, B) in the diffusion ap-
proximation. Calculational details are left to Appendix
D. We obtain the rather simple expression

can be rewritten as

=0,

(li, l2, ls) (AM —L ) = 0 .

The overbar signifies complex. conjugation. We recall
that L is the matrix obtained by sandwiching the four-
rank tensor 1 —Qo between our choice of base vectors.
The resulting characteristic equation is

6vr il (—B)) (1(B)
i

l A(B) —(li bQ (q, 0, B) ir)

The symmetric form of this expression is, of course, due
to the reciprocity relation (23). In particular, the minus
sign in ~1(—B)) is required by the reciprocity principle.

To obtain the tensor associated with the most crossed
diagrams, polarization indices of the conjugate wave in
Eq. (70) still have to be reversed but this can best be
done after having added the skin layers as well. In the
subsections that follow we will find explicitly the diffusion
tensor, discuss some polarization properties of the most
crossed diagrams, and finally address the shape of the
cone and the decrease of the enhancement factor.

det(AM —L ) =0. (65)

B. Boltmmann difFusion tensor in cone
We anticipate that A B in leading order of the mag-
netic field [8]. In this order the solution of Eq. (65) is

(66)

The second "ofI'-diagonal" term is a subtle vector eBect,
overlooked in a heuristic theoretical treatment. The co-

Using the eigenfunctions (69) of the four-rank ten-
sor Qo (B) and the matrices S and T defined in
Eq. (34), the calculation of the matrix element (l~

SQ (q, O = 0) ~r) in Eq. (70) is possible. To extract a
difFusion tensor (an intrinsically dynamic transport quan-
tity), a finite frequency difFerence 0 must be incorpo-
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rated as well. The matrix element for the dynamics is

(ll —hQ (0) lr) and follows from Eq. (35). The Boltz-
mann diffusion tensor D& (B) is deHned by bringing the
ladder tensor 8 into the form

1
(q, B,B) (71)iO+—q D~ (B) q+A (8) /Z

An antisymmetric part for D& (B) has no meaning. We
obtain, in terms of the variables (8) and the phase shift
a (s = sinn) in Eq. (5),

resonance: s 1 . In that case AD~~ /Do ———1.6p and

AD&/Do ——+0.8p, . Here, diffusion is even enhanced
perpendicular to the field. Due to polydispersity this
situation may be very dificult to achieve experimentally.
Nevertheless, it is a nice illustration how the scattering
phase shift of the particles may infjuence macroscopic
transport phenomena.

Anisotropy in the difFusion constant D& may be ob-
served from an anisotropy of the line shape of the cone.
This will be the topic of the fourth subsection.

C. Polarization of cone

with

(72)

2 F 88 4 907 2 79
2I 4+ 2

5 45 45
1+—(16m + 9() sin 2n,
15
, ~44, 97,2

I

4 2

q5 15
711 1

I

——(~ —() sin 2cx.
15) 5

D~ (B) = —E(I+8;, I+ d „;BB)1

3 To obtain the most crossed diagrams at retroHection
from the bulk result one must add the skin layers as in-
dicated in Eq. (38) and finally transpose the polarization
indices of the bottom line. We will consider only polar-
ization terms linear in the external magnetic field. The
normalized left-hand eigenfunction then simplifies to

II (+B)) =—

We plotted these corrections as a function of 8 in Fig. 5.
We infer that they clearly deviate from the ones of the
Boltzmann diffusion constant D& (B). Two special cases
can be discussed.

The low- frequency regime associated with genuine
Rayleigh scattering has s (wa) ~ 0. In that case we
find parallel to the field AD /Do ———6.48@ and per-

II

pendicular to the field AD&/Do ———1.75@ . This implies
that difFusion is suppressed in all directions but mainly
along the magnetic field lines. The last property is in
sharp contrast to what was found for the normal incoher-
ent energy denoted by 8+ {as well as for the Beenakker-
Senftleben efFect) where the suppression was seen to be
more pronounced perpendicular to B.

Another special case is when the scatterers are set to

The four-rank tensor in Eq. (70) works out to

3 (II) (II + Ii
I @) (II + ~i II) (4'I) .

1

Next we have to add the skin layers for the incident and
emergent light. As has been done for the incoherent part
the skin layers give rise to a transfer matrix (47), but
now with opposite magnetic field for the conjugate wave,
and a value J'i ——1.21 in reHection (Appendix 8). Linear
in the field it reads

Altogether the polarization matrix for coherent backscat-
tering, in the diffusion approximation, becomes

(q B)~:g =
~, C (» q) (l~i ) (~~I + '+ [l~~) (~i I

+ l~k) (Lk I ])

where I" = fiRe gi —p, —2ps2 and C (B,q) is the diffusive expression in Eq. (71). In order to get the tensor
representation for the most crossed diagrams one must transpose the bottom polarization indices k and I and insert

q = k+ k (at backscattering this operation leaves the tensor expression in the upper formula unchanged). This gives
the final result

C', ii (B,k, k') = —. C (B,k+ k') (A;iA, g +iI" [L.iAkq + A'&Lx~]f

The scalar factor (2vr/l2)C (B,q) determines the line
shape and will be the topic of the next subsection. In
particular, we notice that the difFusion approximation
decouples polarization and line shape.

With respect to the polarization part it is instructive

to consider the experimentally relevant situations of lin-
ear polarization and circular polarization. Let us first
discuss linear polarization channels for the case that the
magnetic field is perpendicular to the slab (Fig. 7). A
polarization vector v is incident, w is outgoing. The an-
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Its approximate form for the slab geometry, starting from
this bulk result, is obtained from the imaging method.
For a semi-infinite slab the result was found in Eq. (41),
identifying n = A/t + Dzqll + (Dll

—Dz) IBII qll)

1 1+.x —exp ( 2—xzo /E)R(q, B) =
~ (1+z)' (77)

where

FIG. 7. Slab geometry with the relevant angles to observe
the rotation of the polarization vector in linear polarization
channels of coherent backscattering. We find the angle o.o
with maximum signal to obey the Lenz rule for all phase shifts
(if Uii ) 0).

gle o.p is defined as the angle between both vectors in the
direction imposed by the magnetic field using the Lenz
rule. It then follows that

tU~toICC~&pjv&v) ~ cos 0!p —E sin 20!p (74)

Obviously the maximum value of this expression is not
reached for o.p ——Q as would happen without a magnetic
field. The angle with maximum signal is

J-qll + ( li t. ) ( II qll)
(BII qll)

determines the dephasing due to both the Faraday effect
(A) and a finite backscattering angle determined by qII =
2k sin (0/2) rII (p). The extrapolation length is now given

by zp —2 1D and is in principle different from the
extrapolation length zp in the ladder diagrams because
the diffusion constant is different. The enhancement of
the cone relative to the incoherent background can be
written as

1 + x —exp (—2xzo ):- (B,o, p) = 1 +
(2z,

—+1)*(1+*)'
D+, 2zo + 1 (polarization cone)

D,, 2zo+ + 1 (polarization ladder)

(78)

no (max) = ——arctan 2F F+ 0 (B —)
1 3
2

(75)

D. Dephasing and line shape of cone

The line shape of coherent backscattering is deter-
mined by the factor C (q, B) in Eq. (73). In an infinite
medium it is given by

The rotation angle is linear in the magnetic field and
shows up as the combined effect of skin layer and first
and last scattering. For Vp ) 0 the variable E is strictly
negative. In that case the angle always obeys the Lenz
rule. For low frequencies we find no (max) = 2.2lp radi-
ans. At resonance this is no (max) = 1.79@radians. Both
the existence of the angle and. its sign are in agreement
with the experiments [12].

If the magnetic field is directed along the slab the first
polarization modifications due to the magnetic field enter
in second order of the field and are strictly due to bire-
fringence. Concerning circular polarization it is straight-
forward to show from Eq. (73) that the opposite helicity
channel has no signal (in difFusion approximation). We
found this to be true for orders B in the field as well.
This agrees with the experiment.

Let us discuss these results. First we discuss the
suppression of coherent backscattering at backscattering
(0 = 0). Secondly the line shape for finite angles. The
suppression at backscattering in principle depends on two
factors, shown separately in Eq. (78). Both factors de-
pend on both direction and magnitude of the magnetic
field. If we assume that p » (,m (Appendix C) the di-
mensionless variable p becomes a one-parameter scaling
variable for the enhancement factor.

The first factor describes the dephasing in multiple
scattering due to the Faraday rotation and is the main
reason why the enhancement factor is suppressed [8].
This contribution dephases similarly in angle and in mag-
netic field, which is also found experimentally up to large
fields [12].

The second factor in Eq. (78) is due to the different dif-
fusion constants and the different polarization behavior
of ladder and most crossed diagrams, giving them differ-
ent weights. This part is only a function of the magnetic
field and not of the angle. The polarization will be inQu-
enced by low orders of scattering as well. We will focus
on the first factor.

An effective medium value for the Verdet constant can
be obtained from Eq. (76) by imagining the scatterers in
a homogeneous medium with Verdet constant U,s (the
situation envisaged by MacKintosh and John). This de-
fines V,g by

C(q, B) = 1

A/E+ q. D (B) . q
(76)

A = V,irB E w V,g—= (2s + 1) p, /(BE) .

In particular, using the value for p at low fre-
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quencies given in Appendix C and 1/E = 2fur4as

x (s —1) / (s'+ 2), with f the packing fraction, we get 1.2

(80)
Vp i, E+ 2)

This outcome difFers by a subtle factor of y 2 from the
effective Verdet constant found from the Dyson disper-
sion law (13). This is due to the fact that the difFusive
eigenfunction also changes. For e' = 1.15 Eq. (80) pre-
dicts an enhancement over the effective medium value of
1.38. Experimentally a value of 1.52 + 0.15 is obtained
[ll]. A better agreement between theory and experiment
can be obtained if a finite value for the phase shift o. is
adopted since this will augment V g. In later experiments
[12] one introduces the Faraday rotation length g, ) E*

in order to distinguish the correlation of circular polar-
ization from the correlation in momentum (determined
by the usual transport mean free path /*). In our the-
ory this length scale does not show up. However, a value
I&/I* ) 1 can be translated into an enhancement of the
effective medium Uerdet constant V,g/f Vp —QE /~8*

Near resonance (Appendix C) one can relate the vari-
able p to the "path length" of the wave inside the scat-
terer according to p = 2VOBIp~th so that

Va Lp th
(81)

0

The Dyson equation gives VDv, „/Vp ——- 1»ih/I. . —For
strong resonant scattering the path length can exceed
the mean free path. As a result, the effective Verdet con-
stant will be strongly enhanced by resonant scattering.
The same mechanism causes the transport speed to go
down [24]. A correlation between both was suggested by
Erbacher, Lenke, and Maret [ll] but has not been found
experimentally so far. It is well possible that internal spin
Rips in Mie scattering destroy this phenomenon [39].

The line shape of coherent backscattering depends on
the direction of the magnetic field. When the Beld is
perpend. icular to the slab one finds that x A /ED +
(D&/D~~ )q~~. Hence the cone is independent of the az-

imuthal angle y. In fact this is the standard experimen-
tal setup and no p dependence was observed. Notice also
that in this case the width of the cone is determined by
the scattering mean free path E, and not the transport
mean free path as is known for Mie scattering [29]. This
might explain why the predicted diminishing of the dif-

I

0
Gk

FIG. 8. Equi-intensity lines for the enhancement factor in
coherent backscattering in a magnetic field for the helicity
preserving channel. The magnetic field is directed parallel
to the slab, along the vertical axis in this graph. The inset
shows the line shapes along (y = 0, solid) and perpendic-
ular (p = vr/2, dashed) to the magnetic field. We consid-
ered the low-frequency regime (phase shift zero) and took

p = 0.4. If the magnetic field were perpendicular to the slab
the equi-intensity lines would be circles with the decrease of
the enhancement factor being the only impact of the magnetic
Beld.

fusion constant relevant for the cone due to the magnetic
field has gone unnoticed so far.

Experimentally one considered so far the cone in a
magnetic field that is perpendicular to the slab. The he-
licity preserving channel is often preferred because it has
the advantage of not giving a single-scattering contribu-
tion for the incoherent background (if the scatterers are
spherical [40]). Moreover this channel is known to have
a purely azimuthally isotropic line shape in the absence
of a Beld. It can be verified. that the polarization impact
(73) of the magnetic field on the cone does not change
this property. Linear polarization channels do not obey
this property due to low orders of scattering for which
the direction of the incident polarization vector is not
yet scrambled [41].

For arbitrary field direction it follows that

A li+ (Dc i (Dj —D~) 1 —(S c) ccc p) (lii

D~+ D D~ Bz

which depends on p if B is not along the z axis. In Fig.
8 we display the line shape for the magnetic Beld along
the slab. Since we found in Eq. (72) that D& ) D~~ the
cone will be less sharpened along the field direction. The
azimuthal dependence of the cone with respect to the
magnetic Beld is the only experimental way to determine
the full diffusion tensor in the most crossed diagrams.

VI. FIELD COB.H.ELATION

In this section we discuss brieIIIy the Beld correlation
function (E; (B)E~ (0)) in transmission. The inten-
sity correlation function (I (B)I (0)) is measurable and
has indeed been measured in transmission. In the Ci
-approximation the latter is given by (one plus) the ab-
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solute square of the field correlation, meaning that a lot
o information of the 6eld correlation function can be
extracted experimentally.

Using the methods outlined in the previous sections
essentially all desired information of the field correlation
can be obtained analytically. In fact, the way of calcu-
lation is quite similar to the one of (E, (B)Ez (—B)),
which is relevant for coherent backscattering. The differ-
ence is that the "building block" for the ladder diagrams
is not Q (B,q) as defined in Eq. (15), but rather

g'(~, q, B) = ) o (~, p+ —,B)

number. Explicitly,

Re A' = —p (2s +I) = —,
6

8 2 1 1
Im A = ——p sin2n+ —m+ —( .

6 6 3
(85)

The real part of the number represents again the- dephas-
ing due to the Faraday effect and is a factor of 4 less than
the dephasing in the crossed diagrams, as was also found
in Ref. [II]. The imaginary part will give rise to a phase
factor in the field-field correlation. As in the expression
for coherent backscattering,

xG* ~, p ——,0 n t ~, B t*,0

(82)

Just like for the cone, the ladder sum for the field corre-
lation can be written as

l (~, q, B) = nt(B)t*(0) (I+ Q'(q)
+Q'(q) . Q'(q) + . )

= nt(B) t*(0)

). I-)( , ,
)..(~l,

(E(B)E(0))-
q D' (B) . q+ A' jE

'

so that one obtains in transmission from a slab with
length L, using formula (41),

(E (B)E (0)) I+3A'/I.
exp ( I43k'/I)—

(86)

To keep things simple we did not include anisotropy in

with exactly the same notation as in Sec. V. We restricted
ourselves again to the two-dimensional subspace spanned

y left and right eigenvector of Q' (tu q = 0 B). I t
, q~ be the 3 x 3 matrix containing the matrix ele-

ments of the four-rank tensor 1—Q' (w B) th(d, q, ) wl respect
to the base (I, 4', BB). We obtain

1.0

~ =12-3
11 4 Il 2t93 + 92 + 3(3 (2 + Il(l~

1
L12 ——2, 'gl 2(1 y

1.
L21 = —i'll —(1

I' =1 2.
+ —g, + —g2 ——g3 +(3+ —ni(i

0.6

0.4

0 2—
L
O
N

0
0.0

I

0.5,
Imk, /Rek

1.5

1.
10
1 . 1

L32 = —
iraqi

——(1,10 5
~ =1 ~ 2-

L13 = —n1 + —&g2—
20 5

8 1 2 Z 2
31 I1 I3 +

20 2 5
~ =1 3 ~ 12
33 — + li +

5 140 35

F13 —(2 + (3, —

4 i
i@2 + (3 (2 + gl(1

5 10
2. 4 4

irI2 ——iris ——(, + —(,.
5 5 5

(83)

We will not discuss polarization properties here. The
most important result is the remnant of long-range dif-
fusion, expressed by the eigenvalue of Q' ( = 0) 1

o . ollows from a characteristic equation similar to
Eq. (65) that

1&' = —(L» —L12L21) . (84)

It can readily be verified that this is in fact a complex

0.2

0.0
&i(0)i(B)&,

—0.2
0.0

Re&E(B)E (0)

I

0.2 0.4
V„iBL/27'

0.8 1.0

FIG. 9. Intensity (dashed) and field (solid) correlation
function. On the horizontal axis the product V @BI of ef-
fective Verdet constant, magnetic Beld, and slab length. The
broad dashed lineine represents the Cz intensity correlation that
would have been obtained without imaginary part in A'. For
the two other curves the ratio of the imaginary and real parts
of A, is 0.8. The real part of the field correlation goes
through zero as a result of the phase factor. The inset shows
t e location of the first zero as a function of this ratio. For
our model this ratio is determined by Eq. (85).
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the difFusion constant (which in fact becomes complex
valued as well). Since A' is complex valued, formula (86)
contains an extensive phase factor exp (—iO) with 8 =
Im /3A'L/E = V,FBI, which has not been considered
before to our knowledge. This phase is not measurable
in the absolute square, although the imaginary part of
/3A' modifies the slope somewhat at low fields (see Fig.
8).

Using the values at low frequencies in Appendix C one
Gnds

3~6' VpB

2 (e —1)' ((uo)

Im VA' = —2~i5~ —S VB MB'
s —1 (d VsB

The imaginary part is a factor (era) smaller than the
real part. The low-frequency regime u ( a is therefore
not favorable to observe the phase. Real and imaginary
parts become comparable when the variables p2, (, and
m become of the same order of magnitude. This can be
achieved when cuba 1. We emphasize that we deal here
with the phase of the complex wave and not with the
geometric phase associated with the polarization factor.
Oscillations in the field correlation (E (8) E (0)) and
the intensity correlation (I (B)I (0)) can originate from
the latter due to the fact that the total Faraday rotation
is always proportional to the total traversed length, even
if the path is snakelike and not straight [9], quite similar
to what was found earlier for the Stokes variables in the
normal incoherent transmission. However, they do not
survive in the diffuse regime.

In Fig. 9 we show Geld and intensity correlation func-
tions. The imaginary part causes a small modification in
the intensity correlation function at low arguments but
basically does not change. The Geld correlation, however,
will oscillate due to the presence of the phase 0, and goes
through zero near a specific value of VOBIS.

VII. CONCLUSIONS

In this paper we have discussed the impact of magneto-
optical effects on multiple elastic scattering of light using
the framework of transport theory. An inhomogeneous
random medium is considered in which the scatterers suf-
fer from the Faraday effect and Cotton-Mouton birefrin-
gence and not the surrounding medium. The scatterers
are modeled by pointlike objects, enabling us to get most
results in closed form. Several aspects of multiple scat-
tering have been addressed.

We have discussed the complex dispersion law. The
complex wave number (the real part of which gives the
effective-medium dielectric constant and the imaginary
part the scattering mean free path) depends on the di-
rection of propagation with respect to the direction of the
magnetic Geld. Especially, such dependence on the scat-
tering mean free path has not been discussed elsewhere
to our knowledge and causes many differences with other
work.

Concerning the average energy density we have cal-
culated the diffusion tensor for the light in a magnetic
Geld. We found diffusion to be different along and per-
pendicular to the field lines. The symmetric part follows
finally by summing up the ladder diagrams (equivalent
to solving the equation of radiative transfer in the dif-
fusion approximation). The anisotropy causes the all-
channel transmission coeKcient of a slab (magnetocon-
ductance) to be difFerent for different orientations of the
magnetic Geld. The antisymmetric part of the diffusion
tensor does not feature in the diffusion equation but gen-
erates a transverse current, perpendicular to magnetic
Geld and energy-density gradient. It will be the subject
of a separate paper [17].

We have considered the Stokes parameters in transmis-
sion. For the magnetic Geld perpendicular to the slab we
found that a nonzero circular Stokes parameter V per-
sists in diffuse transmission and is proportional to the
magnetic Geld strength. The linear Stokes parameters
decay exponentially, but the presence of the magnetic
Beld causes a rotation in the (U, Q) plane. If the field
is parallel to the slab we find that a finite linear polar-
ization remains having the direction of the magnetic field
and being proportional to the square of the field. The cir-
cular parameter V now decays exponentially but is again
accompanied by an oscillatory factor.

We investigated the most crossed diagrams, respon-
sible for coherent backscattering. The decrease of the
factor of 2 in coherent backscattering as a function of
the magnetic field (due to the modification of the normal
reciprocity relations) has been obtained. When the field
is parallel to the slab we predict the line shape to depend
on the azimuthal angle. The diffusion tensor featuring in
the most-crossed diagrams turned out not to be the same
as the one in the ladder diagrams. Thus in a magnetic
field one has two different diffusion tensors. In fact, the
diffusion tensor for coherent backscattering was seen to
suffer a lot more from the magnetic Geld and is Hattened
along the fieM lines.

The correlation function of the electric Geld vector with
and without external magnetic field has been considered
theoretically. We obtained a complex-valued diffusive
eigenvalue in this case. This gives rise to oscillations as a
function of the magnetic Geld. So far, only the intensity
correlation has been measured and not the correlation
function of the electric Geld itself.

Some questions are very dificult to solve theoretically,
and experiments and numerical simulations may lead
us here. A comparison with the Beenakker-Senftleben
effect as discussed in this paper may help us. For in-
stance, does the difFusion tensor saturate for high mag-
netic GeMs? The calculation presented in this paper is
exact in orders B and. B but breaks down when the vari-
able p introduced in this paper becomes comparable to
1. Going beyond this regime seems diKcult but not im-
possible. Experimentally one has at the moment values
maximally equal to p 1. Concerning the dephasing
in coherent backscattering modifications beyond orders
O(B ) have already been reported in multiple-scattering
experiments [12]. Since modifications in the difFusion ten-
sor have been shown to be of the same order we may con-
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elude that this question seems to be resolvable in the near
future. In the case of the Beenakker-Senftleben effect the
modifications are in the saturation regime at most a
few percent. What happens to the diffusion tensor of
light in large fields is theoretically not known either. In
the Beenakker-Senftleben case the modifications in the
saturation regime are determined only by the intrinsic
asymmetry of the molecules' cross section. In our case
the asymmetry of the cross section is caused by the mag-
netic field itself. The physical argument valid for the
Beenakker-Senftleben effect as to why saturation sets in
for large magnetic field may not apply here.

A qualitative conclusion that one can draw from our
calculations is that many properties of multiple light scat-
tering in a magnetic field depend explicitly on the scatter-
ing phase shift of the scatterers. In an experiment one of-
ten has a mixture of diferent kinds of particles and some
average value should come out. In a monodisperse sam-
ple with resonant scatterers however, this notion might
give rise to rather uncommon features. Usually the phase
shift only enters indirectly by means of the diffusion con-
stant or the mean &ee path.

It is also possible to consider the medium to be
magneto-optic rather than the scatterers. We do not ex-
pect this case to be qualitatively diferent although no
definite conclusions should be drawn for this case on the
basis of the calculations in the present paper. Even for
the aimed situation with the magneto-optics inside the
scatterers, the model we considered here may be too sim-
plistic. However, doing better in the hope of being more
close to the experiment will be difBcult, if not impossi-
ble. Moreover, various approximations may overlook the
physical phenomena that come out of our model. As such
we sincerely hope that this paper may serve as a guide
for new experiments.
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APPENDIX. A: TENSOR CONVENTIONS

In general we denote scalars by Roman numbers,
second-rank tensors bold, and four-rank tensors calli-
graphic. We will use the convention that a denotes the
complex conjugate of a scalar, C* the Hermitean con-
jugate and C the complex conjugate of a second-rank
tensor C, and Qt the adjoint of a four-rank tensor. The
second-rank tensor QA denotes the anti-Hermitean ten-
sor A —A*. As customary, implicit summation over re-

peated indices is assumed.
In our notation, the diagram & C

&
denotes

the four-rank tensor C,.~A, ~ (in the notation of Ref. [8]
this would be C;y~~). Two tensors of rank-two A and
B make up a four-rank tensor (AB) determined by
(AB),. „, = A;, Bn, B.y de6nition (AB) .C —= A C B
and D. (AB)—:A* D . B* = (A*8*) . D. Tensor multi-
plication. occurs as (AB) (CD) = (A. C) (D B) . It is
easy to show that

((AB) . (CD)) F = (AB) ((CD) . F)
so that we can forget about the range of multiplication. A
scalar product for second-rank tensors can be introduced
as

(A, B) = Tr A* B,
which we will sometimes write as (A

~
B) . The cyclic

property of the trace guarantees that

(D, (AB) . C) = (D (AB), C)—:(D~ (AB) iC)

The adjoint P t of a four-rank tensor 7 must obey
(A, PB') = (Pt A, B) . It follows that (AB) t

(A*B') . In general we use the notation

where we note that in many physical applications D and
C are either Hermitean or anti-Hermitean.

APPENDIX B: CALCULATION OF
POLARIZATION CONSTANTS

The constants f, show up in the calculation of the
transfer matrices of the skin layers in reflection and trans-
mission due to the Faraday eKect and birefringence. They
determine an e8'ective length with respect to the scatter-
ing mean free path 8 according to

where r = z/ cos 0;„and r' = z'/ cos 0~„t, both measured
&om the boundary into the slab. In principle, they de-
pend on the magnetic field. For our purposes it is suFi-
cient to evaluate these variables for zero magnetic field.
The constants f; also depend on the angles 0;„and 0 „t.
We concentrate on waves incident and leaving along the
z axis.

For Rayleigh scatterers without magnetic field we have
Let us therefore normalize E = E* = 1. For

the step length distribution P (z) = exp (—z) valid far
away from the boundaries it follows that fq ——f2 ——1
[37]. The joint distribution of z and z' in reflection is
in principle given by exp (—z) p (z, z') exp (—z'). Using
the diffusion approximation given in Eq. (41) for a semi-
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infinite slab we find

1 II„r(z, z') = e ' [min (z, z') + zp] e
zp+1 2

zp+ 3/4 zo+ 7/8
1 = 1.21, ls 1)

zp + 1/2 zp + 1/2

zp+5 4

zo+ 1/2

(B2)

In transmission erst (z) and last (z') skin layers are
far apart and the joint distribution factorizes into
+trans (Z) &trans (Z )

zp+ z
+trans (Z) e

zp+ 1

In the case of transmission

where the front factor has been chosen so as to have nor-
malization l. Using this distribution we find for reflection
(zp --0.71)

the dielectric constant 1.15 at wavelength 514 nm),

0.73 Vp B
xs 90'/mm T 15 T

At very low frequencies x « 1 the variable p can in
fact become quite large. Physically this corresponds to
a large number of Faraday rotations along one mean free
path. The phase shift of the scattering matrix at low
frequencies is well known to be

2 8' —1
3G'+ 2

The Faraday rotation in the particle is determined
by p. Near a resonance we can find a very physical
expression. If we neglect the longitudinal field in the
scatterer and assume e && 1, the resonant frequency is
up2 = 4vrl'/sv. The path length L„of the light in a par-
ticle can be defined as the sensitivity of the scattering
albedo with respect to absorption [36]. For our model it
is inversely proportional to the linewidth upI' and reads
Lz ——3/2~a x 1/wol' (To have L~ )) a one must choose
I'2 « a2~s). Then,

p = 2VpBLp . (C2)
zp+ 2zp+3fi= = 1.58, f2 —— = 2.16,
zp+ 1 zp+ 1

2fs=fi .

AP PENDIX C: DIMENSIONLES S CONSTANTS

In this Appendix we relate the dimensionless constants
p, (, and m defined in Eq. (8) and the phase shift o.
in Eq. (5) that occur throughout the paper, to scat-
terer properties. These variables determine the role of
magneto-optical efFects in multiple scattering. The vari-
able p signifies the modi6cation of reciprocity, determines
the Faraday rotation in multiple scattering, and is linear
in the magnetic field; m and g both determine the bire-
fringence in multiple scattering. The size parameter is
defined as usual as x = wa with a the radius of the par-
ticles. Their volume is given by v = 4m a /3. We have

9~a VoB 18' t' VoB )
(.—1)' ~ ~ '

(s —1)' '
& ~ )

(C1)

2(s —1)'xs ( ~ )

It is seen that for small size parameters and/or dielectric
constants close to one p2 )) (,m, so that p becomes the
most important variable. A typical value for p is (taking

The simplicity of this formula suggests general validity,
with only the numerical factor in front changing from
model to model. The Faraday rotation in the particle
would then be proportional to the path length, indepen-
dent on any other parameter. For a strong resonance the
Faraday efFect could thus be resonantly enhanced.

In comparing expression (68) to the one used by Lenke
[12] (using a momentum q~ V,s;„B), leads us to
identify p/2 sin o. + 1 = q~l/~2. Experimentally one
has at most q&E 2 leading to p —1. The perturba-
tional treatment of this paper is valid when p « 1.

APPENDIX D: DERIVATION OF MOST
CROSSED DIAGRAMS

In this Appendix we calculate the ladder diagrams
(the minus sign signifying an opposite direction of

magnetic field for the complex conjugate wave). By the
reciprocity principle (25) these are related to the inost
crossed diagrams.

Left- and right-hand-side eigenfunctions relevant for
the diffusive regime have been obtained in Eq. (69). To
avoid subtleties arising &om the fact that both eigen-
functions are nearly parallel, we prefer the base ~r) and
~s):—(~r) —~1)) /(ri —li) and normalize. The matrix N
is the Gram matrix of this new base after normalization.
With respect to this base the ladder diagrams 8 be-
come, for finite frequency difference 0 and momentum
difFerence q,
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nt(B)t*(—B) Q (q, O)+ Q (q, O). Q (q, O)+.

= nt(B)t*(—B) ) la) l
(N-) .P—

(q, O).
l N —I' (q, O))

Notice that we have let the series start with double scattering in order not to double count single scattering. The
matrix P (q, O, B) is defined by P, (q, O, B) = (il Q (q, O, B) lJ') and calculation yields

( )
(A l

[

O +q D —'O/ +q D .ql
q 0 —+ A ) i

—tO/v2i + q D2i.q —&O/v22 + q D22.q ) (DI)

Herein is A' some known constant proportional to B that we shall not need and

1 — — 2
(B) = —(I.„+r,) = ip, (I+—s—') .

The entries v,z and D,~ follow straightforwardly from Eqs. ( 35) and (34). The outlook of Eq. (Dj.) is quite similar to
what was found earlier for N+ —P+ except that now, for 0, g = 0, the eigenvalue O with algebraic multiplicity 2 has
disappeared in favor of two real-valued eigenvalues A and —+ A', both with multiplicity 1. The first is proportional to
B and the remnant of long-range di8'usion. Prom the characteristic equation it is possible to show that in erst-order
perturbation theory this eigenvalue changes into

A(q, O, B) = A —iO/vip + 3iic O+ q. D, i q —3K q D2i q =A —(ll 8Q (q, O) lr)

The corresponding eigenvector remains approximately the same. In the diffusion approximation we ignore all nondif-
fusive eigenvalues, and we arrive at

OB 0&
(q, O, B) = nt(B)t*(—B) (lr), ls) ) N . P (0, 0).U

l

(q' ' )
l

U

Here the matrix U is the matrix of transformation with
the two eigenvectors as column vectors,

(0 I

Going through the various matrix multiplications we ar-
rive at the rather simple result that

matrix product. It turns out that

6'
nt (B) t* (—B) . lr) = —[[I) —I] [4) + l2 lBB)]

6'= —Il( —B)) .

This gives the following Anal outcome for the four-rank
tensor 2 (q, B) in the difFusion approximation,

(q, O, B) = nt (B) t* (—B)
A qO, B

Finally, we can use Eq. (32) to calculate the remaining
( ))( ( )I

l A —(ll bQ (q, O) lr)
(D3)
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