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Linear stability analysis for propagating fracture
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To study the stability of mode I (opening-mode) fracture, we consider a two-dimensional system
in which a crack moves along the centerline of a very wide, infinitely long strip. We compute
the first-order response of the crack to a spatially periodic, perturbing shear stress. We assume
isotropic linear elasticity in the strip and a cohesive-zone model of the crack tip. The behavior
of this system is strongly sensitive to the dynamics within the cohesive zone; stability cannot be
deduced simply from properties of the far-field stress-intensity factors. When the mode I and mode
II (sliding-mode) fracture energies are equal, the crack is marginally stable at zero speed and is
unstable against deflection at all nonzero speeds. However, when the cohesive stress has a shear
component that strongly resists bending into mode II, there is a nonvanishing critical velocity for
the onset of instability.

PACS number(s): 03.40.Dz, 62.20.Mk, 46.30.Nz, 81.40.Np

I. INTRODUCTION AND SUMMARY
OF RESULTS

The need for an analytic understanding of the dynamic
stability of propagating fracture has become especially
urgent in the past several years. This renewed interest in
an old subject is largely the result of remarkable exper-
iments by Fineberg et aL [1,2] and also has been stim-
ulated by numerical experiments by Abraham et al. [3]
in which similar phenomena are observed. Our purpose
in this paper is to describe a mathematical approach to
the study of fracture stability and to use this approach
to show that crack propagation in a broad class of con-
ventional cohesive-zone models is strongly unstable. In
developing and interpreting this result, we point out some
important fundamental diKculties in modern theories of
fracture dynamics.

The analysis presented here is quite complicated. It is
useful, therefore, to start with a summary of our strategy
and main results.

Both the laboratory and numerical experiments appear
to indicate that propagating mode I (opening-mode) [4]
cracks in a variety of materials encounter some kind of
oscillatory instability at velocities appreciably below the
Rayleigh speed. Motions at speeds higher than the on-
set velocity for the instability are dissipative; the oscil-
lation radiates elastic energy and, as seen in the exper-
iments, induces deformations near the fracture surface.
It is not clear whether the onset velocity is an absolute
upper bound for the propagation speed or is simply a
speed above which further acceleration becomes much
more diKcult. The experiments also seem to indicate
that the oscillation involves the direction of propagation

and not just the speed. That is, the crack moves along
an irregular trajectory through the solid.

A basic idea of why such an instability might oc-
cur was suggested many years ago by Yoffe [5]. (See
Freund's book [6] for a more modern treatment. ) The
idea is conceptually quite simple. Consider an ideal-
ized crack in the form of a simple straight slit in a two-
dimensional linear elastic material and suppose, without
asking for a dynamic explanation, that the tip of this
crack is moving forward at a constant speed v. The sin-
gular stress Geld near the tip can be obtained by trans-
forming the equations of elasticity into the moving frame.
The result, in eKect, is a Lorentz transformation of the
Geld that deforms the pattern of longitudinal and shear
stresses. YoKe observed that, at some critical v less than
the Rayleigh speed v~, the maximum in the component
of the stress that pulls the fracture surfaces apart from
each other shifts away from the forward direction. In
eKect, the Lorentz-Fitzgerald contraction enhances the
stress tangential to the direction of crack motion. At
speeds higher than the critical v, this maximum occurs
at an angle of about 60 on either side of the forward di-
rection; it is tempting to speculate that the crack might
undergo a directional instability under these conditions.

The shortcoming of the YoKe analysis is that it con-
tains no consideration of the forces required to keep the
crack moving or any prediction of how the crack actually
responds to those forces. A real crack cannot support the
singular stresses at the tip that are produced by a sim-
ple slit. There must be some mechanism by which these
stresses are regularized, for example, by blunting of the
tip or by deformation of the material in its neighbor-
hood. YoKe's singular stress cannot be and indeed is not
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the actual stress acting at the physical tip of the crack;
therefore, it is not clear how or whether the YoKe stress
can determine the dynamic response of the system. It is
that area of uncertainty that we address in this paper.

In order to construct a fully dynamic theory of frac-
ture, we need a fully dynamic model, that is, a model for
which the equations of motion are complete and math-
ematically well posed. So far as we know, the simplest
such possibility is the cohesive-zone model of Barenblatt
[7] and Dugdale [8]. (For a substantially diB'erent ap-
proach to this problem, see recent work by Marder [9].)
We consider a two-dimensional isotropic material in ei-
ther plane stress or plane strain and assume that linear
elasticity is valid everywhere up to the fracture surface,
including at the tip. The cohesive force in the neighbor-
hood of the tip provides a fracture energy and a mech-
anism for regularizing the stress singularity. We empha-
size that the use of such a model removes the need to
speculate about whether some far-field condition such
as the vanishing of Kii, the mode II (sliding-mode) [4]
stress-intensity factor, might determine the direction in
which the crack extends. As we shall see, the elementary
condition that the stresses at the crack tip contain no
nonphysical singularities is sufhcient to determine both
the geometry of the cohesive zone and the direction of
motion. Equivalently, the dynamics of these models is
determined by the basic principle that the system must
move in such a way that the stresses remain nonsingular
at all times.

In principle, it is absolutely essential to include some
dissipative mechanism in a model of this kind. The point
here is simple; it emerged clearly in our recent study of
one-dimensional fracture stability [10]. In the absence of
dissipation, subsonic steady-state fracture can occur only
at exactly the CriKth threshold where all of the stored
elastic energy is converted into fracture energy at the
crack tip. At this threshold, all speeds between zero and
the Rayleigh speed are mathematically possible. A linear
stability theory, however, is an analysis of the first-order
response of the system to some change in the driving
force; but such a calculation makes no sense if only one
special driving force is allowed.

Nevertheless, we choose to neglect dissipation in all
of the analysis in this paper. Our special justification is
that we have confirmed, at least tentatively, that dissipa-
tion does not make a qualitative change in the particular
results to be presented here and omitting it allows us to
avoid adding yet one more complication to an already
very complicated presentation. We propose to devote a
later paper in this series to a study of dissipative effects
in dynamic fracture. More generally, dissipation may not
play so important a role for present purposes because we
are computing only the change in the trajectory as a re-
sponse to forces that tend to deIIIect the crack and these
bending forces do not change the energy balance in a
linear approximation.

We consider a crack moving along the centerline of an
infinite elastic strip occupying the region (—oo ( x
+oo, —W ( y ( +W) in the 2:,y plane. Far ahead of
the crack, the strip is uniformly strained by an amount

{the strain "tangential" to the crack axis),

(the "normal" strain), and, for the moment,
0. Prom the beginning of the analysis, we as-

sume that the half-width W is very much larger than
any other length scale in the problem, thus we carry out
most of our calculations in the limit W -+ oo and impose
outgoing-wave boundary conditions at large ~y~. How-
ever, there are several places where we need to reintro-
duce the length W. For example, the fully relaxed width
of the crack must scale like W and the stress-intensity
factor that characterizes the forces transmitted to the
crack tip is proportional to v'W. Our technique for de-
termining these W dependences is based on an earlier
paper in this series [11].

Our first important result has to do with the stresses at
the crack tip. These stresses are entirely nonsingular be-
cause of the cohesive force. In fact, the normal stress E»
must be exactly equal to the yield stress at the tip. The
tangential stress Z is also Rnite everywhere including
at the tip. A simple steady-state calculation, described in
Sec. III, indicates that E exceeds E» everywhere along
the x axis by an amount that is very large, of order the
yield stress. This stress difference is proportional to v
for small crack speeds v and diverges as v approaches the
Rayleigh speed v~. Thus, for any moving crack, the ac-
tual tractions on the fracture surface, as opposed to the
YoKe stresses in the asymptotic region of the singular
field, always favor motion perpendicular to the original
direction of propagation. We believe that this result, by
itself, implies intrinsic instability of this class of fracture
models. Some parts of this result have appeared in the
fracture literature in the past 30 years [12] and important
elements of it were included in a recent paper by one of
the present authors [13]. So far as we know, however,
its generality and importance have not been emphasized
before now, certainly not in connection with a fully dy-
namic stability analysis of the kind to be described here.

A conventional investigation of the dynamic stability
of fracture would be extremely diKcult. In such an anal-
ysis, we should start by linearizing the equations of mo-
tion about a steady-state solution and then look to see
whether the eigenstates of the resulting linear operator
grow or decay exponentially as functions of time. To
prove stability, we would have to determine that no mem-
ber of the complete set of eigenfunctions is a growing
mode. That program seems harder than is necessary for
present purposes. In fact, we do not know how to imple-
ment it for fracture dynamics and it might not provide
useful answers even if it could be carried out rigorously
and completely. (For a discussion of the limitations of
eigenvalue analyses in stability problems, see [14].)

Instead, we have adopted a limited version of linear
stability theory that seems to give us the information
that we need. . Specifically, we compute the steady-state
response of our system to a small (i.e. , first-order) exter-
nal force that produces a spatially oscillating shear stress
along the x axis:

y(ext}
( (})

- imz

Here the dimensionless stress 2 „is measured in units 2p, ,
where p is the elastic modulus, and e is the amplitude
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of the perturbation whose wave number is m. In Sec. II
we de6ne E & in the entire x,y plane so that, in principle,
it can be the result of tractions applied at the edges of
the strip or of material irregularities near the centerline.
The goal of the calculation is to compute the perturbed
centerline y = Y„„(x)of the resulting fracture to first
order in r, that is,

Y„„(x)= Y e* = yy(m, v) e e* (1.2)

Here y~ is a complex steady-state response coeKcient
that depends on the wave number m and the average
crack speed v. If yy- diverges at some v and some real
value of m, then we would conclude that the system
undergoes a change in dynamic stability at that wave
number and speed. More generally, poles of y~ in the
complex m plane are equivalent to stability eigenvalues.
According to (1.2), poles in the lower half m plane cor-
respond to stable modes and changes in stability occur
when poles cross the real m axis.

The wavy crack described by (1.2) is similar to that
considered by Gao [15], whose work draws on that of
Cotterelj and Rice [16]. It is also reminiscent of the inter-
esting quasistatic fracture patterns observed by Yuse and
Sano [17,18], but is, in fact, quite diferent because here
we are considering very fast, freely propagating fracture.
The technique of looking at the erst-order response to
small perturbations also has been used recently by Rice
et al. [19,20], who have studied the in-plane stability of
a three-dimensional crack. Our work, like that of Gao,
focuses entirely on out-of-plane deformations.

Our strategy for computing y~ (m, v) is to use steady-
state techniques developed in an earlier paper by two of
the present authors [21) to calculate terms up to erst or-
der in r . The crucial ingredient is the condition that all
stresses be nonsingular at the crack tip. We start this cal-
culation by transforming the equations of elasticity into
a frame of reference moving in the negative x direction at
a speed such that the tip of the crack is always at x' = 0,
that is, x = x'+ xi;p(t), where

This transformation into a nonuniformly moving frame is
essential because it allows us to deal nonperturbatively
with the various mathematical singularities that occur
at the crack tip. Note that the Erst-order part of the
velocity x&,-~ oscillates with a frequency mv and has an
as yet unknown complex amplitude v, which, like Y
is proportional to e'~:

v:—y„(m, v) e (1.4)

The next step is to write down formal solutions of the
equations of elasticity separately in the two regions of
the x,y plane above and below Y, „(x) and then to eval-
uate the unknown coefFicients that occur in those solu-
tions by imposing boundary conditions on the centerline.
Ahead of the crack tip, the centerline is purely fictitious
and the boundary conditions are simply statements that
the stresses and displacements must be continuous there.

Behind the tip, on the other hand, these boundary con-
ditions are statements about tractions on the fracture
surfaces. Here we must be careful to recognize that the
cohesive force, which is exactly normal to the fracture
surface for pure mode I fracture, may acquire a shear
component when the crack bends away from its initial
direction, that is, when it becomes partially mode II. All
of these basic elements of the theory are described in
Sec. II.

The above combination of elasticity and boundary con-
ditions produces a set of Wiener-Hopf equations that
can be solved for the unknown stresses ahead of the tip
and the unknown crack-opening displacements behind it.
At zeroth order in e, the Wiener-Hopf equation is a
restatement of the conventional, steady-state, cohesive-
zone model. For purposes of completeness, and also to in-
troduce some mathematical devices that are useful later
in the paper, we write out the zeroth-order analysis in
detail in Secs. III and IV. As a by-product of this analy-
sis, we obtain the information about the stresses on the
fracture surface that we described earlier in this Intro-
duction.

Sections U—UII are devoted to the first-order calcu-
lations in e . This problem separates for reasons of
symmetry into two decoupled equations, one of which
involves only the tangential displacement along the frac-
ture surface, the shear stress ahead of the crack tip, and
the amplitude Y . The second contains only the normal
stresses and displacements and the amplitude v . Both
equations contain terms proportional to the zeroth-order
displacement. Because these equations are decoupled,
each can be solved by Wiener-Hopf techniques. Then
the unknown amplitudes Y and v can be determined
uniquely by requiring that the erst-order shear and nor-
mal stresses be nonsingular at the crack tip. We expect
that the most important of these results is the erst, i.e. ,
the one that pertains to the amplitude Y, which de-
scribes the deformations perpendicular to the direction
of propagation that would be affected by some kind of
Yoffe instability. Therefore, we shall consider only y~,
and not y„, in this paper.

Our final result for the response coeKcient y~ has the
form

y~'(m, v) = im Ee + K—i(—im)'~ 'D(mE, v)

where Ae = e~ —e'T, Ky is the static, mode I stress-
intensity factor, and D(ml, v) is a function of v and the
dimensionless product mZ, 8 being the length of the co-
hesive zone at the tip of the crack.

Section VIII is devoted to the interpretation of this
formula. We start by showing that (1.5) can be made
to reproduce the stability theory of Cotterell and Rice
[16] by taking the limit mE -+ 0, which is equivalent to
ignoring all dynamic eÃects on length scales comparable
to E and, consequently, using Kpp ——0 as the determin-
ing condition for crack extension. Closer inspection of
17(mE, v) for nonzero mE, however, reveals that the crack
that actually is being described in the far-field calculation
is strongly unstable. A correct analysis requires careful
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II. DEFINITIONS AND BASIC EQUATIONS

For completeness, and in order to establish our nota-
tion, we start by writing the equations of motion for an
isotropic elastic material. We use the elastic potentials
4(z, y) and @(z,y). In terms of these functions, the dis-
placements u (x, y) and u„(x, y) are

BC
B-+ By'

B4
'LLy

By Bx
(2.1)

attention to the details of the cohesive forces. In par-
ticular, it turns out that a strong cohesive-shear force
is required in order to produce stability even at small
speeds v in this model.

Section VIII is written in such a way as to be read-
able without a detailed understanding of the derivation
of the equations or even the definitions of terms other
than those discussed in this Introduction. Sections II—V
contain the basic theory that is essential for understand-
ing the strategy being employed here. Sections VI and.
VII are devoted to details of the mathematical methods
used in evaluating the formulas derived in the previous
sections.

duce, respectively, the uniform tensile stress that drives
the crack and the oscillating shear stress (1.1) that per-
turbs the rectilinear motion. The latter already is written
in an approximate form that is legal because we consider
only first-order deviations of the crack away from the x
axis and also because we do not need to be specific about
the mechanism that causes the perturbing shear stress.
If this stress is produced by tractions at the edges of the
strip, for example, a correct form for this term would
be the harmonic function (s /im ) sinh(my) exp(imx);
but thp exponential growth at large y is not necessary
and, in any case, is irrelevant for our purposes. The
fields P and g are the changes in C' and 4 caused by the
presence of the crack. So long as we do not immediately
look for static solutions by setting v = 0, we may use
the decoupled wave equations (2.5). Our results will be
correct in the limit v —+ 0.

The next step is to transform the wave equations (2.5)
into a frame of reference moving with the tip of the
crack and to look for steady-state solutions in this frame.
We write P and g in the forms P(z —zt;p, y, t) and
@(z—xt;p, y, t) so that the tip is always at x' = x —xt;
0. Then, for simplicity, we redefine x' ~ x. The trans-
formed equations are

and the stresses (measured in units 2p) are

B24
(2.2a)

BxBy

(2.2b)
BxBy

tlpg tip' 2 tip@ +g 2 ++g

(2.6a)

8@ . 2 8 g .. Bg 8 g 82@

Bz Oz Bz Bz By
BC 1B@ 1B4

B2;By 2 By2 (2.2c) (2.6b)

1 —v
plane strain

1 —2v
1

plane stress.
(2.3)

The parameter v. is the square of the ratio of the longi-
tudinal to transverse sound speeds, which is a function
of the Poisson ratio v,

In principle, one might also transform to the frame that
moves with the tip in the y direction. We have done this
and find that it is not necessary for present purposes.

At this point it is convenient to separate the problem
into parts that are zeroth and first order in the perturba-
tion s' . We do this by using (1.3) and by noting that the
only explicit time dependence remaining in P and g must
be a first-order oscillation of frequency m, v. Therefore we
write

0(z, y, t) = 0o(z y) + 4 (z, y) e

~(z»t) = ~o(z y) + ~ (z y) eC(z, y, t) = —(sT x'+~~ y')

e' + P(z, y, t),
zm

4 (z, y, t) = g(z, y, t),

At zeroth order, Po and go satisfy2.4a)

(2.4b)
2 ~'4o ~'4o

Oz By
+ 28 o 8=0

where P and g satisfy the wave equations

The functions C and 4' can be written in the form
(2.7a)

(2.7b)

P=rV' P, (2.5) where

We have scaled the time t so that the transverse sound
speed is unity. Accordingly, the crack speed v and all re-
lated quantities with dimensions of velocity are expressed
here in units of the transverse sound speed.

The first two terms on the right-hand side of (2.4a) pro-

V

Pi =1-
K

The first-order equations are

P2 —1 2 (2.9)
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Ox Og

fA V

2vvm. 0 $0
K 8X

tmvvm ~No

2'Emv Bgi'+
K AX

the form

y[+1
( „)

dk - [~]
27r

P

~ [+]rI x +pf /key ikxe
mv

(2.12a)

Pt 2 + +2im, v +m v @i
,Wi

BX By BX

= 2vv ——imvv . (2.10b)
o'Wo . Wo

The general solutions of (2.8) are
where

(*,v) = dk -[~](
2' 1

m y[+](k) +p [k[y ikv (2.12b)

4o (* ~) =[+]

4'o (* ~) =[+]

y[+] (k) ~pr [k[y+ikx
2'

y[+] (k) ~pp [k[y+ikv
2'

(2.11R)

(2.11b)

where the superscripts in square brackets [+] mean that
the fields pertain to regions above or below the centerline,
y ) Y,

'

„(x) or y ( Y, „(x). Symbols with carets such as
or Po (k), as always throughout this paper, denote

Fourier amplitudes. Note that we include only decaying
exponentials in (2.11), which means that we are immedi-
ately going to the limit in which the width of the strip R
is very large. We shall return to this point shortly. Us-
ing (2.11) to evaluate the inhomogeneous terms on the
right-hand sides of (2.10), we find first-order solutions of

V
qt

——k — (k —m), q, =k —v(k —m).

(2.13)

Again, we include only decaying exponentials, so that
we choose the real parts of q~ and qq to be non-negative.
For this oscillatory part of the field, we also must specify
outgoing-wave conditions; that is, we must choose the
imaginary parts of q~ and qz to be nonpositive.

Starting in Sec. III, we shall use the above expressions
to evaluate the displacements and stresses along the cen-
terline Y„„(x).To do this, we first must refer these vector
and tensor quantities to coordinate axes, say, x' and y',
that are normal and tangential to the local orientation of
the crack. To first order in Y, „,the normal displacement
ls

au[ '-"(*,Y..-) -=-["(*,0)+ ","cen
By

y=O

BX
O

(o[2C I+1
+

0'g

c]'e[+]) (Oe[+] Oe[+]
(2.14)

and the tangential displacement is

[+]
u[, ] (x, Y,,„) = u[+](x, 0) +

By
y=0

Y„„(x)+ u[+](x, 0)

OX

g@I+] f' g2@[+] g2iIt [+]) (o[@[+]
+ + +, +im(

o E ~x~& cl&2 )
Y. imz —imvt

BX ) y=o
(2»)

We need similar expressions for the normal stress

g2@[+]

BXBy

g3@[+]

OXOy2
(Y. ivnv inxvt)—(2.16)

and for the shear stress
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+-
Ox t9'g 2 Bg

y=O

~[;„] (-, Y...) =- ~[,](*,Y...)+ [~[,](*,0) —~.".](-,0)) „'-
1 g2@[+] (gsc, [+] 1 ps'[+]

+ +—
2 Bx ( o[xBg 2 o[g

1 0'e[+] &

2 Bx Og)

(c]2@[+1
+

o['g

g2C, [+j

Bx

[+j

Bx6gx y j
™ (2.17)

In the second form of (2.16), we have used the
fact that Z „(x,0) is automatically of first order in

and therefore makes only a second-order contribu-
tion to Z„,„, (x, Y,,„). The analogous expression for[+1

Z, , (x, Y,,„) is easily derived, but will not be needed
beyond zeroth order for present purposes.

The quantities that have physical significance in our
analysis are sums and diB'erences of the [+] displacements
and stresses defined above. First, there are the normal
(mode I) crack-opening displacement

While establishing notation, it is convenient to rewrite
the Fourier amplitudes of the potential fields that appear
in (2.11) and (2.12) in forms consistent with (2.18) and
(2.19). The following notation is useful:

~ (k) =-
—,[~["(k)+ ~[-](k)],

(2.22a)

U„(x) = -'[u„[+, ](x, Y„„)—u[, ](x,Y„„)] (2.18a)

and the shear displacement

U. (*)-=—,[-."'(-,Y--) —-. (*,Y-)) (2.18b)
s (k) = — g [+](k) y @[ ] (k) (2.22b)

Z„(x) = -'[Z[+],(*,Y.,„)~ Z[-, ], (x, Y„„)], (2.19a)

the shear stress

The analog of (2.18a) with a sum instead of a diB'erence
in the square brackets plays no role in what follows and,
in any case, must vanish to first order if we preserve sym-
metry about the centerline. Similarly, we have no need
here for the average tangential displacement Uz (x), the
analog of (2.18b) with a plus sign in the brackets; but
this is a nonvanishing quantity and could play some role
in extensions of the present calculations.

The relevant stresses are the normal stress

For simplicity, we have omitted the subscripts 0, 1 that
distinguish between zeroth- and first-order quantities in
these equations.

Having defined the displacements and stresses in the
previous paragraphs, we now can complete the defini-
tion of our model by specifying the cohesive stress. We
are allowed considerable latitude in this regard. For rea-
sons that will become apparent later, it is especially
important to look at the case in which this stress is
produced by a central force acting between opposite
points on the fracture surfaces. Let the magnitude of
this central force per unit area, be Z (lU(x) }, where

lU(x)l = /UN. (x) + U&(x). Then its normal and shear
components are

~.(*)-=—,'[~[.„] (-, Y--) + ~.[-„] (*,Y--)),

and the tangential stress

Z (x) = -'[Z[+, ], (x, Z;.„)~ Z.[, ],(x, Y.,„)].

(2.19b)

(2.19c)

and

~.iv(x) = ~-(IU(x)l} U

~-~(x) = ~.(IU(x)l} U

(2.23a)

(2.23b)

We also note that the analogous expressions with diÃer-
ences instead of sums in the square brackets vanish: For all of the specific calculations to be reported here, we

use the simple form
bE~ ——0, (2.20)

where the subscript A denotes K, S (but not T), and, for
example,

0 for lUl) 8,
(2.24)

SZ~(x)—:—[Z[+, ], (x, Y.,„)—Z[, ], (x, Y,
' „)]. (2.21)

where b is the range of the cohesive force and Zo is the
yield stress. The fracture energy is p = bZo. Equa-
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tions (2.23), plus the symmetry condition (2.20) and the
defining condition for the location of the crack in the
moving frame

Z„,(k) = Z.'+, '(k) + Z„'-,'(k)
= 2vrZiv 6(k) —F(k) U~l+oi(k), (3.9)

U~(z) = Us(z) = 0, z ( 0,

complete the specification of our model.

(2.25) where

P(k) = b(v)ski, b(v) =,, (&«~ —&o). (3.1o)

III. ZEROTH-ORDER CALCULATIONS:
STRESSES ON THE FRACTURE SURFACES

The next step in our analysis is to solve the steady-
state problem for the case in which the perturbation e

vanishes. Many of the details of this calculation have
been presented previously [11,21], but we need to refor-
mulate parts of those analyses for present purposes and,
therefore, the explanations that follow will be very nearly
self-contained. In this section we derive the zeroth-order
Wiener-Hopf equation and demonstrate the important
inequality relating to the stresses on the fracture surfaces.
In Sec. IV we compute the associated crack-opening dis-
placement.

The zeroth-order part of Uiv(x), which we denote by
Uivp(z), is obtained from the first term on the right-hand
side of (2.14) and the zeroth-order solutions (2.11). Using
the notation introduced in (2.22), we find

The function K~p (k) is the Fourier transform of the un-"(—)

known zeroth-order stress in the unbroken region x ( 0
and Z,p (k) is the Fourier transform of the zeroth-order"(+)
cohesive stress Z, (Uivo(z) j as defined in (2.23). We have
introduced the superscripts in parentheses (+) to indi-
cate functions that have singularities only in the upper
(or lower) half k planes because they are Fourier trans-
forms of functions that are nonzero only on the positive
(or negative) x axis. In (3.10), note that b(v) vanishes at
the Rayleigh speed b(v~) = 0.

Equation (3.9) is the Wiener-Hopf equation that we
must solve to compute the zeroth-order crack-opening
displaceinent Uivp(z). Before doing that, however, we
look at the analog of (3.9) for the zeroth-order tangential
stress Zzp(x), defined in (2.19c). Using (2.2a) and the
expressions for the potential fields obtained from (3.1)
and (3.5), we find

Uxo(k) = PlIkl&ivo(k) —ik it'ivo(k). (3 1)
Zzp(k) = 2 Ez b(k) + ( )Iki U~+ (k),

where

(3.11)

Similarly, from the first term in (2.16), the zeroth-order
normal stress is

Z~p(k) = 27rZ~~8(k) + k Ppg~p(k) + xP, k~k~ g~p(k),

(3.2)

c)v) =, ())i))c+Pc (q
—&}Pi —

(q} } (3.~~)

and

where
~Too = &Too + ~ &Noo ~ (3.13)

and

N~ + ~ ~T~

V2

2

(3.3)

(3 4)

We now can subtract (3.9) from (3.11) and invert the
Fourier transform to obtain the difference between the T
and % stresses anywhere along the x axis:

~ro(z) —~n o(*)

We also need the symmetry and continuity conditions

Si„(k) = —'P k~k~y, (k) + k'P„'@,(k) = O, (3.5)

—A(v) b(v)

where AE' = EN —8'~

dk—e *"*
~k~ U~l+o~(k), (3.14)

Uso(k) = ik4'so(k) —A~k~4'so(k) = 0, (3.6)
(2 —v /r)(1 —v /2) —2P~Pq (3.15)

~~no(k) = k'Ppdso(k) + iP, k~k~lso(k) = 0. (3.7)

Equations (3.6) and (3.7) immediately tell us that

iso(k) = iso(k) = O. (3.8)

The elimination of PNp(k) and vPivp(k) from (3.1), (3.2),
and (3.5) produces a relation between Eivp(k) and

Uivp(k). The result is

—b(v) e *"
~k~ U~l+o~(k) = Z~p(z) —Kiv . (3.16)

27t

We also know that the quantities Lc and EN are
small of order W / in comparison to Kp. Thus, every-

This is quite a remarkable result. In our cohesive-zone
model, the normal stress Zivp(z) remains finite and non-
negative everywhere along the x axis including at the
crack tip, where it is exactly equal to the yield stress Zp.
Equation (3.9) tells us that
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where in the neighborhood of the crack tip,

Kz'p(z) —Z~p(z) A(v) Kivp(z). (3.17) with

P(k) = P(+) (k) P(-) (k), (4.4)

The function. A(v) is positive for all v less than the
Rayleigh speed. For small v,

P(+)(k) = b(v) ( + k)'~', F' (k) = ( — k)' '.
(4 5)

(1+1/v. 5 v2

q1 —1/r ) 2
(3.18) Equation (3.9) now can be recast in the form

and, for v approaching the Rayleigh speed, .4(v) diverges
like (vR —v) . As advertised in the Introduction, we
conclude from (3.18) that the tangential stress, which
de8ects the crack away from the x direction, exceeds the
normal stress on the fracture surface throughout the tip
region and at all nonzero velocities. It is only for the
static crack that the two stresses are equal. We inter-
pret this inequality as strong evidence that the moving
crack is unstable against perturbations that bend it away
from the x axis a conclusion that is supported by our
dynamic stability analysis.

IV. ZEROTH-ORDER CALCULATIONS:
CRACK-OPENING DISPLACEMENT

To complete the analysis at zeroth order in e, we re-
turn to (3.9) to compute UN. p(z), which we shall need
later in an explicit form. At this point we must pay at-
tention to our assumption that the width of the strip TV

is much larger than any other length in the problem. In
the Fourier representation, that condition is kW )) 1.
The one length scale that does not quite satisfy this con-
dition is the width of the fully open crack, which scales
like TV for fixed c~ or, more appropriately, like W /

for fixed stress-intensity factor.
The issue of the R' dependence arises because, in

(3.9), we need a modification of the Wiener-Hopf kernel

F(k) = b(v) ~k~ that will be valid for very small k. We can
compute the exact value of F(0) by looking infinitely far
behind the tip (x —+ +oo) where the crack is fully open
everywhere and Uivp(oo)/W = slav + (1 ——)sz~ and

Zivp(oo) = Ziv —F(0)UN. p(oo) = 0. Thus

F(0) =
U~p (oo) 2W

(4 1)

- X/2

F(k) = ( ) +k (v)k = b(v) (n + k ) ~ ,

Then, in analogy to Ref. [11],we make the simple inter-
polation

—ikP(+)(k)U+ (k) —ik A,+ (k) + P(—)(0)
~ "(—) ("'+ ~"- +,kA(.-)(k) =o,
P(-)(k) P(-)(o)

(4.6)

where the functions

~(;)(k')
2~i k' —k + ie P(—) (k~)

(4.7)

occur because we have used the Cauchy formula to de-
compose the ratio E,p (k)/F( )(k) into a sum of (+) and
(—) terms. (Here, and throughout this paper, the symbol
e denotes an infinitesimally small positive quantity. ) The
fact that both the (+) and (—) sides of (4.6) are equal to
zero is a result of (4.1) and the relations that precede it.
The formal solutions of (3.9) are therefore

,k U(+)(k) = "- —ik A(+)(k)
P(+)(k) P(-)(o)

(4 g)

P(—) (())

2vr b(v) W

dk ~.",)(k)
2n F( )(k)
- 1/2

Z (U~p(z) j.
p z

(4.10)

'k Z (k) = —F( )(k) + 'k A, (k) . (4.9)P(-) (o)

A quick way to obtain the Barenblatt condition for
nonsingular stress is the following. In (4.9), the factor
F( )(k) k ~ for large k produces the usual ~z~

singularity in the stress at small ~z~. Both terms inside
the square brackets in (4.9) are constants at large k; thus
the Barenblatt condition is simply the requirement that
these constants cancel each other. Specifically,

where

26(v) W

The Wiener-Hopf factorization is

(4.2)

(4.3) U~p(E) = 6 (4.11)

and the Barenblatt condition (4.10) becomes a condition
for E,

If we use the special form for Z given in (2.24), then we

can define E, the length of the cohesive zone, to be the
position at which
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2vr b(v) W

- 1/2

2V~Z. . (4.12)

Substituting the k-space version of (4.10) into (4.8),
we find

where

V2

qo
—= k — (k —m) .

2

Finally, from (2.17),

(5.3)

ik U~+o (k) =
F(+) (k) 2vr k' —k + i e F ( —) (k&)

(4.13)

Zsi(k) = —ikq( Psi(k) + qo @si(k)
v2kik —m k+m — Np k —m

With (2.24), we can write (4.13) in the form V2—P, (k —m)~k —m~ k+m — (k —m)

ik U~~ (k) =
b v

1

(ck + ik)'&2
m e ~kE(x —~')

(4.14) where

xo))xo(k —m))k' + 2ooE b)k —m), j5.4)

which is valid in the limit IjW ~ 0 but for arbitrarily
large kE. A useful result obtained by inverting the Fourier
transform (4.14) is, for 0 ( x ( E,

E = e +image. Y (5.5)

dUwo(x) ~o (1 + ~zlln
dx orb(v) ( 1 —~)

Integration over x yields

(4.15)

U~o(E) =
b( )

Combining (4.16) with (4.12), we find

(4.16)

~Noo = —~G') (4.17)

V. FIRST-ORDER CALCULATIONS: A
FORMALLY EXACT EXPRESSION FOR yy

The first-order calculation separates naturally into
parts that involve only the normal (N) and shear (S)
components. It is the S part that determines the center-
line Y, „(x) and therefore is of interest here.

From (2.15), (2.11), and (2.12), we compute the first-
order shear displacement

U~+, (k) =ikPgi(k) —q, Qgi(k)
-~'P, k~k —m~ j~o(k —m)
—(k —m) [k —v'(k —m) jj~o (k —m) )Y

(5.1)

Similarly, from (2.16) and (2.20),

where p = Zp b is the fracture energy and Z~ is the
GrifIith threshold stress. As anticipated, in the absence
of any dissipative mechanism, steady-state solutions exist
only at threshold where energy balance is possible.

and As = e'x~ —sT~. Note that /~i, /~i, and v
do not appear in these equations. The superscripts (6)
remind us, for example, that the relative shear displace-
ment vanishes ahead of the crack, thus Usi (k) has sin-"(+)
gularities only in the upper half k plane.

Eliminating q)))~i(k) and Qadi(k) from the above equa-
tions and using (3.2) and (3.5) to evaluate q')~o and g~o
in terms of UNp, we find"(+)

Esi(k) = E(~I(k) + 2~i (k)
= 2vr E 8(k —m) —Gs(k) U~+, (k)

+Ls(k) U~(o (k —m) Y (5.6)

where Z &z(k) is the Fourier transform of the first-order
- (+)

shear component of the cohesive stress from (2.23b),

~-»(x) = ~ (U~o(x))
U
Usi(x)

No
(5.7)

Go(kj =,„(kq&qo
—

qo) (5.8)

and

2 ikq
V

+ 2 ikqp

ggV

(2il
+

v )

and Z&i (k) is the Fourier transform of the shear stress
"(—)

in the unbroken region x ( 0. The Wiener-Hopf kernel—the analog of F(k) in (3.10) is

bE~i(k) = qo Psi(k) +ikq, @si(k)
—(Po P)

~

k —m
~

qt)~o (k —m)

+ip, (k —m) @~o(k —m)}Y = 0, (5.2)

mv—P, P,'k+ m+
2

(5.9)

Despite appearances, Gg(k) and Ig(k) are finite at k =
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mande =0.
Equation (5.6) is algebraically complicated but is solv-

able by conventional Wiener-Hopf methods. We start by
writing Gs(k) in the form G&+ (k) G& (k), where the
superscripts (6) have their usual significance. We then
divide both sides of (5.6) by Gs (k) and rewrite the re-
sult in the form

of integration for A +
(k) is pinched between k' = m+is

and k' = k —ie as k i m, thus A (k) does have a pole
here.

Equations (5.13) and (5.14) tell us that, after multi-
plication by (k —m), the entire left-hand side of (5.10)
vanishes as k + m, which means that both sides of this
equation vanish for all k. Accordingly, the Wiener-Hopf
solutions are

G,'-'(k)

1

G' )(k)

iE iE+
k —m + 'Lc k —m —'Lc

—A~ ) (k) Y + A si(k)G' (m)

'(k —m) ~,'-, ) (k)

G(—) (k)
Ern

G(—
)( )

—i(k —m) Al-) (k) Y

(5.15)

= —G',"(k) U,",) (k)—
k —m —ie Gl ) (m)

+Al+) (k) Y —A."„'(k). (5.10)
'(k —m) U,'+, '(k)

The terms proportional to E come from writing 8(k —m)
as the difference between poles at k = I, + ie, e ~ 0+,

~ "(—)and then writing the product (k —m —ie)Gs (k) as
a sum of terms each with singularities only in the upper
or lower half k plane. Similarly,

A~+)(k) = ~
27ti k' —k +is

L s(k') U~l+p) (k' —m)

G,'-)(k )

(5.11)

A.l+„)(k) = ~ (5.12)

All of the terms on the left-hand side of (5.10) are (—)
terms and those on the right are (+); therefore, both
sides must be equal to the same entire function of k.

Far ahead of the crack tip, x —+ —oo, the shear
stress on the center line Y, „(x) is E exp(imx); thus

+'(k —m) A~+)(k) Y
G,"'(k) G,'-'( )

—i(k —m) A si(k) (5.16)

The next step is the analog of the derivation of the
Barenblatt condition in (4.10). That is, just as we im-
plicitly determined / in (4.10) so that the zeroth-order
normal stress is nonsingular at the tip, we now choose Y
so that the shear stress is nonsingular. On the right-hand
side of (5.15), in the limit of large k, the factor G& (k)
is proportional to k ~ (we shall see this explicitly in
Sec. VI) and the quantity in square brackets goes to a
constant. Therefore, without regularization, the shear
stress would diverge like ~x~ ~ . Accordingly, we regu-
larize the stress by requiring that the large-k limit of the
quantity in square brackets be zero, thus fixing the value
of Y . The result is

lim (k —m) Z~~ (k) =iE
kwm

(5.13) E = r" +imAE: Y

It is convenient ta eliminate the singularity in (5.10) by
multiplying through by (k —m). (In x space, we are tak-
ing a derivative. ) The resulting equation has no simple
poles near the real k axis. Moreover,

= —G'-'(m)

dk

27'

L,,(k) U„"p) (k —m)

G', )(k)

G( )(k)
(5.17)

lim (k —m) A~ ) (k) = 0.
k +en

(5.14) In principle, we can solve (5.17) for Y . To do so in a
formal way, we define

To see this, nate that the factor U~z (k' —m) in the
integrand in (5.11) has a simple pole at k' = m + ie
with a residue proportional to the opening displacement
U~p(oo). The contour of integration passes below both
this pole and the one at k' = k+ ie, thus A (k) has no( —)

singularity when k m m. On the other hand, the contour

Us i (x) = us i (x) Y e'

and then write

usi(*) = A(x)

Usurp(x),

(5.19)

U~, (k) = usi(k —m) Y

(5.18)
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Z,s, (k) = Zp Y —i(k —m)~ (5.20)

Our formally exact solution, therefore, is

= yi. '(m, v) = —imps —17(m, v),
Y

(5.21)

where A(x) is some smooth function of x that, as we shall
confirm below, needs to be defined only in the cohesive
zone 0 & x & E. Referring to (2.23) and (2.24), we have

function A(x), which we must compute by solving (5.].6)
for the shear-displacement function that we need in
(5.19). Equation (5.16) is an inhomogeneous linear in-
tegral equation that determines U&i (k), which appears

"(+)

explicitly on the left-hand side and implicitly via Z,&i (k)"(+)m A &i(k). This equation is best rewritten by using the
regularization condition (5.17) to eliminate E, so that
the quantity in square brackets on the right-hand side
explicitly exhibits its correct behavior (k i) at large k.
The result is

where 'D(m, v) = 17p(m, v) + 17i(m, v) and i(k —m) us+, (k —m)

'Dp(m, v) =

17,(m, v) =—

dk G( ' m
Ls(k) U~z (k —m), (5.22a)

dk Gs( )(m)
2zr G(—

)(k)

1

G(+)(k)
e

x gp

dk' k' —m ]
2zr k' —k + ze G(—) (k~)S

i (k' ——m) x

(5.22b)

The remaining unknown ingredient of (5.22) is the

—Ls(k') Ui(vp)(k' —m) .

In Fourier transform, (5.23) becomes

(5.23)

d
[A(x) U~p(x)] + e dx' rg(x')

ik(x —x')
i(k —m) Ep

G,' )(k)
tl A( II

)
i (k m—)~"—

—xmx=e d*'r, (*')
Iik(x —x )

( )
i(k —m) Ls(k) U~~)(k —m), (5.24)

2zr G(—) (k)

where
eikx

~~ G,"'(k)
In deriving (5.24), we have used

dk ezkx 1

2zri G(+)(k) k —k' —ieS

(5.25)

preceding section. Readers who wish to go directly to
the results should skip directly to Sec. VIII, which starts
with a summary of the relevant formulas.

We start by finding explicit expressions for the Wiener-
Hopf factors G& (k). The kernel G&(k) defined in (5.8)
has branch points in the k plane at the zeros of qi(k) and
qz(k). We define these zeros by the relations

y,
*d*'r, (*').'"'(*-*'), * & 00
j

~ I
~

I 2
~ ~ I x ~x I

j

I0, x (0. (5.26) q, (k) = P, (k —ki+) (k —ki ),
mv

ki~ =+ +ze,Kkv

It is clear from the form of (5.24) that A(x) needs to
be determined only in 0 & x & E. A(x) is the ratio of
the two displacement functions usi(x) and Uivp(x) both
of which are proportional to x ~ for small values of x
within the cohesive zone. Thus we expect A(x) to be
approximately a constant for small x. In fact, we shall
argue that essentially all of the physical properties of
interest for present purposes emerge from the quantity
A(0), which can be thought of as the leading term in a
series expansion.

VI. MATHEMATICAL DETAILS

At this point we must pay attention to mathematical
details, that is, to evaluating the formulas derived in the

q,'(k) = P,' (k —k,+) (k —k, ),
mv

1+v
(6.2)

Here the signs of the infinitesimal imaginary parts +i~
are determined by the rules for the real and imaginary
parts of the q's stated following (2.13).

Gs (k) also has zeros associated with the Doppler-
shifted Rayleigh modes. To see this, note that the last
factor on the right-hand side of (5.8) can be written in
the form
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gl gt —90

( v (k —m) ) ( v2(k —m)2&

r
( v (k —m)

(6.s)

With these definitions, we write Gs(k) in the form

(k —k~+) (k —k~ )
gt

2 (k2q(q, —qo4)

P)v2 b(v) (k —m, )2 (k —k~+) (k —k~ )
(6.5)

Comparing this expression with the formula for b(v) in
(S.10) and remembering that b(v) vanishes when v = vR,
we see that (6.S) vanishes when v (k —m)2/k2 = v&~.

Thus the Rayleigh zeros are at

The quantity in square brackets goes to +1 in the limit
k ~ oo. Its only singularities are the branch points at
k = k~~, kq~, the zeros at k~~ have been removed. Thus

we can write

(6.4)

In this case, the signs of the +i~ are determined
by the requirement that G& (k) be a causal Green's func-
tion. where

(k —k~+) (k —kR )
S

qz

x exp[N~+~(k) + Nl-~(k)], (6 6)

Nl+l(k) = p
1 2 (k'2q( (k') q, (k') —q04 (k') )

27ri k' —k + ie PIv b(v) (k' —m) (k' —kIt+) (k' —kii )
(6 7)

N~+l(k) =—

(6.8)

where

s'le(s) m(s)l (6.9)

Then our expressions for the Wiener-Hopf factors are

Gl l(k) = ~"( ) '(" ""' ...[Nl. l(k)]
P, [~ + i(k —k,+)]'~'

(6.10)

and

G~-~(k) = '" "-), . ..,[Nl-~(k)].
[e —i(k —k, )]'~2 (6.11)

and we can close the contours of integration at inanity in
the k' plane so that the only contributions to the Nl+~ (k)
are from the integrations around the branch cuts between
k~+ and kq+ for N~+l(k) and between kq and k~ for

~(k). A convenient form for the results is

We now can use (6.10) and (6.11) for evaluating the
contributions to 27(m, v) in (5.22). We begin by looking
at 17O(m, v), as defined in (5.22a). Close inspection of
the function Ls (k) reveals that it is bounded in the limit
of large k, thus the integrand goes like k and we can
close the contour of integration at infinity in the lower
half plane even without the help of the convergence factor
exp[ —ikg(1 —iv2)] in the expression (4.14) for U~z (k).
Our contour of integration is then reduced to contours
around the branch cuts between kq and k~ and between
k~ and m, the latter coming from the factor lk —ml in
L~(k). There is also a contribution from the pole at k =
kR . The only values of k that occur in the integration
are of order m and therefore the contribution from the
integral over ur in (4.14) is unity up to a correction of
order mE.

The question of whether or not terms of order mE may
be neglected in this analysis figures prominently in the
discussions that follow. In general, we expect that Z is
a microscopically or at least mesoscopically small
length scale, much smaller than the wavelengths 27r/m
that ought to characterize deformations of fracture tra-
jectories. For the moment, then, let us neglect such cor-
rections to 27p(m, v) and write

170(m, v) = im( —imW) Z~~ 'Do(v), (6.12)

We have chosen the arbitrary prefactors here in analogy
to the similar choices for the E~ l(k) in (4.5). Note that,
as anticipated in the derivation of (5.17), the Gs, (k)
both are proportional to k / at large k.

( 2 ) /
v () li"b("))I ( ' )'!

dk G,' '(m) L, (k)
27r G& l (k) [e + i(k —m)]s~2

(6.1s)
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1
lim Ls(k) = i 1 —— [(k —m) ~k —m~ —(k —2m) ~k~].
e —+p K

(6.14)

A short calculation then yields

f K —1') '~'
lim 17O(v) =

~v~0 ( 2K )
(6.15)

is a real-valued function that depends only on v.
Several comments need to be made with regard to this

formula. We have used the Barenblatt condition (4.12)
to replace the quantity Zo~/ in (4.14) by a term pro-
portional to Z~ gW, which is, apart from constants,
the static mode I stress-intensity factor. We also have
used the fact that, once we omit corrections of order
mI. , 17o(m, v) is a homogeneous function of m of order
3/2. The latter remark is obvious for dimensional rea-
sons. yy- has the dimensions of a length and TV can
appear only in the dimensionless group mW. Another
important feature is that reality of Y,

'

„(x) implies that
yy. (—m, v) = y&(m, v). This, plus our expectation that
y~ be analytic in the upper half m plane for stable cracks,
dictates the combination (—imW) ~ . These features of
yy-(m, v) emerge naturally from our calculation; they do
not have to be imposed as independent constraints.

In general, the function 17o(v) must be evaluated nu-
merically. We have computed it for several diferent val-
ues of K, and find that it is a positive, increasing function
of v for 0 & v ( vR. Thus there is no apparent change of
stability. It will be useful later to have an exact expres-
sion for 'Vp at v = 0. For this purpose, we use

x that are small of order Z. To see how it behaves at small
x, let m, be real and positive (and continue analytically
into the complex m plane later) and then write k = mvz
so that

r,()=, ' ('.)
b v

H( )
2~vxz

27ri
(7.2)

Here

Z 1/2
H(z) = exp[ —Nl+l (z)],

(z Z~+)
(7.3)

where

Nl+~(z) = Nl+l(m»z) =— '+ dz' g(z')
)

7r z —zI+
(7.5)

and P(z) = p(mvz), as defined in (6.8), is a (weakly)
v-dependent function of z but not m. Because x is posi-
tive, we close the contour of integration in the upper half
of the z plane; thus the contour of integration in (7.2)
runs counterclockwise around the entire positive real z
axis. All of the singularities of H(z) lie within this con-
tour; therefore it can be Inoved arbitrarily far out into the
complex z plane. Then we can make a large-z expansion
for H(z) and integrate term by term over z:

H( )
x777,vJKK

27ri

1 1 1
Z,+(v) =, Z)+(v) =—,Z~+ =1+ v ~K+ v V~+V

(7.4)

VII. MORE DETAILS:
THE COHESIVE-SHEAR TERM

The next item of mathematical business is to solve the
integral equation (5.24) for A(x) and use the result to
evaluate the function 27q(m, v) defined in (5.22b). This
is the term that describes the e8'ect of the cohesive-shear
stress.

The linear operator acting on A(x) on the left-hand
side of (5.24) has an especially interesting and important
property. At m = v = 0, the function A(x) = const is a
null eigenvector of this operator. To see this, look at the
terms proportional to A(x) in (5.23) or (5.24), set m = 0
and Gs (k) = E~+l(k), and compare the result to the
equation for U~o(k) shown in (4.13). It follows that A(x),
and therefore 17q(m, v), must be singular at m = v = 0.
In what follows, we focus our attention on computing
17q(m, , v) in the neighorhood of this singularity.

The leading x dependence in (5.24) is determined by

P, dk [e+ i(k —k,+)]'~~
S

b(v) P) 27r i(k —k~+)
x exp[ —Nl+l (k)] e'" . (7.1)

We need this function in (5.24) only for positive values of

dz 1 h,„
C

27ri ~z z"
n=p

= ) .(—'"-)(—' "*)" ' —r ——")n —1 2

7r 2
(7.6)

The I' functions of negative half-integer orders imply that
this is a rapidly convergent series. We need only the
leading term, for which ho ——1:

t 1r, (*) = (1 + [terms of order (imvx)]).bv Pg g~x
(7.7)

With this information, and for small values of m, Z, we
can determine the leading contributions to A(x) by look-
ing at the leading terms in (5.24) and equating coeffi-
cients of powers of x. When inserted into (5.22), a cor-
rection to A(x) of relative order (imvx) becomes a con-
tribution to 'D) (m, v) of relative order (—imvE), which we
expect to be small. For present purposes, we look only
at the leading term, say, A(x ~ 0) = Ao(ml, v).

With (7.7) inserted on both sides of (5.24), the leading
term is of order x ~ . Equating the coeKcients of x ~,
we find
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where

Ap(mE, v) =
—C.(m~, v)A

1 ——C, (mE, v}A
Pr

(7.8) 17i(v) = 4 ( 2 l '~'
Gs( )(m) Pg

3m' ( Kb(v)p (—im)'&' P(

dk L (k) e

2~ G(—) (k) [e + i(k —m)]'~' (7.13)

Cp(mE, v) =—

2E

b(v)

dk Lg(k) . - (+)i(k —m) U~p (k —m)
2vr G(—

)(k)

dk L„(k) 1
) (k) [e + i(k —m)] ( —11' '

lim Vi(v) =
i~-+p I 2r2 )

(7.14)

pipe 17p(v), 17i(v) is a real function that depends only on
v. In analogy vrith (6.15), we have normalized 17i(v) so
that

—i(k —m, ) (1—m2)Edme (7 9)

Ci(ml, v) = ir irl
—'(k —~)e

27r G(—
)(k)

' (7.10)

In (7.9), the final integral over iv is needed for small ml
only to tell us to close the contour of integration in the
lower half k plane. It produces no extra E dependence.
In (7.10), we have implicitly kept the factor exp[ik(2;—
x')] -+ exp[+ik0] from (5.24) because it tells us how to
interpret the result that we get from integrating over x"
in the latter equation. In both cases, we are simply using
mathematical devices to make sure that we are properly
carrying out integrations over the cohesive zone.

With this approximation for A(z), we have

Our final mathematical chore is to evaluate Ci (mg, v).
It is easy to see that Ci(0, v) = 1 and thus, as expected,
the denominator in (7.12) vanishes at m = v = 0. Our
problem, therefore, is to evaluate the Grst leading correc-
tions for nonvanishing mE As . in the analysis of (7.11),
note the similarity between Ci as defined in (7.10) and
I's in (5.25). With the same procedure, we find

Ci(mE, v) = e' (1+ [terms of arder (—imvE)] j
= 1+ imE'. (7.15)

For small v, the corrections of order (
—imvE) are unim-

portant.

VIII. INTERPRETATION AND ANALYSIS

17,(m, v) = —Ap Z~
orb(v) W

2rE

dkG' '( )
27r G( —

)(k)

= —Ap Ziv (—imW) r

x
i i

s(2b(v) ) G . (m)

(—im)'&' (7.11)

+ (—imW) r E~
impy. (m, v)

3imE ~ („)
1 ——' Ci(ml, v)

(8.1)

In summary, our mathematical results are the follow-
ing. Our general expression for the response function
yy (m, v) is

To obtain the second, approximate form of (7.11), note
the similarity between the integral over k here and the
integral that defines I's in (5.25). The required analy-
sis is precisely the same as that outlined in Eqs. (7.1)—
(7.7), except that we must close the contour of integration
in the negative half plane and deGne quantities such as
Zq (v), Z~ (v) in analogy to the quantities with (+) sub-
scripts in (7.4) and (7.5). The details should be obvious.
The result in (7.11) is accurate to the lowest nonvanish-
ing order of ml. As in (6.12), we have eliminated Zp in
favor of Z~ . Despite appearances, the Gnal factor in
square brackets is an m-independent function of v.

If we then combine (7.11) with (7.8) and (7.9), we ob-
tain

17i(m, v) = im( —imW) Kivi/2 (3im~ j2) +1(v)
1 ——' Ci(mE, v}

(7.12)

where

where the functions 27p (v) and 17i (v) are given in
Eqs. (6.13) and (7.13), respectively, and Ci (mE, v) is
given to first order in ml in (7.15). The quantity
(W) r Z~ is propartional to the made I stress-intensity
factor denoted by Ki in Eq. (1.5) and the quantity in
square brackets is the function that was denoted there
by 17(mE, v). This expression is accurate to lowest non-
vanishing order in mE and for arbitrary v in the range 0 (
v ( v~. In the limit v m 0, Dp ——17i ——[(r —1)/2K ]

r

In interpreting (8.1},it will be useful first ta show how
it relates to other results in this Geld. One of the most
attractive and pervasive concepts in fracture mechanics
is the idea that it might be possible to determine the di-
rection of crack extension by examining not the detailed
dynamics at the crack tip as has been attempted here but
simply the far-Geld stress, that is, by computing only the
stress-intensity tensor associated with a crack tip. In par-
ticular, if a crack initially in mode I follows a trajectory
along which the release of elastic energy per unit length
is always a local maximum, then its tip supposedly will
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—1
lim lim
-+o me-+0 impy(m, v)

r. —1
+ ( imW) —~ Z~ . (8.2)

To emphasize the relationship with the CR theory, we

recast this expression in the form

1

KI (—im) '~2 —T
(8.3)

where

Ki = Z~ W'~
2K j

(8.4)

is proportional to the mode I stress-intensity factor and

(8 5)

is the CR "T" stress that is appropriate for this situation.
Equation (8.3) has the same properties as those found

by Cotterell and Rice. For positive T, y~ has a pole

move at any instant in a direction such that the mode II
stress-intensity factor Kjy vanishes. This Kpy ——0 law is
strictly correct, however, only in the limit of zero curva-
ture of the crack trajectory.

By definition, the far-field stresses are those at dis-
tances from the tip much larger than E but still much
smaller than macroscopic lengths such as W. It is 8 that
sets the scale of the process zone and the size of the region
in which the applied stresses are concentrated. Accord-
ingly, we ought to be able to recover results of previous
far-field calculations simply by taking the limit 8 ~ 0
in (8.1). Indeed, this is precisely what happens. The

0, "far-field" limit of (8.1) is obtained simply by
dropping the cohesive shear term, i.e. , the second term
in the square brackets, because it contains an explicit ex-
tra factor mE. (We already have dropped corrections of
relative order mE in 'Do. )

To see that this is the same as a Kpp ——0 theory, we
can go back to the formula for the shear stress in (5.15)
and note that, had we been calculating Kyy for a geomet-
rically sharp crack on the curve y = Y,',„(x), we simply

would have omitted the cohesive-shear term A,&i(k) and
computed the coefficient of k / on the right-hand side
in the limit of large k. If we then set Kyy ——0, all the
rest of our analysis would have remained unchanged ex-
cept that we would have been missing the cohesive-shear
term in (8.1). In a sense, we have "derived" the Kii = 0
theory for situations in which the cohesive-shear stress is
not important.

Our result without the cohesive-shear stress is closely
related to the stability theory of Cotterell and Rice [16].
The Cotterell-Rice (CR) theory is a quasistatic theory
and therefore we also should take the limit v ~ 0, but
only after letting E vanish in order to remove the cohesive-
shear term. Specifically, we have

at m = m, = i(T/Ki), which would correspond to an
unstable trajectory of the form

Y,',„oc e* ' oc exp[ —(T/Ki) x]. (8.6)

This is a growing exponential because the crack is moving
in the —x direction. For negative T, on the other hand,
the system appears to be stable; the only singularity on
the physical sheet of the complex m plane is the branch
point at the origin. The associated branch cut should
be drawn along the negative imaginary m axis. In this
situation, Cotterell and Rice compute the trajectory of a
crack tip that initially points away from the original di-
rection of fracture. We obtain their result by computing
the response of our crack to a localized patch of shear
stress. That is, we write the perturbing stress as a linear
superposition of our Fourier modes s exp(imx) and, for
simplicity, let i = c be a constant so that

~shear
dm e' = s 8(x).2' (8.7)

We then find, for x = —
~x~ ( 0,

d scen
dx

m e zmlx

2~ ~T~+K, (
—'m)i&2

+oo m e2 —m /x/

de
—oo ~ + ~2I

(8.8)

This formula can be rewritten in terms of an error func-
tion, but it is easier to see what is happening in this
integral representation. The perturbation is at x = 0.
As the crack moves from right to left past this point, its
initial trajectory is Y„„-(2s/Ki) g~x~/vr. After moving
a distance of order W, this trajectory is again parallel to
the x axis but is displaced by an amount s/ T~.

Our analysis of the tip stresses in Sec. III, however,
indicates that the CR crack must be strongly unsta-
ble, independent of the sign of T, because there is no
cohesive-shear stress available to resist the strong tangen-
tial stresses that favor bending into mode II. To see what
is happening, we return to (8.1) and look more closely at
its behavior near threshold, that is, near v = 0, where
the singularity in the cohesive-shear term may make it
relevant even though the term as a whole is explicitly
proportional to mE.

Before doing this, however, we argue that we can drop
T in (8.1). Tha—t term has been useful up to

now in helping us make contact with the analysis of Cot-
terell and Rice, but keeping it is unnecessary for under-
standing the dynamic instabilities in this model. It is
not even clear that this term is consistent with the ba-
sic assumptions of our calculations. In principle, Lc
could be comparable in magnitude with the other terms
on the right-hand side of (8.1) if (mW) ~2 were of order
unity, that is, if the wavelength of the perturbed crack
were comparable to the width of the strip. But then we
would have to reexamine our large-W approximations in
Sec. II. Note also that the exponential instability in (8.6)
has the form Y„„ocexp( —const x x/W). This instability
becomes arbitrarily weak in the limit of a large system
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where

(1 —-') —",
' + —,

' zme
f(mI. , v) =

(1 ——
)
"——zml

K 2

(8.10)

The denominator in this expression is the quantity that
vanishes at the singularity of the cohesive-shear term.
The quantity (1 ——) "z comes from the factor Pz/P&. It
cannot be neglected because it is the lowest power of v
that remains when mS = 0. We needed it, in fact, when
we recovered. the CR theory by taking the far-Geld limit

lim lim f(ml, v) = l.
~~O~e~o (8.11)

even when the stress-intensity factor at the crack tip is
kept fixed.

When we drop As in (8.1) and expand to lowest rel-
evant order in v, we find

i/2
= (—zmW)' 'Z~ ], )

f(mI. , v),—impy m, v & 2K )
(8.9)

simple modification that is suggested by physical consid-
erations and, when implemented, helps us to understand
the signiGcance of our results. Once one accepts the im-
plications of the tip-stress analysis, it seems clear that
stability against deflection requires that there be a strong
enough cohesive-shear stress at the crack tip to counter-
act the tangential stresses and suppress the growth of
mode II fracture. Our special choice of the cohesive-
shear stress, based on our picture of central forces acting
between the newly opened fracture surfaces, puts us ex-
actly at the marginal point for quasistatic motion and
fails to stabilize the crack at any nonzero speed.

It is easy to see what happens if we move just slightly
away from this point. The cohesive-shear stress is deGned
in (2.23b). We can change the central-force assumption
by multiplying the right-hand side of this equation by a
factor difI'erent from unity, say, 1 + p. Let us also say
that p is a small quantity. This changes our final result
for yy. (m, v), Eq. (8.1), by inserting factors 1+p in front
of the functions Di(v) and Ci(ml, v). Only the latter
change is significant to lowest order in p because it shifts
the pole in the m plane. Specifically, in (8.9), we now
have

We maintain, however, that the correct way of deriving
a quasistatic stability theory is to keep mZ fixed while
letting v go to zero. Even if we are interested only in
very small values of mE, we should take the limits in the
opposite order

f(ml, v) = (1 ——)
—" + —imE —pK 2 2

(1 ——)
—" —imE —pK 2

(8.14)

1
lim lim f(mI. , v) = ——.

mEmO ~~O 2
(8.12)

Equation (8.12) is a physically implausible result. It
would give us the wrong sign of the deflection in (8.8)
and would, if we restored As in (8.9), give the wrong
sign of the response to the T stress. The reason for this
behavior is that the crack, even with the cohesive-shear
stress, is only marginally stable at v = 0 and is unstable
at arbitrarily small but nonzero v. The function f (ml, v)
vanishes and therefore y~(m, v) has a pole, at m = m, =
i(1——) "&, which, for any nonzero v is in the upper half of
the m plane. Unlike the weakly unstable CR trajectory
in (8.6), however, this instability is very strong:

( 11, z
lz) I (8.13)

Thus it is the very small length E, not the macroscopic
length R, that sets the scale for unstable motion away
from a straight trajectory. This analysis also tells us
what happened when, in the far-field theory, we let 8 be-
come small at fixed v. The pole at m, moved indefinitely
far up the positive imaginary m axis, where it became
mathematically invisible but nevertheless implied strong
physical instability.

A next obvious question is whether there is any mod-
iGcation of this model that can produce stability in
isotropic materials, at least at sinall speeds. That ques-
tion is large and complicated, far too large to be ad-
dressed in this paper in any generality. But there is one

and the pole is now at m, = 2i ~& + i(1 ——)—"& . If p
is negative, that is, if the mode II cohesive stress is less
than the mode I stress, then the only change is that m,
remains in the upper half plane at v = 0. As expected,
the crack with less than marginal resistance to bending
into mode II is unstable even in the quasistatic limit.

When p is positive, on the other hand, the pole is
at m, = —2ip/g for v = 0 and it moves into the un-
stable upper half plane at a nonzero critical velocity
v, = /2p/(1 —1/r). For v ( v„we can compute the
response to perturbations that are slowly varying on the
scale of E by taking the limit mE m 0. In this way, we re-
cover the CR theory in all respects. In particular, (8.11)
is correct. But such a calculation is entirely incapable
of telling us whether or not the crack is stable and thus
whether or not a CR calculation of this kind is physically
sensible. To determine stability, we must look in detail at
the cohesive forces acting at the crack tip and try to un-
derstand the physical mechanisms that might cause the
cohesive-shear stress to be larger than its central force
value.
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