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Evolution of the Liouville density of a chaotic system
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An area-preserving map of the unit sphere, consisting of alternating twists and turns, is mostly
chaotic. A Liouville density on that sphere is specified by means of its expansion into spherical
harmonics. That expansion initially necessitates only a finite number of basis functions. As the
dynamical mapping proceeds, it is found that the number of non-negligible coefficients increases
exponentially with the number of steps. This is in contrast to the behavior of a Schrodinger wave
function, which requires, for the analogous quantum system, a basis of fixed size.

PACS number(s): 05.45.+b

I. INTRODUCTION

Chaos is commonly associated with nonlinear dynam-
ics, and the elusiveness of quantum chaos is sometimes
attributed to the fact that Schrodinger s equation is lin-
ear. However, the difFerent behaviors of classical and
quantum systems cannot be explained so simply. Any
classical Hamiltonian motion can be described by means
of a (possibly singular) Liouville density, and the evolu-
tion of the latter obeys a linear equation, which can be
written as

i Of/Bt = Lf

Here f is a function of the q and p„, which are indepen-
dent variables parametrizing phase space, and I is the
Liouville operator, or Liouvillian,
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This operator is formally "Hermitian" (over a suitable
domain of Liouville functions f) so that the time evolu-
tion of f is a unitary mapping of phase space. Namely, if
there is another Liouville function g, which also satisfies
Eq. (2), the scalar product f f*g Q dq dp„ is invariant
in time. This is Koopman's theorem [1].

The essential difference between the Liouville equation
and the Schrodinger equation is that, in the generic non-
integrable case, the Liouvillian has a continuous spec-
trum, in which an infinite number of discrete lines may
be embedded [2]. Let U be the unitary operator that
generates the time evolution of the Liouville density. If
the dynamical system has a finite measure, U has at least
one eigenvalue equal to 1, corresponding to equilibrium.
Moreover, it can be proved [2] that, if the system is er-

godic, but not mixing, that eigenvalue is nondegenerate
and all the other eigenvalues of U form a subgroup of the
circle group. On the other hand, for a Inixing system,

which also has a single nondegenerate eigenvalue 1, the
rest of the spectrum is absolutely continuous. A generic
dynamical system may have some regions of phase space
that are subject to mixing, others that are only ergodic,
and still others that are not even ergodic. Such a system
is called "decomposable" [3]. In that case, the spectrum
of U is continuous, with an infinite number of discrete
lines embedded in it. In particular, the eigenvalue 1, and
possibly others, are degenerate.

These properties give rise to fundamental difFerences
between the evolution of Liouville densities and that of
quantum wave functions for bounded systems that have
discrete spectra in quantum theory. In particular, any
quantum state can always be represented, with arbitrary
accuracy, by a finite number of energy eigenstates. The
time evolution of a bounded quantum system therefore
is multiply periodic and will sooner or later have recur-
rences [4]. On the other hand, since the Liouville equa-
tion involves a continuous spectrum, the evolution of a
generic Liouville density cannot be represented by a fi-
nite number of terms. Thanks to this property, a Liou-
ville density is able to become more and more convoluted
with the passage of time and it may form intricate shapes
with exceedingly thin and long protuberances, something
that a quantum wave function cannot do with a conven-
tional Hamiltonian [5].

The purpose of this work is to apply to the Liouville
equation some of the mathematical techniques that are
standard in quantum mechanics. The Liouville density f
is expanded into a complete set of orthonormal functions

(Note that these u are not eigenfunctions of the Liou-
villian: the latter do not form a complete set, since part
of the spectrum is continuous. ) The Liouville equation
(1) becomes

idc /dt= ) L „c„,
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1063-651X/96/53(1)/284(7)/$06. 00 53 1996 The American Physical Society



53 EVOLUTION OF THE LIOUVILLE DENSITY OF A CHAOTIC SYSTEM

follows that g ~c ~2 is constant in time. However, even if
we start with a small number of nonvanishing c, it turns
out, as will be seen below, that as time passes, f spreads
over more and more u . A convenient quantitative mea-
sure of this spread is the entropylike expression [6]

II. THE TWIST AND TURN MAP

Consider a sequence of mappings of the unit sphere
x + y + z = 1, in which each step consists of a twist
by an angle a around the z axis (namely, every xy plane
turns by an angle az), followed by a 90' rigid rotation
around the y axis. The result of these consecutive twist
and turn operations is

x z )

y' = x sin(az) + y cos(az),
z' = —z cos(az) + y sin(az).

(6)

This map is obviously area preserving. It was extensively
investigated, both classically and in quantum mechanics,
by Haake, Kus, and Scharf [8], who called it a "kicked
top. " (It is not really like the motion of a rigid top be-
cause of the torsion. ) For low values of a, most classical
orbits are regular (that is, they are quasiperiodic). As a
increases, so does the &action of chaotic orbits, until for
a = 3 most of the sphere is visited by a single chaotic
orbit, as may be seen in Fig. 1. That figure also shows
the presence of "forbidden" areas, corresponding to reg-
ular regions located around fixed points of the map [9,

The intuitive meaning of S is that e is a rough indica-
tion of the number of basis vectors that are appreciably
involved in the expansion of f in Eq. (3). An appropri-
ate name for S could be "dimensional entropy" (or D
entropy). Another, roughly equivalent expression is the
"inverse participation factor" [7], namely, 1/ g [c„~

Since chaotic systems are characterized by the expo-
nential divergence of neighboring trajectories, we expect
that the number of basis functions needed for represent-
ing f (with a given level of accuracy) should also increase
exponentially with time. In other words, we expect S to
increase linearly with time for chaotic systems (in the
asymptotic limit of large t) On t. he other hand, for
regular systems, whose trajectories diverge linearly, we
expect an asymptotically logarithmic growth of S. Of
course, these are no more than qualitative expectations.
The actual growth laws have to be found by explicit cal-
culations.

In the following sections we shall investigate a sim-
ple dynamical model that has a well documented chaotic
behavior, and it will be seen that these guesses are qual-
itatively correct. That model involves a discrete time
variable, rather than a continuous time, in order to make
calculations simpler. Instead of the continuous time evo-
lution (4), there is a unitary transformation of the com-
ponents c„(explicitly given below).

FIG. 1. Area-preserving projection of the hemisphere y )
0. The 6gure shows 20 000 points belonging to a single chaotic
orbit. The empty regions are 6lled by regular orbits, not
shown here.

ln(a„/a, )hm (7)

Such a limit indeed exists for a generic chaotic orbit [ll,
12]. In the special case of a regular orbit, the pulsations
of the ellipse are bounded and therefore A = 0.

%'e have computed in this way the Lyapunov expo-
nents for 10 orbits with randomly chosen initial points.
Each orbit was terminated after 104 steps (this usually
happened when the orbit was regular) or, for chaotic or-
bits, when the major axis of the ellipse exceeded 10
(because of the inevitable loss of precision in any further
computation). The details of the calculations are given
in Appendix A and the results are displayed in Fig. 2.
About 14% of the orbits are regular. For the chaotic
ones, we obtained an average value (the uncertainty is
one standard deviation):

10]. All the following calculations refer to the case a = 3,
unless stated otherwise.

The map (6) has interesting symmetries. Given any
closed orbit, another closed orbit can be obtained by
changing the signs of both x and z. This symmetry will
be called R„(it is a rotation by 180' around the y axis).
Moreover, for any pair of distinct orbits related by B» it
is possible to obtain a third orbit (of twice the length) by
means of a 180 rotation of that pair of orbits around the
x axis. These symmetries have important consequences
for the classification of Liouville densities, as will be seen
in Sec. III.

A characteristic property of each orbit is its Lyapunov
exponent. In the present case, it may be defined as fol-
lows. Consider an infinitesimal circle drawn on the sphere
around the initial point of a fiducial orbit. As the map
proceeds, this infinitesimal circle is deformed into an in-
finitesimal ellipse, having the same area. The ellipse ro-
tates and stretches or contracts in an "erratic" way at
each step. Let a be the length of its semimajor axis af-
ter n steps. The I yapunov exponent (per step) is defined
as
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by virtue of dA' = dA. The mass density p thus behaves
as an incompressible Quid or as a Liouville density. We
shall henceforth call it by the latter name because Eq. (6)
can be considered as a canonical mapping, for which the
phase space is the unit sphere.

For the twist and turn map (6), these Liouville den-
sities may belong to three invariant symmetry classes,
according to their behavior under B„and B (namely,
180 rotations around the y and x axes, respectively).
For example, if p = I'(x, y, z, xyz) is a single valued
function of its four arguments, this p is even under B„
and R and is mapped by Eq. (9) onto another function
of the same type. Likewise, any p = yF(x, y, z, xyz) is
even under R„and odd under B and is mapped by (9)
onto a function of the same type. For instance, the func-
tion p = y has this property because

I I I

0.2 0,4
Lyapunov exponent

I

0.6

y -+ y' = x sin(az) + y cos(az)
xyz sin az= y cos(az) +
yz z (10)

FIG. 2. Distribution of Lyapunov exponents for 10 ran-
domly chosen orbits. Each bin of the histogram has width
10

In general, any p(x, y, z) can be written as the sum of
three terms, belonging to one of the symmetry classes
listed in Table i.

A natural way of expanding Liouville functions on the
unit sphere is the use of spherical harmonics

A = 0.346 + 0.071.

The dispersion in A is a numerical artifact, also ex-
plained in Appendix A. Ideally, A should have had a
sharp value, the same for all chaotic open orbits. This
dispersion &ee value can in principle be found by more
sophisticated methods [13], allowing one to follow an or-
bit for many more steps. However, this was not needed
for our purpose: the only reason that prompted us to
actually evaluate the Lyapunov exponents for many dif-
ferent orbits was that we found widely diferent D en-
tropies for difFerent symmetry classes (see Fig. 4 below).
We therefore checked the possible existence of two difFer-
ent categories of chaotic orbits. These would have been
revealed by two separate chaotic peaks in Fig. 2 (besides
the regular peak for A = 0). As we see no indication
of such a double peak, we can definitely rule out such a
possibility, which was quite unlikely anyway.

2l + 1 (1 —m)!
4' (I + m)!

Yi (0, $) = (—1) Yi™(0,$),

Yi (0&)= (—1) e' & Pi (cos 8),

(12)

where m ) 0 and Pi (cos8) are the associated Legendre
polynomials. The Yi (0, $) are othonormal, so that

C) —— Y)
* 0, po, dO, (13)

where the angles 0 and P are related to the Cartesian
coordinates in Eq. (6) in the usual way: x = sin 0 cos P,
etc.

We shall use the common (but not universal) sign con-
ventions [14, 15]

III. MAPPING OF LIOUVILLE DENSITIES

Instead of considering individual orbits, that is, map-
ping of points into points, a more general approach,
which gives instructive insights, is the mapping of Li-
ouville densities. Let us imagine that an infinitesimal
"mass" pdA (which may be positive or negative) is at-
tached to each area dA. Let us further assume that this
mass is conserved during the twists and turns of the unit
sphere, so that its density p obeys the linear law

TABLE I. Symmetry classes of Liouville functions.

R„
even
even
odd

R Functional form
even p = P(x, y, z, xyz)

xE~ (x, y, z, xyz) + zEq(x, y, z, xyz)

where dA = sin8d8dg. In particular, the total mass,
namely, f pdO = +4vrCpp is constant for our area-
preserving map. We shall henceforth ignore the trivial
Coo component and consider only the entropy of the other
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ones.
The nontrivial C~ transform as follows: during a

twist, 0 is constant, and

40

30-

P -+ P' = P+ a cos8.

We thus have p'(8, P + a cos 8) = p(8, P), or

(14)
C/}

20-

p'(8, P) = p(8, P —a cos 8),

whence
10-

C" = Y- *0, p0, —acoso dO, (16) I

10 20 30

twist angle

I

40 50

because dO' = dA. Substitution of (ll) into (16) then
gives

FIG. 3. Growth of the D entropy for a continuous twist,
as a function of the twist angle.

where the U.
&

are components of a unitary matrix

U(~) ymI (g y) ym(g y)
—iIIIaCose dqyl

An accurate method for computing U.
&

for large j and
I, is described in Appendix B.

We thus see that a twist leaves m invariant, but it
introduces all the l & ~m~ (with exponentially small co-
efficients for large l), while a rotation mixes different m
but leaves l invariant [16, 17]. This emergence of higher
and higher l occurs only in the classical twist and turn
map, which thus behaves in a quite different way &om
the corresponding quantum map [8, 9]. This is because
in quantum theory / has the meaning of total angular mo-
mentum and the latter is a constant of the motion under
a twist (which is generated by J, ), while the classical l
has no such dynamical meaning and therefore need not
be conserved.

Note that a pure twist is a regular motion: all the
orbits are closed circles around the z axis. We examined
the growth of 8, as a function of a continuous twist angle
a, for two maps starting with p proportional to x (odd
symmetry class) or to y (even-odd symmetry). These are
represented by initial states with

We checked the accuracy of our numerical calculations
by verifying that unitarity held at each step, with an
error less than 10 . To achieve this result, we had to
use a range of values ef l that increased by a factor 3.4
at each step. We thus had, at the fifth step, components
C~ with / up to 500. This implied that the rotation
matrices had all possible odd orders up to 1001 and twist
matrices had all orders up to 500. The next step would
have exceeded the capacity of our computer (or entailed
a severe loss of accuracy).

Figure 4 shows how S grows with the number of steps.
In the case a = 3, we considered two difFerent initial
Liouville densities, given by Eq. (19). These functions,
which belong to diferent symmetry classes, appear to
have roughly linear rates of growth of their D entropies,

+11 W +1,—1 1II ~2

respectively, and all other C~ ——0. Since di8'erent values
of m do not mix during a twist, the D entropy is the same
in beth cases. Figure 3 shows the result: the growth of
e is roughly linear, as expected. The slope, however,
appears to slewly decrease as the twist angle becomes
larger.

We now turn eur attention to the rotations of the unit
sphere. With spherical harmonics used as a basis, the
matrix representation of a 90 rotation is well known [16,
17]: the index / is not affected, and for each / the (2t+ 1)
components indexed by m undergo a unitary transforma-
tion. Appendix C explains how to construct accurately
these unitary matrices (we proceeded up to $ = 500).

odd

ass

0
0

I I I I I I I I I I I I

5 10

number of steps
15

FIG. 4. Growth of the D entropy for the twist and turn
map, for various values of the twist parameter a.
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as expected (with a small iiegative second derivative, as
in Fig. 3). Here the surprise is that these rates are man-
ifestly diferent &om each other. We must therefore con-
clude that the growth of the D entropy, contrary to the
Kolmogorov-Sinai entropy [11,12], is not related in a sim-
ple way to the Lyapunov exponents of individual orbits
because generic aperiodic orbits have no symmetry.

We also performed similar calculations for some lower
values of a. For a = 2, the twist and turn map is mostly
regular, but there still are small chaotic regions [8]. These
chaotic regions become almost invisible for a = 1.5 or
less. As Fig. 4 shows, for these low values of a the growth
of S is not uniform. Rather, S oscillates about a slowly
increasing average. The reason is that, as the chaotic
regions shrink, the projection of p over the discrete part
of the spectrum becomes more important. If only a few
eigenvectors are appreciably involved, their contribution
to p is almost periodic, and this results in an oscillatory
behavior of the D entropy.

We also found oscillations for a = 3, when we started
with an unsymmetrized f, for example, with Cii ——1 and
all other C~ ——0. These oscillations, however, are of a
completely diferent nature. They are caused by ordi-
nary interference between components of p belonging to
di8'erent symmetry classes and are similar to the familiar
"collapse and revival" phenomena reported in Ref. [8].

IV. CONCLUDING REMARKS

We found some results that were not unexpected, but
we also had several surprises for which we can oÃer no
explanation and which may perhaps be worth further in-
vestigation. There can be no doubt that, for a given
Liouvillian, the rate of growth of the D entropy depends
on the symmetry class of the Liouville density. There-
fore, contrary to the Kolmogorov-Sinai entropy [11,12],
the D-entropy is not directly related to the Lyapunov
exponent of classical trajectories.

Even more surprising is a quantitative comparison of
Figs. 3 and 4. The growth of S for a pure twist (which is
a regular mapping) is faster than its growth for a weakly
chaotic twist and turn map (with low a), when we com-
pare the total twist angle in the first case and the sum of
discontinuous twists of the discrete map. For example,
after ten steps with a = 1.5, we have S = 2.018, while,
for the same initial state (19), a pure twist of 15 rad gives
a larger entropy S = 2.740.

The initial motivation of this work was a search for the
existence of genuine quantum chaos, namely, quantum
wave functions whose complexity would increase expo-
nentially with time and whose long-range evolution would
therefore be uncomputable [18]. How to contruct such a
quantum chaotic system (with a continuous spectrum, of
course) will be discussed in a forthcoming paper [19].
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APPENDIX A: THE IYAPUNOV EXPONENT

Consider infinitesimal deviations x ~ x + e(, y ~
y + eg, and z -+ z+ eg, Rom a fiducial orbit of the map
(6). These deviations satisfy

(A1)

so as to lie on the surface of the sphere. We can also
define the tangential components of the vector ((,g, (),
namely,

u = (—y(+ xg)/Ql —z2, v = (/Ql —z2, (A2)

in the "east" and "north" directions, respectively.
Likewise, at the next step, let x' -+ x'+ e(', etc. Ne-

glecting terms of order e2 and higher, we obtain, from
Eq. (6),

i7' = ( sin(az) + q cos(az) —gaz',
(' = —( cos(az) + q sin(az) + (ay'.

(A3)

This set of equations is the linear dynamical law for the
evolution of the vector ((,g, (). We now want to know
how an infinitesimal "unit" circle, namely, a set of points
with initial components u = cosa. , v = sinn (where n
runs &om 0 to 2m), transforms into an ellipse (with the
same area). The asymptotic growth of the major axis of
this ellipse gives the Lyapunov exponent, as defined by
Eq. (7).

To find how this infinitesimal circle transforms, we
note that, by virtue of the linearity of (A3), if the ini-
tial components of a tangential vector are (cosn) and
(sinn), these components become, after a number of
steps, (Tii cos n + Ti2 sin n) and (T2i cos n + T22 sin n),
respectively, where the coefBcients Tzq are independent
of o.. It is therefore enough to consider two infinitesimal
tangent vectors having, initially, o. = 0 and vr/2. Their
evolution determines all the components of Tzq and the
length of the semimajor axis is then obtained by maxi-
mizing the expression

as a function of o.. The result after n steps is

[ + (
2 1)lj2]1/2 (A5)

where a' = g (Tzq) Finally, the Ly. apunov exponent
is given by Eq. (7), in the limit n ~ oo.

We must still explain the dispersion of the results
shown in Fig. 2. For this, we note that there is an infi-
nite number of closed (periodic) orbits having their own
"private" Lyapunov exponents, which are di8'erent from
the unique Lyapunov exponent of generic open chaotic
orbits. For example, the point (0,1,0) is invariant un-
der the mapping (6). This fixed point thus is by itself
an orbit of period one, for which it is easy to find the
eigenvalues of the linear transformation (A3). These are

r (n) = (Tii cos n + Ti2 sin a) + (T2i cos o; + T22 slil A)

(A4)
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[(a/2)2 —l]~~2 6 (a/2), giving A = 0.962, a result much
larger than the one in Eq. (8). Other unstable periodic
orbits also have widely different Lyapunov exponents.

There is an infinite number of these periodic orbits.
They are dense in phase space, even though they are a
set of measure zero among all possible orbits. Thus any
generic ergodic orbit has segments that are very close to
any one of these periodic orbits. In each such segment,
there is a different "local" A. As the ergod. ic orbit pro-
ceeds, it samples more and more vicinities of periodic or-
bits and in this way a definite average A emerges. Finding
A kom a single orbit therefore requires a very long one,
typically 105 steps. In our work, we did not attempt to
follow such a long orbit, which would have required spe-
cial techniques [13]. Instead, we relied on the fact that'a
mixing system is always ergodic, so that a time average
is equal to a phase space average: many evenly spread
short orbits give the same average result as a very long
one.

formulas are not convenient for numerical calculations
because each matrix element is given as the tiny sum of
a large number of huge terms with opposite signs. Only
a few elements with m = +j, or m close to +j, can easily
be obtained &om the general formula.

A much more eKcient way of obtaining the B matrix
for a 90' turn around the y axis is to use its very defini-
tion, namely, B~J B = J„or

J R=BJ,. (Gl)

With the standard representation, namely (J,)
mb and J real, this gives

[(j+ m) (j —m + 1)] ~ R~'),

+[(j + m+ 1) (j —m)] ~ R +~ „——2nR~~) . (C2)

Let us therefore define, for each j and n, a "vector" V
by

APPENDIX B: THE TWIST MATRIX

The evaluation of the matrix elements U
&

in Eq. (18)
is the procedure that consumes most of tke time in our
calculations. Each one of the indices j, 3, m may run up to
500. There are therefore many millions of different inte-
grals for which no analytic expression is known. These in-
tegrals are, for large values of their indices, rapidly vary-
ing functions of cos0, and a straightforward numerical
integration, with the level of accuracy that we wanted,
would be prohibitive.

We took advantage of the fact that a twist by a Gnite
angle a can be generated. by a sequence of infinitesimal
twists by an angle e, for which we can replace e ' "by
(1 imez) Thi—s entails . no loss of precision if me ( 10
when we com~ute with 16 significant digits. The matrix
elements U.

& (e) can be evaluated explicitly (see below)
and each matrix is then raised to the appropriate power.
For example, by taking e = 2 a, we merely have to
compute ( . ((U2) 2) . . )2, A; times.

We only explicitly need

Y '(0, P) YP (0, P) cos 0 dO

1
= const x P, (z) PP (z) z dz. (Bl)

—1

This expression is readily evaluated by using the identity

P, ( ) = [(~— +1)P, ( )+(j+ )P, l/(2j+1)
(B2)

and the orthogonality relations for associated. Legendre
polynomials [20].

APPENDIX C: THE ROTATION MATRIX

There are explicit formulas for the unitary rotation
matrices R [16, 17]. However, when j is large, these

(, ) (—1)" (j+ m)! (j —m)!
2~ (j+n)! (j —n)!

From the explicit formulas mentioned above [16, 17], it
can be seen that all the components of V are integers
and in particular V ~

= 1 and Vi ~
——2n. The recursion

relation (C2) thus becomes

(j —m+1) V z
—2nV + (j+m+1) V +z ——0.

(This equation also appeared as the last equation of
Ref. [9], unfortunately marred by a misprint. The cal-
culations in ref. [9] were correct. )

Even with the simple recursion formula (C4), it is not
trivial to obtain all the V for j ) 50 (when using dou-
ble precision floating point arithmetics) because the re-
cursion is unstable and small numerical errors grow ex-
ponentially. We therefore performed this calculation ex-
actly, using integer arithmetics, and we checked that the
resulting matrices were indeed unitary.

APPENDIX D: BASIS INDEPENDENCE

The dimensional entropy defined by Eq. (5) obviously
depends on the choice of the orthonormal basis (u
We shall now present a qualitative argument (not a for-
mal proof) that, for a reasonable choice of the basis, the
asymptotic growth of S is almost independent of the ba-
sis. By "reasonable" we mean that the construction of
the basis involves only a small amount of algorithmic in-
formation and in particular that it is independent of our
knowledge of the evolution of p. Indeed, if we consider
another reasonable basis (u j, the unitary matrix with
elements (u, v ) is a band matrix: only a finite number
of terms appreciably contribute to the normalization of
each one of the rows and columns of that matrix.

Consider now some p for which S, computed with the
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(p -) =).(p -)( - -). (DI)

basis (u„), is large. The number of non-negligible coef-
ficients (p, u ) that appreciably contribute to the expan-
sion of p is about e and typical values of [(p, u„)[ are
about e s. For another basis (u j, we have

This infinite sum effectively has only a finite number of
non-negligible terms, say b, because of the finite width of
the band matrix (u, v ). Consider now the asymptotic
hmit es )) b2 I.t follows from Eq. (Dl) that if [(p, u )]
is of the order ofe, the order of magnitude of ](p, e ) [

is about e ~+ " . Therefore, for finite b and S m oo, the
D entropies in the two bases have the same asymptotic
values.
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