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Small-amplitude envelope solitons in nonlinear lattices
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The general theory of small-amplitude envelope solitons in one-dimensional lattices with cubic and
quartic nonlinearities is developed. It is shown for a wide diversity of interactions among particles
that the dynamics of chain excitations is governed either by the nonlinear Schrodinger equation or by
the system of coupled nonlinear Schrodinger equations. In particular, the theory allows the inclusion
of lattices with long-range interactions and chains with a complex cell in the unique scheme, which is
the envelope function approach. Classes of solitons in diatomic lattices and in chains with long-range
interactions are described as particular examples.

PACS number(s): 03.40.Kf, 63.20.Pw, 63.20.Ry

I. INTRODUCTION

Properties of excitations in anharmonic lattices with
nonlinear intersite interactions and on-site potentials
were intensively investigated during the last few years.
One of the most remarkable discoveries made in the lat-
tice theory was the existence of intrinsic localized modes
which are characterized by frequencies placed above the
top of the harmonic chain spectrum [1]. The general
theory of such stationary nonlinear localized modes has
been developed by Takeno [2]. The approach of Takeno,
being based on the linear-lattice Green's function ex-
pansion, has given a possibility to calculate both a fre-
quency of the localized mode and its structure for any
type of linear interactions in the lattice. Also, it has
provided the justification of the so-called rotating wave
approximation sometimes used for obtaining strongly lo-
calized excitations with frequencies located far enough
from the top of the harmonic frequency band. In the
opposit limit, when the carrier wave (CW) frequency is
close to the top of the continuum spectrum, there are
well established results in the nonlinear lattice theory, as
well. In particular, it has been shown by many authors
(see, e.g. , [3—9], and references therein) that single-mode
excitations of a chain with nearest-neighbor interactions
and cubic or quartic nonlinearity are governed by the
nonlinear Schrodinger (NLS) equation. The peculiarity
of the lattice theory compared with other branches of
physics (say, optics) is that the CW is taken to be discrete
[3, 5]. For example, it is well known that in the case of
the simplest monoatomic chain the CW is nothing more
than cos[qan —w(q)t+y] [here q is a vector in the recipro-
cal space, a is a lattice constant, n is a number of a site,
w(q) is a frequency, and p is a real constant] and at the
boundary of the Brillouin zone (BZ), q = —,it takes the
form of the standing wave (—1) cos( —wiizt + p), where
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unz = w(vr/a) and the subindex "BZ" hereafter stands
for values at the BZ edge. As in the theory of the station-
ary localized modes [2], the above mentioned approach
allows natural generalization including lattices with ar-
bitrary interparticle interactions and on-site potentials.
Namely, one can develop the theory irrespective of types
of interactions among particles (except some rather weak
restrictions related to the convergence of the sets). Such
a theory is the main goal of the present paper.

The consideration will be based on ideas similar [10]
to those elaborated in the theory of optical gap solitons
which can propagate in nonlinear periodic media. In-
deed, the stationary gap soliton discovered numerically
in [11] is the electric field localized inside a stop gap, i.e. ,
at the frequency located above the cutofF frequency of the
one of the allowed bands. The physical reason for exis-
tence of such an excitation consists of inducing the group
velocity dispersion (GVD) by the periodicity [12]. The
general theory of the gap solitons with frequencies lying
about a stop gap edge [13],also called the envelope func-
tion approach, has at least three characteristic features
important in the present context. First, it is based on the
multiple scale expansion with respect to the only small
parameter, which is the amplitude of the field. This gives
a justified and self-consistent hierarchy of scales. Second,
the CW is taken to be a formal solution of the underlying
linear system, which makes t~ie theory general and appli-
cable to any kind of periodic structure. Third, the theory
shows the prominent role of the second-order terms of the
expansion. In the context of the lattice dynamics the last
point has not been discussed in literature in full measure
and this is also the purpose of the present paper. In
particular, it mill be demonstrated that sometimes the
second order of the approach determines coupled mode
dynamics and imposes rather robust restrictions on pos-
sible types of lattice excitations.

Since the discreteness itself originates GVD, which is
particularly strong at the BZ edges, and therefore can
be regarded as a counterpart of the continuum medium
periodicity, it is natural to use a discrete version of the
envelope function approach in order to work out the gen-
eral theory of small-amplitude lattice excitations. Mean-
time, the existence of a gap itself in the chain spectrum
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is not a necessary condition for creation of envelope soli-
tons and that is why the latter will not be referred to as
gap solitons.

Development of the general theory seems to be impor-
tant for the following reasons: (i) It allows one to re-
late soliton parameters directly with the spectrum of the
respective harmonic lattice without referring to a CW
structure. In this context it should be mentioned that
lattices are widely used as models for the macromolecule
dynamics [6]. From the viewpoint of the applications
in biology the phenomena of localization and of energy
transport are of much more importance than the lattice
pattern itself. Also the general aspects of the theory
seem to be especially prominent in view of the recent
interest in lattices with long-range interactions [14—16].
(ii) The consideration below is provided for bounded sys-
tems and soliton parameters are expressed through the
discrete spectrum of the linear chain. This may turn out
to be important for quantization of nonlinear lattices.
(iii) The general theory allows one to describe not only
solitonic solutions but accompanying effects, as well. (iv)
Finally, the theory allows description of the coup/ed mode
dynamics.

The organization of the paper is as follows. In Sec. II

the NI S equation for a single-mode envelope is derived
on the basis of the multiscale expansion. Conditions for
the envelope function approach to be applicable are stud-
ied. Section III is devoted to some examples, which are
to illustrate the diversity of eÃects which can be obtained
within the framework of the envelope function approach.
We concentrate on the coupled mode dynamics in a di-
atomic lattice and in a lattice with long-range interac-
tions. In fact Sec. III generalizes the theory for the case
of multimode dynamics. The results are summarized in
the Conclusion.

II. THEORY QF ENVELIOPE SOLITDNS
IN LATTICES

A. Staten. ent of the px'eblexn

In order to describe the efFect of small perturbations we
take into account that the method is based on the small-
amplitude expansion and separate the principal Hamil-
tonian H~ qt of an unperturbed lattice and an additional
one H gg describing perturbations. First we consider an
unperturbed lattice governed by the Hamiltonian

dII,.„= —) M (n} —„u (n)
7L W7

+—) ... ) z3(n„
A1 ~F1 YL3,&3

+- ) ... 5 Z(n„
7L 1 ) CX 1 Tl 4 ) C3L4

l+ —) ) K2(nl, a.l., n2, n2)u, (nl)u, (n2)
7Z 1 &CX1 712 ~CX2

A "j j ~ j A3 ) A3 V~1 A$ %~3 A3

O.'y ) ...) 714) O.'4 'ii~1 Ay ' ' 'tL~ A4

where u (n) is a small displacement from the equilib-
rium position associated with the o.th degree of freedom
in the nth cell (here we use parametrization similar to
[2]). The physical sense of the components u (n) may be
difFerent. If, for example, a monoatomic lattice is und. er
consideration then u (n) is the ath component of the
displacement vector of the nth particle, and the positive
quantity M (n) is a constant (i.e. , does not depend on
n and n) making a sense of a particle lnass. Bearing
in mind this interpretation of u (n) we use the names
scalar lattice for the case o. = 1 and vector lattice if n
takes more than one value (but everywhere it will be as-
sumed. that the number of degrees of freedom is Rnite,
say n ( No, Ko being an integer). Below in the case of a
scalar lattice the inde' n is dropped. Meanwhile u (n)
allows also another treatment (it is given in Sec. III) and
in this sense the name "vector" is conditional. The real
coeKcients K in (1) are force constants. They have
properties

K2(ni l&1 j n2) Ckz) K2(n2) Cl2) nl) al))

(the same symmetry with respect to permutations of the
arguments is valid for K4, as well). Note, if the chain
possesses the translational symmetry then there are ad-
ditional properties

Q K2(n„n„n2, n2) =

K„(nl, nl, ..., np, np)

[the summing over nl can be dropped when u (n) is a
coordinate of a conventional spatial displacement vector
u(n)]. Though the last relations simplify consideration,
they are not imposed at the beginning.

Using new notations [2] v(x) = gM (n)u (n) and

Kp (nl, a.l, ..., n~, n„)
[M, (nl) . M (n„)]'&2 '

~3(nlyla1j n2) a2j n3&ia3) ~3(n2&1O2j nlrb Ol j n3&1~3) where x~ stands for the pair of variables (n„, n„), the
equations of lattice dynamics can be written as
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ii(x) = —) J2(x; x, )v(xi)

—5 ) Js(x; xi, x2)v(x, )v(x2)
~l &2

—) ) ) J4(x; xi,' x2,'xs)v(xi)v(x2)v(xs),
Xl K2 X3

the Hamiltonian

where H(~~ are of the same order as Hi tq and p is a small
parameter (p (( 1). Since the small-amplitude limit is
under consideration, one can approximate (j = 1, 2)

where an overdot stands for the derivative with respect to
time. As follows from the properties of Kz the coefficients
J„are symmetrical with respect to permutations of the
arguments xi and obey the relation (4) in the case of a
translationally symmetrical chain.

Suppose now that the lattice is not perfect due to some
reasons (it may be any external, say substrate, potential,
defects of any kind, etc. ) and that the respective addi-
tional inHuence on the particle dynamics is described by

II~~l = —) ) QM(x, )M(x, )1,"(x,; x, )~(x,)~(x, )

+ ~ ~ ~

[here M(x)—:M (n) is introduced explicitly for the sake
of convenience]. This general form implies the symmetry
of the coeKcients I„(xi,'. ..,' xz) with respect to common
permutations of the arguments x„.

The dynainical equation (6) is now generalized

v(x)+ ) J,(*;»)v(»)+) ) Js(x;»;x2)v(»)v(x2)+S ) 12 (» i)+V12 (»*i) "( i)
Xl X2

+ 5 ) ) J4(x; xi,'x2, xs)v(xl)v(x2)v(xs) = 0. (9)

B. Same properties of the linear lattice

For the next consideration it is convenient to recall
some properties of the underlying linear lattice. First
of all let us introduce a set of eigenfunctions Pi(x) and
eigenvalues uzi (the latter can be interpreted as eigenfre-
quencies of the harmoiuc lattice) of the spectral problem

(10)

which determines the dispersion relation of the linear lat-
tice.

C. Multiscale e~pansion

In accordance with the envelope function approach the
solution of (9) must be represented as

In what follows we consider a Gnite chain subject to the
cyclic boundary conditions. Therefore the spectrum is
discrete and the index I, refers to the quantum number
of the mode. The eigenfunctions can be chosen to be
normalized and mutually orthogonal,

V = PVy+P V2+P V3+2 3 (14)

In the present paper we study lattice excitations charac-
terized by the only small parameter which coincides with
one parametrizing perturbation [see (7)]. Then p, defines

. also a set of "times" t = p t, which are regarded as
independent variables, and therefore

Here b~ „ is the Kronecker delta and the bar stands for
the complex conjugation. They make up a complete set:

As it follows from (10) and (ll) the eigenfrequencies
are expressed through the eigenfunctions by the formula

By analogy, a set of spatial coordinates n = p n can be
introduced. However, in order to deal with long-range
interactions this step has to be justified, which natu-
rally leads to some restrictions on the force coefBcient
K2(n, n; ni, ni) [or J2(x; xi)].
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To this end, let us take into account that after all one
needs the expansion of the first sum in (9) with respect
to p. Let us also introduce a provisional designation
u (np, (n )) (v being a positive integer, v ) 1) explic-
itly indicating the dependence of the displacement on the
slow spatial variables. Then the sum under consideration
is rewritten as

) ) K(., ; .+m, ,)
ey m= —oo

xu, (np + m, (n„+p"m)).

Now the displacement u (np + m, (n + p m)) can be
formally expanded in the Taylor series with respect to
p m,

) ) K (2n,po; np+m, ni)u, (np+m, (n„))+) ) —,) ... ) p,
"'+"'+" )

can m= —oo cx] P=1 v1 ——1 v~=1 m= —oo

m" K2 (np, n; np + m, n] )

Bn, Bn
u, (np + m, (n„)). (16)

The expansion makes sense if an estimate of the rest of
the last set starting with some item, say p = po, is much
less than the preceding terms. As is shown in Appendix
A, to this end it is enough to require the coeKcients
K(np, n; ni, o.i) to satisfy the inequality

max ) m"K2(np, ci; np + m, o.i) & Cp!G", (17)
(CX1,CX}

where C and G are constants.

Let us introduce new independent variables: Xo for
the pair (np, n) and X = an for v ) 1 [whenever the
multiscale variables are used the subindex stands for the
scaling, while in all expressions written down in terms of
the original coordinates x„= (n„, o.„), the subindex is
to distinguish discrete variablesj. In these terms v in
the expansion (9) are the functions of the set of variables
(t„,X' ) (v ) 0). Then tatung into account (15) and
(A4) and restricting calculations to the order O(p ) one
can write down the dynamical equation (9) in the form

O' 8' f O' 8'
a'+'"a a +~

~ a'+'a aBtp2 OtpBti (Ot2i BtpOt2 y

= —) J2(xp, Xp ) + pI2 (Xp,.xp ) + p, I2 (Xp,.xp ) v(Xp, ...)
x('&

0

—&) a(n,"—n. )J.(X.;X,") .(X,",...)
~(1) 1

0

02—p ) J (X;X! l) a(n! l —no) + —a (n —no) (X,...)
~(1)

0

—) ) Js(xp, Xp~ l; Xp l)v(xp, ...)v(xp, ...)
x()x()

0 0

—) ) ) J.(X.;X,";X,";X,") (X,"', ...) (Xl'l, ...) (X~'l, ...).
~(1) ~(&) ~(3)

0 0 0

Hereafter the dependence on the times (f ) is not indi-
cated explicitly if all the scales are presented (i.e., v ) 0)
and the index (j) at Xp is to distinguish independent
discrete variables. If a function does not depend on all
t, , then the most "rapid" time is mentioned in the ar-
gument. As to the spatial variables, only the most rapid
one is indicated.

"'( "-)+) J(x.x").(x"' )
—o

Ot2
0

(19)

As is customary, for the next step one has to gather
all terms of the same order of p after substituting (14)
in (18). In the first order this leads to the equation
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Comparing it with (10) one concludes that the general
solution can be represented as a sum of diH'erent eigen-
modes. In the present section the case of the single-mode
dynamics will be considered in detail. This means that
vi (x) must be chosen in the form

v$ = A(t] ) ...) X$) ...)e ' ' 'pi(X0) + c.c., (20)
where A(tq, ...', Xq, ...) is a function of slow variables
describing amplitude modulation of the discrete CW

—%ill( tp y'(x )
In the second order of p (18) yields

) 1 (x.x")
too x(0

02—2 vq(xo, " ) —) a(n0 —no) J2(xo; X0 ) vz(X0 " )to tl BX,x
—) ) J,(X„X('l;X('l)v, (X,",...).,(X,",...) —) I,'~(X„X,")v, (X('l, ...).

x(') x(') x(1)
0

In order to find an appropriate representation for v2
one has to take into account the fact that the cubic
nonlinearity leads to generation of the second harmonic
e ' ' ' and to a displacement independent of the rapid
variables. Thus v2(x) has the form

v2(X0, ...) = ) [D (tg, ...,.xg, ...)

+B (&i, ...., Xi, ...)e
+B(2~(t„x ).-'- "]
xp (X0) + c.c. (22)

Due to the prominent role of the components, in [13]
vi (x) and v2(x) were called the principal term and the
companion term.

For the next step the expression (22) must be substi-
tuted in (21). Then multiplying the result by Pi(X0),
singling out harmonics with the frequency ~~, summing
over X0, and using (11) one obtains the equation for A,

~

I', +1,A ~.
1 ( ciA (g) (27)

Proceeding by analogy and using the property (3) one
Ands the displacement term

The sign of Lcu~ determines whether the soliton mode lies
above (Aui ) 0) or below (Aui ( 0) the CW frequency.

An important consequence of (26) is that the envelope
soliton created at some point of the spectrum moves with
a velocity equal to the group velocity of the linear exci-
tations corresponding to that point. For various particu-
lar examples of chains with nearest-neighbor interactions
and the quartic nonlinearity this result has been obtained
by many authors (see, e.g. , [4—7]).

In order to find the coefficients B (at m P t) one has
to single out in (21) the companion harmonics with the
&equency ~~, to multiply both sides of the resulting equa-
tion by (t (X0), and to calculate the sum with respect
to Xp. This yields

OA BA (y)2i(u) —Z')) —I'„A = 0.
Oti OXi

Here the notations

i ) ) o (ril n 0) J2 (&0 &1)4' (&0)4'i (&1)

and

(23)

(24)

(25)

, Ziz
&m

where

a7kl —) ) ) ~3(&0 &1 &2)4'A(&O)ki(&Z)4 (~2)
Kp

and amplitudes of the second harmonic components

(28)

(29)

are introduced. As is shown in Appendix B, the diagonal
element I'~~ is connected with the group velocity v~

——"d '
dg

[see (Bl)]. Equation (23) has a solution

A(t„...; X~, ...) = e ' '"a(t2, ...., X~, ...), (26)

p(1)
where Xq ——Xq —v~to and L~~ —— 2" is the shift of

the CW &equency originated by the perturbation I2

2 2' lA2
QJ —4Q) )

(30)

Formula (30) implies the condition w g 4wi at Qj
0. This requirement will hold whenever the cubic nonlin-
earity is under consideration (otherwise resonant gener-
ation of the second harmonic occurs, which will be con-
sidered in detail elsewhere).

Passing to the terms of the third order of p one arrives
at the dynamical equation
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)+) J(X X")v (X" )
o x0

v~(Xo, ")—l, +2
I
vi(Xo ".) —).a(no —no) J2(Xo Xo )

8 (~ l {z) (,) Bv2(Xo, ...)
cltoo{t~ {,Bt~ BtpBt2 j |

0

02) J2 (Xp' Xp( l
) a(np —no) + —a (np —np) 2 vl (Xp ~ ~ ~ )

(1) 1
X0

) ) Js(Xp., Xp; Xp )vg(Xp, ...)v2(Xp, ...)
x(') x")

0 0

) ) J,(X„.X,";X,",X,")v,(X,",. ..)v, (X,",...)v, (X('l, ...)
x&'& x("x,')

) - I('l(X, ; X('l).,(X,'l, ...) —) I('l(X, ; X('l).,(X(', . ..).
x(') ~(1)

0 0

(31)

For the last step we multiply this equation by P~(Xo), sum over Xo, and take into account (20), (26)—(28), and
(30). The outcome reads

Ba . Ba
2X(d~ + 2'LLd[v] + —

V~ + )Bt2 BX2 mal

—Ai
OX~2

(~) — -(~)I', I'
) —I,I'—2zk(d~v~ +

4) (d
mal l m

Ba

OX(

(a) 2
—(X, +X„)~a~ a — (a~, ) +r, +), , a=0. (32)2 (2)

mph'

Here
2

~l
2 ) ) ~2(&o +1)( 1 0) 0'l(+0)(('I (2'1)

K0 aV1

the coefFicients

1 . Im(I', I' ()V= —
2 + V),

(d m

il
(i) i2

(~ )2+I(2) + )2u)
l

4) —(dm

(39)

(40)

and
where (B2) has been used, Eq. (32) is reduced to the
classical NLS equation

. ( 4
Xs ——2). I

—,l&iz-I'+ 4,
. Bg 02$

i + r. + 2r.x~vjr~ @ = 0, (41)

play the part of the efI'ective nonlinearity, and

r,"l =) ) I('l(*„*,)y, (*,)y, (*,)
0 1

(36)

with r =sgn(d cu~/dq ) and rz ———sgn(ys + yn).

III. EXAMPLES DF ENVELOPE SC)LITDNS
IN LATTICES. COUPLED SOLITONS

IXs+ Xnl;-, z
2cut

(37)

Finally, looking for a solution independent of X2, in-
troducing new variables

In this section we consider difI'erent examples of the
small-amplitude solitons in lattices [17]. Though the
above theory allows one to treat a quite general situa-
tion each time a model is simplified to emphasize only
the main efI'ect.

T =t2) X= 2

~d'~(/dq'~
(38)

A. Solitons in the simplest xnonoatomic lattice

Let us start with some properties of the simplest lattice
possessing only nearest-neighbor interactions. This is the
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case of

K
J(x;x1):——(2h„, „—b„, „1—8„,„+,), (42)

where K is a linear force constant and M is a mass of a
particle. The normalized eigenmodes are given by

ug(n —1) ug(n —1) Q1 7l Q2 A ug(n+ 1) u2(n+ 1)

FIG. 1. The example of the terminology for the diatomic
lattice. The atoms designated by circles and disks have masses
Mz and M2, correspondingly.

y ( ) ~—1/2 iq(na (43)

K . 2QG= 0 +4—sin (44)

and hence in the region of small wave numbers d tu/dq
0. This means that creation of solitons of different types
in the vicinity of the BZ edge and in the center of the BZ
is possible. So, for example, in the lattice with quartic

Hereafter A stands for the number of cells in the chain
(in the case at hand it coincides with a number of
atoms). Direct algebra allows one to ensure that F1
—2ia(K/M) sin(qia)b1~. Then it follows from (27) that
the companion modes are not excited in the unperturbed
monoatomic lattice with quartic nonlinearity. Notice
that in the case of existence of more than one branch
of the spectrum, i.e. , in the case of a complex cell, there
is a coefFicient B which is not zero (it corresponds to
the wave vector of the CW but to the difFerent branch)
and this is a principle difFerence between monoatomic
and multiatomic lattices. The additional Hamiltonian
H~ ~ originates companion modes which have the shape
of the principal mode. Also H~ ~ efFects on the velocity
of a soliton, but the respective addendum is of the or-
der of p [see (39)]. The perturbation II( ) gives only a
p2-order contribution to the frequency shift.

As follows from (41) the type of a soliton solution de-
pends on the product K v~: if it is 1, bright solitons
can be excited, if it equals —1 there can exist dark soli-
tons against a nonzero background. For the scalar lattice
with nearest-neighbor interactions in the vicinity of the
BZ edge one has d w1/dq ( 0. Then only bright (dark)
solitons are available at y11 + ys ) 0 (F11 + ys ( 0).

The principal difference between the cases of the cu-
bic and quartic nonlinearities is that in the former case
the displacement and the companion mode with the fre-
quency 2m~ can be excited together with the principal
harmonic [see (28)—(30)]. These modes are localized
about the soliton.

Presence of a linear eigenfrequency Oo of an uncoupled
oscillator leads to change of the sign of the GVD in some
intermediate point of the BZ. Indeed, in this case the
dispersion relation (13) takes the form

nonlinearity y~~ ) 0 at the edge and at the center of
the BZ there can be excited bright and dark solitons,
respectively. Also, in the case at hand there is a point q
defined by

4Z ~
cos(qa) = 1+ Ao ~ 1 — 1+

o

at which the GVD is zero, which means that in the vicin-
ity of q conventional small-amplitude envelope solitons
of the NLS type cannot exist and higher dispersion and
nonlinearity have to be taken into account.

B. Multiatomic lattices. Coupled solitons in a
diatomic lattice with quartic nonlinearity

In the present subsection a class of coupled sohtons
in multiatomic lattices is obtained. These solutions are
difFerent from the localized modes reported earlier [18].
Mathematically, the distinction comes from the method
of analysis of a lattice: here the envelope function ap-
proach rather than the rotating wave approximation is
used. Physically, the difFerences consist of a nonzero ve-
locity of the forward motion of coupled solitons, of their
sizes, and of their behavior when the gap width tends
to zero. The solitons presented below are analogous to
the optical coupled gap solitons discovered numerically
in [19] and later found analytically [20].

Let us start with a brief discussion about possible ways
to generalize the theory developed in the preceding sec-
tion. Suppose that a lattice with a complex cell hav-
ing No difFerent atoms is under consideration. It can be
treated as a vector lattice if one identi6es the index o.
with a number of an atom in a cell (say, from the left to
the right n = 1, 2, ..., No) and the index n with a cell num-
ber (see the example in Fig. 1). Then M(x) = M (i.e. ,
is independent on n). Restricting consideration to the
case of a lattice with nearest-neighbor interactions and
without linear on-site potential the kernel K(n, n; n1, n1)
can be written as

I1 (n& ~j nl ) ~1) l m+1~ y(n1 n'4, NO ) ('4y, a'. '4y, et+1) + Vn'4, ny (1 ~cx, l) ('4$, c? '4y, n —1)

+ 1 ng yn ( M, No cxg, N +0ol, 1 exp, 1 ) 1 ( ng n —1 ct', 1Gg, NO + 7lg, n+ 1 ol,

Noting,

l ) (45)

Here V (at n = 2, 3, ..., No) is a harmonic constant of
interaction between (a. —1)th and ath atoms in the same
cell and Vj is a force constant between the erst atom in
the nth cell and the Noth atom in the (n —1)th cell.

The case which can be treated analytically is that
of the small dispersion of both the atom masses and
the force constants from their average values M and V,
or in other words, the case where ~M —M~ = o(M);
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!V —V! = o(V). Then, introducing new variables, say
m = M —M and m = V —V, one can interpret the
differences among the masses and the force constants as
perturbations, include them in H&~) [see (8)], and employ
the above results for the monoatomic lattice with the po-
tential H ~~ given by (7). The important fact now is that
in the limit when M ~ M and V + V one arrives at
the monoatomic lattice with a lattice constant a which is
No times less than the lattice constant a~, of the mul-
tiatomic lattice: a~, = Koa (we use a natural assumption
that in this limit the distances between neighbors become
equal). Therefore if one is interested in the behavior of
solitons near the edge of the BZ of the multiatomic lat-
tice, the associated limiting monoatomic model has to be
investigated at the point q~, = = ~ (see the illus-

tration in Fig. 2). It is this point in which the eigenmode
P&(x) must be chosen. The qualitative result immediately
follows from (26): respective solitons (if any) move with
the group velocity of a CW in the limiting monoatomic
lattice at the point q~, . Below this result is obtained on
the basis of the perturbation expansion.

As follows from these arguments in the limit m ~ 0,
~ 0 a soliton of the complex lattice transforms to a

soliton of the rnonoatomic lattice (if of course the GVD
at the point q~, is not negligibly small, i.e. , is of the order
of the frequency itself).

The behavior just described seems to be interesting
and not too trivial if one looks at the problem from an-
other viewpoint. Indeed, the curvatures of the acoustic
and optical branches of the spectrum in the vicinity of
the BZ edge have different signs. This means that if the
acoustic mode at the BZ edge supports propagation of
bright solitons, then the optical mode is a CW for dark
solitons subject to the same nonlinearity (this statement

is a direct consequence of the analysis provided in the
preceding subsection). Then in the presence of interac-
tion the question about the possibility of simultaneous
excitation of these modes arises. Here we consider treat-
ment of the problem different from that outlined above
and close to the method applicable to optical gap solitons
[20].

We investigate an unperturbed diatomic (n = 1, 2) lat-
tice with nearest-neighbor interactions and quartic non-
linearity. Then J3 = 0 and H gg

——0. It is well known
that if Mq 2

——M + yearn and Vj 2
——V 6 p, w (j being a

positive integer, it is discussed below) then in the lead-
ing order of the small parameter p the gap between the
optical and acoustic branches of the spectrum is given by

V f'u)2 m2 )
M qV' M') '

(46)

where w~ » and u~ '~ are frequencies of the respective
branches at the BZ edge and a normalized half-width L~
of the gap is introduced [note that Aw = O(w( ~ '))].

Let us consider solutions of the evolution equation (6)
which correspond to a CW frequency located inside the
gap. Since now bw = O(p~w), where ur =

2 (w( &) + su( ')
)

is a frequency of the middle of the gap (see Fig. 2), the
modes associated with the gap edges are coupled and one
has to represent a CW solution as a superposition of two
modes: optical P&z (Xo) and acoustic P&z (Xo) ones:

vg ——[A p(tg, ..., Xg, ...)Pnz (Xo)

+A~, (t„...; Xg, ...)PBz (Xo)]e ' "+ c.c. (47)

There are some general comments to be made here.
First, the consistent expansion requires the use of only
one frequency (say w) in (47) instead of ur( ) and cu( ')
since (w( v) —w( '))t = 24cut~ [this is in accordance with
the above qualitative arguments and with the outcomes
(26), (37), and (40): indeed, Rr can be taken into ac-
count by the perturbation HU)]. Second, the subindex
of the eigenfunctions P (Xo) should refer to two quan-
tum numbers indicating a branch of the spectrum and. the
wave number in the reduced BZ. We avoid. this by intro-
d.ucing direct reference to the branch of the spectrum by
means of the abbreviations "op" and "ac." Third, a tech-
nical feature of the expansion which will be done below
is that due to the differences between ~ and the eigenval-
ues ~( ) and w( ') new (compared with the development
of the preceding section) perturbative terms appear. For
example, now one has

p-& ~' —~~ »' a., ", x,

wave number

FIG. 2. The spectrum of the diatomic lattice with the
small gap (solid line) and the associated spectrum of the
monoatomic lattice (dashed line).

'"' X e'-"

in the right hand side of (21) and/or (31).
For the next step one has to represent [cf. (22)]
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v2(X0, ...) =) B )(ti, ..., Xi, ...)P~ (Xp)e ' "
+) B( ')(t, ...; X', ...)P~ ')(X )e ' ' + c.c.

(48)

.OA p OA, .OA, OA p (49)

Further development of the theory depends on the
value j which determines the scaling of the problem.
There are three interesting cases: j = 1, 2, and 3.

I et us start with the case j = 3 which exactly cor-
responds to a negligibly small gap, i.e. , to the situation
qualitatively described at the beginning of the present
subsection.

Substituting (48) in (21), multiplying the result subse-

quently by PBz and by PBz, and summing over Xp one(oI ) (ac)

obtains two equations for the amplitudes,

By the direct algebra one can ensure that in the case
of an unperturbed diatomic lattice I' ' = 0 and. , hence,('j) =
B(ac,op)

The formulas (53a), (53b), however, do not give BBz
and BBz which are not zero. Moreover, sometimes the
companion term imposes special conditions on the princi-
pal mode. The reason for this is that the principal states
bordering the BZ can be considered as doubly degenerate
(see Appendix B) and the companion term has a compo-
nent which is orthogonal to the principal mode (in the
space of the eigenfunctions of the linear operator) and
has the CW frequency. In order to find this component
one has to consider the equations appearing in the third
order.

MultiPlying (31) by PBz (Xp) and by PBz (Xp) and
summing over Xo one arrives at the system for A p and
A, . Changing variables (Xi, ti) to (z, ti), introducing
new composite states

where a real quantity
(op) . (&c)

b~ ——BBz +'BBz ~ (55)

and using the properties of the kernel J4(xi, ...', x4) and
relations (52), (B16),and (B17) one can obtain the equa-
tions of the third order in the form

Aop 62Aa.c (51)

(5O)

can be interpreted as a velocity (see Appendix B) and it
is taken into account that now the lattice constant is a2.

The first important consequence of the system (49) is
that it possesses a solution characterized by the relation

. (OA c)Ai „c) A 2 Ob+

Ot c)X c) 2 Bt,
=0,

02A . 2 Bb Ob
( A+I'), + (~ —y)~A]'A+ —2,

Bz Bt& Bz

(56)

which means that the modes are coupled. The so deter-
mined amplitudes A p and A depend on tq and Xq only
through the combinations Xq ~ vtq. In other words, the
pair A p, A, describes a wave packet traveling with the
velocity v either in positive or in negative directions.

For the sake of definiteness further consideration is pro-
vided for the "polarization"

Here

(57)

) " ).J4(» " *4)(&BZ'(»)&BZ'(»)

+0' (*.)4 ' (*.))
X(4B"'(~.)&BZ'( ) + &BZ'(*s)&BZ'(*4)) (58)

A ~ = iA, = iA(z), z = X& —v~&. (52)

For the next step one has to determine the coeKcients
B ' ' which can be done by multiplying (21) subse-

quently by PI
) and by PI

' after substituting the ex-
pansion (48). The result reads

x= —) "):J4(» " *4)[4'Bz'(&i)&Bz'(»)
&1 X4

+~BZ (+i)4'Bz (+2)]&BZ (+&)~BZ (+4)& (59)

B(oi) — ~~l. ( ) 1(i )
ca) —M ( BXi c)Xi j (53a)

B(ac)
I

P(21) ~P P(22) OA
2 u2 ( c)Xi c)Xi )

(53b)

) ) 0'2 ( foal np) 12 (+0 &1)
Xp

+0 Bz +] m +o Bz +].
(54)

0 Bz &1 m 0 Bz &1

where I' ' stands for the element at ith row and jth
column of the matrix

(6o)

1 (A, —A p).
242

(61)

0" is the GVD induced by the coupling [it is given
by (B12)], A, and A ~ are defined by the direct anal-

ogy with A~ [see (33)] where P~(x) must be replaced by

PBz) (x) and PBz (x), respectively, and for the definition
of P see Appendix B.

In terms of the variables (z, ti) the amplitude A does
not depend on ti. Hence, it follows from (56), (57)
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.BA „62A+ n", + ~+ ~X~'W = 0.
gt2 BZ2 (62)

In the generic case not all solutions of this equation
make physical sense. The condition determining available
types of solutions comes from the requirement for the
companion term to be localized in space, i.e. , to decay
with ~z~. However, there appear to be no restrictions if

X- =X=0. (63)

that b~ = b~(z), i.e., they do not depend on ti, as
well. Then b+(z) is excluded from the evolution equa-
tions, which means that the component of the compan-
ion term with the frequency w is characterized by the link

BBz ———iBBz, and this corresponds to the polarization
determined by the lower sign in (B12). Comparing this
outcoine with (52) one concludes that the excited com-
panion term has a component with the CW frequency
and its polarization is orthogonal to the polarization of
the principal mode.

Now considering solutions independent of X2, one ob-
tains the NI S equation for the envelope amplitude

chosen branch v ) 0 and 0" ( 0. As is evident, t,he
orthogonal polarization is characterized by v & 0 and
0" &0.

The GVD 0" can be directly expressed through v.
To this end insert the composite state (B12) in the dis-
persion relation {13),differentiate it twice with respect
to q, and take into account that ur~ i'l(dzu~ i'l/dqz)
—wl '&(d2u~ 'l/dq2). As a result we find

2

A 0 (65)

82A
(iA+ I') + (y —iy)~A~ A

06 Bb+ —2U- = 2A~A (66)
Btq Oz

This is nothing more than the GVD of the limiting
monoatomic lattice in the point qa = vr/2

In a more general situation the condition (63) may be
not satisfied. Meantime, at j = 2, Eq. {57) for the
companion term is modified. It takes the form

This requirement is fulfilled at least in the cases of non-
linear nearest-neighbor interactions and a homogeneous
nonlinear on-site potential (see Appendix C).

In this last case the general form of the Bloch functions
bordering the gap is given by (C1) and, for example, the
one-soliton lattice pattern at y+ & 0 is described by

and has a solution decaying with ~z
~

if

(y ~A~' —2A(u)A dz = 0.

(67)

Hi(Ã): Asec'll(Z/Zo)( I) sill fA + lb' ——(a —I))2

(64)

where A = —0" ~ is the soliton amplitude, cu =
X+ Zo

~ —",A" is the frequency of internal oscillations, zo is a
Zo

constant and 8 p ls introduced in Appendix C . It is to be
emphasized that in spite of similar forms of a soliton in
a monoatomic lattice and the solution (64) the essential
difference of these cases is that in a diatomic lattice the
companion term defined by (57) is not zero.

Let us show that the obtained result coordinates with
the qualitative arguments given in the beginning of this
section. To this end consider the limit I = 0 and with-
out restriction of generality V2 ) Vi. Then ai /a2

(~~) (~c)

—O, i /a2 = 1 and one can take 8 p
———vr/4. Now(op) (op)

let w ~ 0. Then the polarization (52) means that
the respective composite state (B12) is nothing but
A r (—1) exP i4 + i z (n —1) . Taking into account
that the limit of equivalent particles is under consider-
ation, introduce new numbering of the atoms n, such
that an atom characterized by the pair (n, n) is indi-
cated by the single index n = 2(n —1) + a. Then the
first term in the representation (47) is proportional to
exp {'2 n). Recalling the definition of q)v, one can note
that 2

——q2a. Comparing this with the expression {20),
one finds that we are in the point qaz/2 of the spectrum
of the monoatomic lattice. This is the reason the so-
lution obtained has the form of the envelope soliton in
a monoatomic lattice. Thus one concludes that for the

The requirement (67) turns out to be crucial for existence
of the coupled solitons, while (68) results in restrictions
on the soliton amplitude. So, for instance, A (and hence
zs) in (64) cannot be arbitrary anymore. Instead one
calculates from (68)

(69)

.OA pA~A p
——i

Ofy

.8A—A~A, =i--
l9t y

OA,
X

OA p

BXy

The dispersion relation A(K) associated with this sys-
tem reads 0 = v R + (Aw) and hence in the present
scaling the GVD cannot be compensated by the weak
nonlinearity.

All the cases considered above allow interpretation
from another viewpoint. First one can say that cou-

where there must be Lwy ) 0. Thus the intensity of
the soliton is directly proportional to the gap width.

In contrast to the cases j = 2, 3 the gap of the order
of pw changes the situation drastically. The gap being
of the order of the pulse amplitude leads to the coupling
of the harmonics in the second order of the perturbation
theory, which results in the strong linear dispersion. To
illustrate this, by analogy with (49) deduce the system
for the amplitudes in the second order for the case j = 1,
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1 d a solitons can be excited only i1 if = 0. If alsope gap s
= 0 then their intensity must be much 'ggh bi er than

the gap wi &~in idth (in dimensionless units). Ot erwise, i.e. ,
minedwhen y g 0, the intensity of the pulse is determine

by the gap wi t . ina y,
' ' '

esd h F ll the localized solitonic pulses
of the NLS type cannot be excited withwith the amp itu e
comparable with the gap width.
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pie, the respective "local" lattice supports propagation of
bright solitons then in the spectral region between q
and q the lattice with long-range interactions sup-
ports propagation of dark solitons. For the erst time the
eKect of coexistence of bright and dark solitons due to the
nonlocal interactions has been discovered by Remoissenet
and Flytzanis [14] in the long wavelength approximation.
Here that result is generalized for the whole BZ including
essentially discrete limit.

Another peculiarity of the model at hand is that there
exist modes with diferent &equencies, say u1 and ~2,
and equal group velocities. Such modes being excited
simultaneously display coupled dynamics. In order to
illustrate the phenomenon let us consider the CW of the
form

A 2X21 + X22 A2A2 —— exp i At,
cosh(z/zp) ( 4~2 )

where

(76b)

—1
Zo

2+21 + +22

i 2(u2(d ~2/dq')
(77)

and A is a constant, or the dark soliton solution (X22 +
2X21 & o)

t z i ~ Xll + 2X12 2 2Al ——A tanh
l

—
l
exp i A tanh

E zp ) (zp)
(78a)

vl ——Al(tl, ...,'Al, ...)$1(Xp)e
+A2 (tl, ..., Xr, ...)p2 (Xp) e ' '" + c.c., (73) zp ) 2cd2

(78b)

where the difFerence between the frequencies is of the
order of the frequencies themselves: w2 —wl —O(wr 2).

Next consideration is provided for the case when cubic
nonlinearity is absent (Js = 0). Then straightforward
algebra leads to the relations

8A1 BA1 .BA2 OA2
(74)

where v~ = du~/dq. As has been mentioned above in the
case of the chain with long-range interactions there are
points at which v1 ——v2. Assuming that uq 2 are chosen
respectively one has A~ = A~(z), where z = Xr —vltl.

The equations of the third order are derived to be (as
above, the dependence on X2 is not considered)

M1 8 A1 2 22i~r +~1 —(xlllAll +2x12 A2l )Al
Ot2 dq2 6z2

(75a)

[the coefficients X~ have been introduced in (34)].
The system (75a), (75b) is well known in nonlinear op-

tics [23]. In particular, it has been studied in the context
of the coupled mode dynamics [24]: however, it is to be
emphasized here that the case at hand is essentially dif-
ferent since the frequency shift between modes in [24] was
a small parameter.

Let us mention two interesting particular situations:
when one of q~ corresponds to one of the extrema of the
group velocity. Suppose, for example, that q2 ~ q

d2 d2
and. q1 ——q~;„. Then "d,' ——0, "d,' ( 0 and depending
on the sign of the nonlinearity the system (75a), (75b)
possesses either the bright soliton solution (X22 + 2X21 (

A ( Xll + 2X12
exp z t2 )cosh(z/zp) ( 2(ur cosh (z/zp) )

(76a)

19A2 d M2 0 A2 2 A2i~2
g +~2 2 g 2 (2X21lAll + X22lA2I )A2 = o
Dt2 dq2 BZ2

(75b)

[the characteristic scale zp being given by (77)].
The peculiarity of the obtained solutions consists of

the difFerence between the frequencies of envelope oscil-
lations which means that their superposition, giving the
lattice pattern, is characterized by two internal frequen-
cies. Also, the frequency of the erst mode is not a con-
stant but depends on the "spatial" coordinate (.

IV. CONCLUSION

To conclude, the general theory of the small-amplitude
envelope solitons in lattices has been developed. It is
based on the multiscale expansion and allows one to
obtain moving localized excitations in monoatomic and
multiatomic chains with nearest-neighbor and long-range
interactions. A type of a soliton solution is determined
by the sign of the product of the GVD and the efFective
nonlinearity. The theory allows the description of the
coupled mode dynamics resulting in tied solitonic states.
Propagation of such pulses is accompanied by excitation
of companion modes, which represent states orthogonal
to the principal harmonic. The coupled solitons in the
diatomic lattice link optical and accoustic branches of
the spectrum, which gives a possibility for the energy
transfer between the modes. In the case of a lattice with
long-range interactions the solitons due to coupling of
two modes having diR'erent wave numbers but the same
group velocities are characterized by two oscillating de-
grees of freedom. The additional internal frequencies can
serve as sources for various resonant phenomena. The
coupled solitonic states are movable and hence may play
a remarkable role in the energy transfer along chains.

The necessary condition for the coupled envelope soli-
tons to be created is the dispersionless character of equa-
tions of the second order of the expansion.

As a matter of fact the theory provides us with the
possibility to predict a type of a soliton even on the basis
of numerical analysis of the spectrum (the last of course
is not enough for detail description of the lattice pattern).
Finally, the consistent multiscale expansion allows one to
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analyze perturbations which are classified on the basis of
their amplitudes.
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APPENDIX A: INEQUALITY (1'F)

In order to show that the requirement (17) is enough
for validity of the multiscale expansion, let us estimate
the rest R of the set in the last sum in (16) starting with
the term p = po. We have

V1+'' +Vp

YFE:—OC)

P

p ) m K2(np, n; np + m, ni)
)

t9
m K2(np, n; np+m, ni) ... u (np+m, (n ))

BnvI

(Al)

(C =canst). Here it is taken into account that in accordance with the multiscale method all derivatives Bi'u /c1n"
are of the order of one, i.e. , ~0"u /On)~ & C for arbitrary v and p (otherwise the method itself fails). Now the sum
over v is calculated explicitly to give p" (1 —p) ". Assuming that (17) takes place and supposing that the sum over
0.1 has no more than No terms one obtains

Since we are interested in the limit p, ~ 0 (or i
"

&& 1) the last estimation can be rewritten as iBi = O(G"'p,"').
Hence under the condition (17) the expression (16) takes the form

OO 6) ) K2(np, n;np+ m, ni)u, (np+ m, (n j) + ) p" ) ) mK2(np, n;np+ m, ni) u, (np+ m, (n ))
CX I m =—OO V=1 nI m= —OO

0 8
m'K2(np, n;np+m, ni) u, (np+m, (n j)+ . (A3)Bn, 6n,

Our aim is to describe the effect of the nonlinearity, and that is why all the terms in the above formula must be
calculated with accuracy O(p ). This gives the final expression for the sum under consideration,

0) ) K2(np, n;np+m, ni) u, (np+m, (n ))+pm u, (np+m, (n ))
nI m= —OO

+ p m u, (np+m, (n„)) + —p, m 2u (np+m, (n„)) +O(G p, ). (A4)
On2

Let us ensure that the condition (17) is satisfied by the
Kac-Baker [21] potential (71). To this end it is enough
to note that

APPENDIX B: GROUP VELOCITY
AND ITS DISPERSION

First we can use a discrete analog of the elegant argu-
ments of de Sterke and Sipe [13] to show that in the case
of a scalar lattice there are relations

and

d(dI
2&i = zI ii

dg
(B1)

where ( = 1 —e ~ and p ) 1. Thus the constant G in
(17) can be taken equal to 2/(. If, however, p « 1 the
mul. iscale expansion requires modification, which can be
done by defining n = (pp) n.

mph' I ™
(B2)



2856 V. V. KONOTOP 53

where the coeKcients I'
I and AI are introduced by (24)

and (33). The idea of the method consists of the follow-

ing: the shift of the frequency caused by an in6nitesi-
mal variation of the wave number is calculated by means
of the perturbation theory on the one hand and on the
other hand by means of the simple expansion in the Tay-
lor series. Comparison of both sets allows one to express
the derivatives of the frequency with respect to the wave
number through the eigenfunctions.

The classical formula of the perturbation theory,

tion of motion is replaced by J2(x; xi) + j(x;xi)].
follows from (43) a small variation qI ~ qI + dq results in
the change

«(x) -+ «(x) + iandq — an— (dq) «{x)
2

+O(("q) ).
This is equivalent to the peturbation

where

2 2= (di + Vji + 2(d —(d
mal & m

j (x; xi) = ia(ni —n)dq ——a (ni —n) (dq)

x J(x; xi).
Thus on the one hand

(B4)

+ I = ).).j(x»)& (x)«(»)

describes change of the frequency of the state 1 affected by
a perturbation j(x; xi) [i.e. , when J2(x; xi) in the equa-

~ {q + dq) = ~ (q) + dq + — (dq)2
d(~ ) 1 d2(~2)

dg 2 dq

+O{(dq)') (B5)

and on the other hand (B3) yields

~'(q+dq) =~I'+ia(dq)) ) (ni —n)J2(x;»)«(x)«(») — a'(dq)')— ) (ni —n)'J. (x;»)«(x)«(xl)
Xl X Xl

(+a'(dq)' ), , ) ) (ni —n) J2(xI xl) 0m(x) «(») + O((dq)').

Comparison of (B5) and {B6)yields (Bl), (B2).
I et us now consider a diatomic lattice when m ~ 0 and

to ~ 0. Then at the edge of the BZ the two branches
of the spectrum tend to each other and at the point
q = a/aq ——Ir/2a the spectrum becomes degenerate (Fig.
2). Corresponding point of the spectrum requires the
well-known modification of the perturbation theory [22]
and can be described by two subsequent steps. First,
the normalized basis diagonalizing j(x;xi) can be deter-
mined. Second, the matrix element for the expansion
of the frequency can be obtained. Since the purpose of
these actions is the expression of the group velocity and
its dispersion in the degeneration point through the set
of the eigenfunctions, all the calculations must be done
with the accuracy O((dq) ) [cf. (B5)].

Introduce the basis

1/2

( 1)j—I ~2I
1 ( 1)~

vIII

IIIII ———A, (dq) + O((dq) ),
zv22 —— A„(dq)' + O((—dq)'); (B8)

IIII2 ———2i~vdq+ O((dq) ),
IU2I = 2I~vdq+ O((dq) ); (B9)

where III,I
—— p j (x; xi)pi(x)p2(xi) [remember

the Bloch functions pA,. (x) are real] and

g(i'll —to22} + 4~ivi2~ . Using (B4) it ls straightfor-
ward to show that

&i(x) = c.i&I(x) + c.2&2(x) (& = 1 2). (B7)
and A = 4uv(dq)2 + O((dq) ), where v is given by (50).
Hence

Here, temporarily the Bloch functions P&& (x) and

(x) are designated by pi(x) and p2(x), corre-
spondingly. The coeKcients c~A. are determined from
the requirements P j(x; xi)@I(x)@2(xi) = 0 and

~gi(x)~ = l. They have the form

X/2

—i~/4
C~ j

+O((«)')

1)j—I i~/4

+O((«)')

1+ (—1)' ~ 'dq
. A p

—A,
2cufv[

1+ (—1)' ' 'dqA —A

2(u/v/

(Blo)

(Bll)
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where 8 =sgnv.
The last formulas lead to the important conclusion that

the states

y(op&ac)
( )

(op, ac)
( 1)nBZ (Cl)

g Bz (x) + iq Bz (x) (B12)

are orthogonal and diagonalize j(x;xi). But they are
exactly the states determined by (51). Hence one can
say that the soliton obtained in Sec. III B is an envelope
of the composite state (B12).

Now, for the chosen branch (52) one must use the for-
mula

- I I

&-"I' +
I

&-"I'0 =~ +V+ —4J
m m

(B13)

V = ) ) j (x; xi)@i(x)@i(x)

where 0 is the eigenvalue corresponding to the perturbed
eigelistate yBZ (x) + iyBZ (x),

[here a ' '
(n = 1, 2) play the role of the normalized

amplitudes of the atoms inside a cell]. Then it follows
from (ll) that

(op, ac)]2
[

(op, ac)]2 a a ' +a a ' =01 1 + 2 2

Equations (C2) allow one to introduce convenient
parametrization

(op, ac) (op, ac)
a& = COS Pop, ac& a2 = Sln uop, ac& (C3)

(n, 1)PBZ (n', 2) —t4Z (n, l)PBZ (n', 2)

where 8 p
= @ac + 2

——6. Now simPle algebra yields the
relations

= 2~Udq ——(A p+ A .)(dq)',op (B14)
1)n+n'

sin 26, (C4)

~F'( i) iF'( )~ (dq)
(n, 1)QBZ (n', 2) + QBZ (n, 1)QBZ (n', 2) = 0, (C5)

[V(')[' = -~r(") —iF (")~'(d )' (B15) (C6)

[the coefficients 1
'

being given by (54)] and g' means
that the sum does not include the harmonics with the
&equencies cu( p) and u( ').

Comparing (B13) and (B5) one immediately finds the
group velocity

n+1
[4»Z'(n ~)]' —[&BZ'(n ~)]' =

(n, 1)QBZ (n, 1) + QBZ (n, 2)QBZ (n, 2) = 0,

(C7)

(C8)
0' = v (B16)

and its dispersion
(n, 1)QBZ (n, 2) + QBZ (n, 1)QBZ (n —1, 2) = 0

(C9)

1 I 1+
2ld td —Ld

m m

I( ) I( )2+ I( )+ I(2) (B17)

APPENDIX C: THE CONSTANTS y AND y
IN THE CASES OF HOMOGENEOUS ON-SITE
AND NEAREST-NEIGHBOR INTERACTION

NONLINEARITIE8

[for the sake of convenience in the above formulas x is
replaced by the pair (n, a)].

For the next step one must take into account that
in J4(xi, ... ', x4) only elements corresponding to nearest
neighbors may difFer from zero and they are equal for
both neighbors of a given atom. Then it follows from
(C5), and (C6) that the term in the square brackets in
(59) is equal to zero unless the eigenfunctions correspond
to the same atom and hence

) ) ) 4(» ~ 4)~BZ'( S)&BZ'(X4)'

Here it is shown that under one of the following as-
sumptions: (i) The nonlinearity is originated by an
on-site potential equal for the both types of particles;
(ii) the nonlinear interactions exist only between nearest
neighbors and are the same for particles belonging to one
cell and to adjacent cells; the relations (63) are fulfilled.

To this end note that in the case of a diatomic lattice
the eigenfunction P (x) at the BZ edge allows represen-
tation

The equivalence of the last sum to zero is a consequence
of (C8), (C9).

Passing to the constant y one notes that due to
(C7) terms with o.s ——o.4 (and, respectively, ns ——n4,
since only nearest-neighbor interactions are taken into
account) give zero contribution after summing over one
cell. As a consequence of (C4) terms corresponding to
difFerent atoms in one cell (i.e. , with ns g n4) are can-
celled with each other. Thus y = Q.
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