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The relation between a conformal mapping and the geometrical features of the conformal lattice it
defines is analyzed. The field created by particles interacting via inverse power law forces and located in

the vortices of the conformal lattice is determined. The field of inertial forces within a rotating disk is

shown to fulfill the requirements, allowing the formation of a strictly conformal crystal. Elastic proper-
ties of the conformal crystals are analyzed: their elasticity is shown to be described by a unique elastic
modulus. The distortion of a strictly conformal crystal that is induced by a small deformation of the
external field is calculated.
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I. INTRQDUCTIQN Figure 1 shows one of the structures we observed;
keeping the terminology introduced in [1], we shall refer
to it as the gravity rainbow. Before analyzing the message
which nature sends us encoded in this picture, let us dis-
cuss the message we are given in a simpler experimental
situation.

When the box-coil setup is oriented horizontally, one
observes the spheres arranging themselves into imperfect,
polycrystalline structures. However, even a qualitative
analysis of these structures leads the observer to the con-
clusion that the rigorous solution to the problem of the
minimum energy structure within the bulk system of
two-dimensional (2D) softly repelling spheres is the per-
fect hexagonal lattice; hard rectangular boundary condi-
tions (forcing formation of a few di6'erently oriented
grains) and the unsuitable number of spheres (resulting in
formation of vacancies) do not allow us to observe the
solution in its pure form. The perfect, hexagonal lattice
could be experimentally observed only if one would be
able to design periodic boundary conditions. In a labora-
tory we do not know how to do it. In a computer simula-
tion the problem is easily solved.

Now, let us return to the tilted setup case. Figure 1

presents one of the structures revealed experimentally in
this situation. The tilt of the experimental setup makes
the gravitational field enter the plane, within which the
spheres are allowed to move. This forces the system to
change considerably its density over a very short dis-
tance. As a result, as discussed above, a perfect hexago-
nal lattice solution is no longer valid. Apparently, as
seen in the figure, the new solution found by nature is
diferent. It is the aim of the present paper to define it
and indicate when, at which conditions it could be ob-
served. The laboratory experiments we performed pro-
vide but a hint: where, among which geometrical objects
one should be searching. A computer experiment should
allow us to create a situation when the new perfect solu-
tion could be simulated.

To start with, let us list the basic features of the experi-
mentally observed gravity rainbow structure presented in
Fig. l.

A. Gravity rainbow

Some years ago, experimenting with a system of mag-
netized spheres, we observed an interesting structure [1]
(see Fig. 1). The experiment was performed as follows.
A few hundred steel spheres, let us denote the exact num-
ber of them by X, of the diameter P = 1 mm were placed
within a thin, rectangular box whose lower and upper
walls were made of glass. The box containing the spheres
was placed within a magnetic field 0 produced by a pair
of coils [2] (see Fig. 2). The field was perpendicular to the
plane of the box, so the magnetic moments p;,
i =1,2, . . . , %induced in each of the spheres made them
repel each other with forces proportional to H and in-
versely proportional to the fourth power of the distance
r; between them. The box-coil setup was slightly tilted
and the system was allowed, with the active help of the
observer (delicate shaking), to find a minimum energy
structure.

FIG. 1. Gravity rainbow: the conformal crystal observed in

the system of magnetized spheres.
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boundary
box

FICz. 2. Ex erimental setu~ . p etup. The steel spheres are contained within the Aat boundary box whose u er
l Th b l d th th t fi ld d

jector which can be tilted.
agne ic e pro uced by a pair of coils. Theagne i d b p . e i ox-coils setup is placed on the overhead pro-

I At the bottom of the box, the particles are arranged
in a closely packed, hexagonal lattice whose orientation is
determined by the hard bottom wall of the b d b

(2) Ab ove the closely packed part, the spheres are ar-
ranged into a loose structure, which apart from places
where apparently some defects are frozen in, is locally
hexagonal (The . hexagons are not strictly regular
though. )

I'3) II,

'

) In contrast to ihe case of a uniform hexagonal lat-
tice, the orientation of the hexagonal cells from the loose
part of the structure, larger at the top of the sample and
smaller at its bbottom, changes continuously, in particular
in the horizontal direction. As a result, the nearest
neighbor bonds form three sets of curued, archlike lines
which cross each other at angles uery close to ~/3. (The
curved lines are best seen when Fig. 1 is watched at a
small angle. )

The feature of the gravity rainbow structure listed as
( ) results, obviously, from the presence of the hard core
within the interparticle interaction and thus cannot be
seen as a typical feature of the perfect solution we are
looking for. Most of the defects mentioned in point (2)
are found near the close packed bottom layer. Thus, they
also result from the presence of a hard core within the in-
teraction potential and/or the hard rectangular boundary
conditions.

It was the observation specified in point (3) that has
proven to be essentia1. The fact that the curved atomic
lines cross each other at ~/3 angle, which is characteris-
tic of the perfect hexagonal lattice, lead us to look for the

pings of' a uniform hexagonal lattice. In the
'

1

case of the gravity rainbow structure shown in Fig. 1, the
complex logarithm has been indicated as the most prob-
able one [l]. Below, we discuss the validity of this conjec-
ture within a more general context.

8. Conformal lattices and conformal crystals

The experimentally found gravity rainbow structure
points to one particular conformal mapping among

*

mong ITlany
o er possible ones. Other conformal mappings have
proven their usefulness in a study of spiral patterns ob-
served in the experiments on drops of magnetic fluids [3
Why not check the properties of all conformal mappinapplngs
from the point of view of their pos bl 1 b'1'

the problem of the minimum energy structure of 20 crys-
tals submerged in external fields'? %'e already addressed
the question in our previous paper [4]. There remain,

owever, many points to be clarified wh' h d
'

h
present paper.

To avoid possible ambiguities, let us define three basic
notions we shall be using.

e preserv1Ilg, ITlap-i) Consider a conformal, i.e. angle pres
ping f of a plane domain D onto a plane domain D'. Let
PL be a perio ic, discrete, two-dimensional set f '

t
e onging to D. (Thus, PL is a piece of a 20 lattice. ) The

image CL= f(PL) belongs to D' We call it th. e conformal
lattice (CL). The conformal lattic

'
th

geometrical object, independent of any physical realiza-
tion.

jj On the other hand, we call the strictly conformal
cr stal (SCC ays a ), a physical system consisting of particles lo-
cated on the sites of a CL. In what follows we restrict

g roug power lawourselves to the particles interactin th h
ore es.

jjj As we shall see, the physical conditions at which
one could observe a SCC are di%cult to fulfill. As a
consequence, the structure of a real set of particles (sub-
merged in an external field) is very likely to deviate some-
what from that of a SCC. Systems of this kind will be re-
ferred to as conformal crystals (CC) Th e expenmentally
observed gravity rainbow structure makes a good exam-
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pie of a CC.
Our main tasks are the following.
(1) Analyze the relation between a given conformal

mapping and the geometrical features of the conformal
lattice it defines, in particular, the spatial distribution of
its density and the orientation of its cells.

(2) Consider a strictly conformal crystal and determine
the total force (stemming from the interparticle interac-
tions) acting on each of its particles.

(3) Determine the shape of the external field which
would keep the SCC considered above in a stable equilib-
rium.

(4) Determine the relation between the actual equilibri-
um structure, [i.e., CC, induced by a force field, which
deviates from the exact field defined in point (3)] and the
initial SCC.

The last question may seem to be hazy. In fact, as we
shall demonstrate in Sec. IV, when the external force field
exhibits a precise symmetry, question (4) finds a definite
answer.

II. PROPERTIES OF STRICTLY CONI ORMAL
CRYSTALS

A. Description of conformal lattices

Bu Bv Bu Bv

Bx By
'

By Bx
(3)

are fulfilled, which we assume to hold in the definition
domains of PL and CL. This means that (1) and its
derivatives of any order can always be inverted in these
domains.

As a consequence of (1) and (3), the image of two
neighboring points of PL separated by the distance
ds, = (dx +dy )'~ consists of two points of CL at a dis-
tance ds =(du +du )'~ given by

ds
w

d 2

dz
(4)

The derivative of w with respect to z

(w)= dw

dz

is still an analytic function; it is only its modulus that
enters (4) what is a direct consequence of the Cauchy re-
lations.

Let us now describe, in brief, the arguments given in
Ref. [4] why the pointlike particles interacting through
isotropic, power law forces should arrange themselves

As mentioned above, we consider the conformal lattice
(CL) as the image through a conformal map

w =w(z),

of a perfect periodic lattice PL. PL and CL are discrete
sets of points belonging to the complex z and w planes

z=x+iy &PL, w=u+ivECL .

w(z) is conformal if and only if w is an analytic function
of z, i.e., if and only if the Cauchy relations

into a conformal lattice. Assume first that the external
force does not contain any characteristic length. As the
interaction itself does not provide any parameter of the
length dimension, the only relevant length parameter is
the size S of the system. Therefore, taking into account
the isotropy of the interaction force, one cannot expect
the relation between ds and ds, to deviate much from
(4). (~dw/dz~ depends only on z or, what is equivalent,
on w [4].) As soon as a new length enters the description,
the arguments given above are no longer valid. For in-
stance, in the case of the gravity rainbow, the close-
packed domain needs in its description a second charac-
teristic length —the diameter of the spheres (which is ir-
relevant in the loose-packed part of the structure). Thus
to fulfill the assumptions, under which a conformal lat-
tice can be expected, the close-packed region must be lo-
cated outside the boundary of the system taken into can-
sideration.

Returning to (4), we notice that this relation shows
that ~dw/dz~ is a measure of a local dilation at a w be-
longing to the CL. Assuming that the PL under con-
sideration is hexagonal, it contains 2/V'3b lattice sites
per unit area, where 6 is the distance between the nearest
neighbor sites of the PL. As a consequence, the locally
hexagonal lattice CL contains

2
2 dzn=— (6)

v'3b ' dw

lattice sites per unit area. Notice that ~dw/dz
~

is always
finite, unless explicitly stated. This is a direct conse-
quence of the fact that w(z) can be inverted over the
domains of PL and CL.

The z plane has no physical realization, so the length b
is a priori arbitrary. In order to simplify the future dis-
cussion of the gravity rainbow structure, we put b equal
to the diameter of the spheres used in the experiment.
Thus, the lattice PL is locally identical with the close-
packed domain of the gravity rainbow.

Consider now the analytical function g(w), which we
write as

g(w) = g~e'~ .

Its argument y(w) has a simple interpretation. Let b,z be
a vector connecting two neighboring points of the PL and
let b, w be its image through w(z). Writing

b,z =
~
b.z e

bw= [b,w fe'

we obviously have

~Awoke =hw= bz+O(hz )
dz

As a consequence, y directly yields the angle a hexagon
of the CL has been turned with respect to the corre-
sponding hexagon of the PL.

Summing up, one can say that the analytical function
g(w ) contains all information about the geometry of the
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conformal lattice around w. Following the notation in-
troduced in Ref. [4], g(w) is the complex distortion in the
neighborhood of w, lg(w)l is the dilation scale in the
neighborhood of w, y(w) is the local orientation of the
lattice in the neighborhood of w, n(w) is the specijtc num-
ber of particles, or the density.

]&F(w) "F(w)

B. Strictly conformal crystals

Starting from a CL, we transform it into a conformal
crystal by setting a pointlike particle on each of its sites.
Two particles, say i and j, are assumed to interact
through the repulsive force, which with the use of the
complex variable notation can be written as

W W;

J
l l

k+2 '~l
Wj WI.

(10)

where k is a fixed exponent and A is a positive coupling
constant. (F, is the force which particle ith exerts on
particle jth. ) However in order to enlarge the family of
models described by the concept of conformal crystal, we
may allow A to vary slowly over distances large in com-
parison with the interparticle distance, i.e., b dw /dz l. In
the case of the gravity rainbow, 3 ~ H, thus, if H is not
strictly uniform, A itself is no longer constant. In what
follows, unless explicitly stated, A is assumed to be a real
constant. Concerning (10), it is worth noticing that
despite its complex nature, F, . is obviously not an
analytical function.

Let us now analyze the total force F(w) which the par-
ticles located at the vortices I w( I, 1=1,2, . . . , 6=—0, of a
conformally transformed hexagon exert on the particle
located in the image w of its center. See. Fig. 3. (The
vortices and the center of the original hexagon we denote,
respectively, by I zt J, l = 1,2, . . . , 6, and z.)

Thus, we have

w=w(z), wz=w(z, ), l=l, 2, . . . , 6,
where

In what follows we assume

b—«1.
As a consequence, defining

w
2y= = le)le'&

dz2

we can write, using (12),

1 cx( b 2l cx(
2

w( —w =bpe + 2)e +

(16)

(17)

k+2

lw, —wl" +'

FIG. 3. Forces between the particles located at the vortices

[ w &, wz, . . . , w6 I of conformally transformed hexagons and the
particle located at the image w of their centers. k=3. Confor-
mally transformed sides of the hexagons are plotted with con-
tinuous lines. Note that their curved sides meet at angles equal
to 2m/3. The left and right hand figures correspond to different
orientations of the hexagons with respect to the direction of the
resulting force.

and

ia(
z1 =z+be (12)

+ ~ ~ ~

k+2
2

cos(a, —t(j+(p)

l
CX 1 (13)

Let r be a typical characteristic variation length, i.e., a
distance in the z plane over which the function w (z)
changes appreciably:

w w1
(I) w ~w i

l

k+2 (I) (I)
~w

—w 1

(18)

The force F(1~, which a particle located at w1 exerts on
the particle located at w equals

dw 1

dz r
(14) thus, the total force Fh,„due to all particles located on

the hexagon (w), w2, . . . , w6) is given by

6

hex g (t)
1=1 1=1

@+1
i(n) +y) b 1211 (a& (P)+

1 — b cos(a, +g —y) +k+2
lel

(19)
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i al 6 pi+I
Because +6&,e '=g&, e '=0 the leading nonvanish-

inlg term corresponds to the product
e ' cos(ar+ y f—).

dz dz . d z dz=l
Bv dw dw dw dw

C. C. (26)

k+2 I(,a, +P)F„,„=A „„gcos(a, +g y)—e ' +. . .
Thus using (7), (16), (21), and (22), one finally gets

p I g I t'(2p —ti) (27)

=A — ~ e' ~ ~'[I+O(b/r)] .
bk glk+2

(20) Comparing (27) with (20), one notices that Fh,„can be ex-
pressed in a much more compact form:

Notice, that, if the nearest neighbors of the particle locat-
ed at z were located on the vortices of a regular polygon
with n sides, the corresponding force E„,„in the w plane
would simply equal (n/6)Fh, „(assuming that their dis-
tance to z would still be given by b)

(@+2) 3I"+ '~

hex k (p+ p)/ p2
(28)

where a is a vector with Cartesian components a„and a, :

a =(a„,a, ) . (29)
C. InAuenee of the orientation

of the hexagon

Bn . Btt
Tn = +i

Bu Bv

Using (6) we get

b'&3 t3 dz dz

2 Bu dw dw

dz dz+l
Bv dw dw

(21)

(22)

a * being the complex conjugate of a. Now
)fc

dz dz 8w d z dz
O'Ll dw dw Bu dw dw

+c.c.

d z dz
dw

+C.C. (23)

d z d dz dz d dz
Gw dw dw dz dw

w dw

dz dz
(24)

because

Both y and g enter (20). As a consequence, one should
have the feeling that Eh,„depends on the orientation y of
the hexagon itself. On the other hand, this dependence
would be surprising since changing the orientation of the
hexagon in the z plane (i.e., replacing each a& with
a&+ao, where ao is an arbitrary constant) does not
change Fh„. In order to clear up the matter we shall
rewrite (20) with the help of the density gradient of the
SCC.

Let us define the density gradient as a complex number
using the same construction we used defining the force
Eh„=Eh„+iEh,„.

{28) shows that, apart from a purely numerical factor,
Eh„depends only on the coupling constant 2 and the
gradient of the density to the k/2 power.

Equation (28) takes into account the forces exerted on
the central particle but by its six nearest neighbors. Will
the result change if one takes into account the forces in-
duced by the next (and so on. . . ) nearest neighbors'

To answer the question, let us notice two facts. The set
of all particles surrounding the central one can be decom-
posed into hexagonal subsets, i.e., 6-element subsets,
whose members are located in vortices of hexagons (of
different sizes and orientations but a common center).
On the other hand, analyzing (28), one can see that what
enters Eh„ is only the global structure of the SCC—the
local orientation of the surrounding hexagon has no
inhuence on it. Thus the contribution of any of the hex-
agonal subsets of neighboring particles to the force acting
on the central particle located at a given w(z) will be
given by an appropriately rescaled formula (28); the scal-
ing factor depending on the size of the hexagon.

To find a simple analytical estimation of the total con-
tribution of the hexagonal subsets, we group the particles
surrounding the central one into hexagonal families H&,
Hp H3 . as shown in Fig. 4. Family H

&
contains but

one hexagonal subset —the above considered nearest
neighbors of the central particle —its contribution to the
total force F'"' acting on the central particle equals Fh, „
as given by (28). Family H2 contains two subsets: parti-
cles of one of them are located at a distance &3b from
the central particle, while particles from the other subset
are distant by 2b from it. Their contributions to the total
force are equal, respectively, (1/b 3" )F„,„and
(1/b "2")Fh,„. In general, family H„contains n hexago-
nal subsets. Particles belonging to the subsets of a family
H„, n )2, are not farther than nb and not closer than
n {&3/2)b from the central particle. Each of the hexago-
nal subsets provides to the total force a contribution not
larger than [1/b (n v'3/2)" ]Fh„. Thus, denoting by
f(k) the factor by which the total force F'"' is larger than

(2S)
F int (30)

In the same way
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We know that y describes the orientation of the hexa-
gons in the w plane. On the other hand, we know that

~ g~

cannot vanish (Sec. II A). We can therefore write the
Cauchy conditions as

Bu Bv
(36)

(

~q'
BU BU

They hold without restrictions in the whole domain of in-
terest. Now, Eq. (32) can be written as

F„=kAJ(k)

F„=—kA J(k)
(37)

FIG. 4. Decomposition of the neighbors of the central parti-
cle into families H„, n =1,2, 3, . . . . Lower part of the figure
shows three hexagonal subsets which belong to the H3 family.

In geometrical terms, the meaning of (37) is that in the
domain of the w plane, where the strictly conformal crys-
tal is defined, the lines of the constant phase, y=const,
coincide with the integral trajectories of

k

1(f(k)(1+ „+ „+ g n' =g(k) .

dv d'll

F F„
On the other hand, (36) leads to

(38)

Thus, in view of (28) we simply write

F int gJ(k)g(& k/2)

where

3(k +4)/4

(k+2)n

(31)

(32)

(33)

= a' a2
b, ln/g/ = ln/g[ + ln/g =0 .

0 Bv
(39)

which in view of (32) can be rewritten as

(b, is the two-dimensional Laplace operator. ) Because of
(6), (39) is equivalent to

b, ln(n) =0,

For k ) 2, [i.e., for k values for which g(k) is convergent]
J(k) is a monotonically decaying function of k V. F int

k/2
=0. (41)

J(3)=3.879. . . ,

J(4)=2.311. . . ,

J(~ )=0 .

(34)

Let us note that in the case of a system containing a finite
number of particles the sum found in the definition of
g(k), Eq. (31), should also be finite. Coefficients J(k)
modified in such a way will be used in Secs. II E and II F.

Equations (40) and (41) bring the answer to the question
formulated at the beginning of this section. They express
conditions which the density and internal force fields
must fulfill to stay in accordance with the analyticity of
the conformal mapping which defines them. The condi-
tions are of vital importance for the theoretical analysis
of any experimentally observed structure. To put the
structure of a strictly conformal crystal into a mechanical
equilibrium& one has to equilibrate F'"' with an external
force fie

D. Supplementary condition F 1Ilt+F ext 0 (42)

~g~e'+=/(w) =(an analytical function) . (35)

Relation (32) is very simple. However, it was derived
under the assumption that w(z) (and thus dw/dz as well)
is an analytical function. As n explicitly depends on
dm /dz and F '"' explicitly depends on n, a question arises,
to which conditions is the condition of analyticity of w(z)
equivalent as far as n and F '"' themselves are concerned.

Apart from a constant factor, n =
~g~ [Eq. (6)]. Now,

there must be some real function &p(tU ) such that

F '"'= AJ(k)V(n" ) (43a)

F ext
V.

k/2
=0. (43b)

As shown in the next sections, Eqs. (43a) and(43b) prove
to be very useful in the analysis of SCCs formed in exter-
nal fields of diferent symmetries.

Thus in terms of the external force field F '"", Eqs. (32)
and (41) can be rewritten as
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E. Strictly conformal crystals in external fields
of a planar symmetry

Fext F —(0 F ) (44)

As a consequence of conditions (40) and (43), which the
external field must fulfill to stay in accordance with the
assumed analyticity of the z —+ w mapping, we have

k/2 0au"

F = —AJ(k) (n"a
Bv

(45)

(46)

One of the conclusions to which Eqs. (45) and (46) lead is
that the only component I' of the external field is al-
lowed to vary but along the vertical v axis, i.e., the field
F '"' as a whole must have a planar symmetry. (The grav-
ity rainbow structure we found experimentally was
formed within the uniform gravitational fields. Thus, if
the gravity rainbow is to be seen as a conformal crystal,
its strictly conformal analog should belong to the planar
symmetry class we are discussing. ) Because of Eq. (40) we
have

a2
inn =0,

Bv

which is equivalent to

(47)

Considerations presented above are valid in the general
case of any SCC, i.e., a strictly conformal crysta1 defined
by any conformal transformation. Below we shall discuss
in more detail the particular class of those SCCs which
can be equilibrated with external fields whose lines of
forces are parallel to a unique direction which we choose
as the v axis. In what follows we shall refer to this direc-
tion as vertical; the direction of the perpendicular u axis
will be referred to as horizontal. Thus we have

conformal crystals can be observed in a laboratory exper-
iment, let us assume that the SCC under consideration is
contained within a hard boundary box whose side walls
(located, respectively, at u =0 and u =L) are vertical.
(Strictly speaking, hard boundary conditions are not al-
lowed in the case of an SCC—one should rather see them
as walls which induce required orientations of the adja-
cent hexagonal cells of the SCC under consideration. ) In
such boundary conditions, orientation of those hexagonal
cells of the SCC, which are located at u =0 and u =I.,
has to be taken equal to some integer multiple of ~/3.
As a result, the variation of the orientation y along the
horizontal u axis must obey the following condition:

y(L) —y(0) =—
2

7T= ——I
3

(51)

l being an arbitrary integer. Thus the vertical density
profile of the SCC

n ( &)— e
—(2m(/3L )v2

&3b2

whose value at v =0

(52)

n(0)= 2

3b
(53)

The v =0 horizontal line acquires a physical meaning if,
crossing once more the borders of the realm of strictly
conformal crystals, we assume that, as it happens in a
real experiment, the inverse power law particles, from
which the SCC crystal is made, contain a hard core of di-
ameter b Recallin. g that 2/3/3b is equal to the density
at which the hard-core particles become close packed, we
find that v =0 is the horizontal boundary below which
the conformal crystal turns into the close-packed one,
and thus, below which (52) loses its validity.

The complex distortion of the SCCs equals

n( U)=n(0)e (48)
—(I'~l /3L, ) W=e

dz

and then

+g Ak—J(k) e [n (0) ]k/2 —(pk/2)v
2

(49)

Btp d d
in~/~ = — ln(n ' )= ——.

BR dv dv 2
(50)

To get as close as possible to the conditions under which

P is a positive constant the value of which stems from the
boundary conditions. Experimental implications of Eq.
(40) are rather discouraging: to equilibrate a SCC of the
planar symmetry, the external force field must decay ex-
ponentially with height. In the experiments we per-
formed, fortunately before Eq. (40) was found, the exter-
nal (gravitational) field was constant. In spite of that, the
structure we observed displayed basic features of a planar
symmetric SCC, in particular it was clearly locally hexag-
onal what led us to take into consideration conformal
m.aps. Analysis of the structures formed in fields, which
do not fulfill Eq. (40), is an interesting problem. We ana-
lyze it in Sec. IV. Equation (36) can be rewritten as

FIG. 5. Structure of a SCC formed in the external field of a
planar symmetry. The structure is the image of a uniform hex-
agonal lattice mapped via the conformal mapping (55).
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Integrating, we find the form of the conformal mapping
which describes the particular kind of a SCC which can
be equilibrated with a gravitational field of the shape of
defined by (44)

0.5
k=3
j(3;5)=3.317

1 . ml
w = 1n(iaz), a=

ie 3L
(55)
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Figure 5 shows the conformal lattice described by Eq.
(55).

The validity of the solution found above has been
checked numerically. To make the test more informative
we assumed that the system is cut from below by a hard
wall and that at the wall the density of the SCC reaches
its close-packed limit value. See Fig. 6(a). The discon-
tinuity introduced into the SCC by the cut strongly per-
turbs the field of interparticle forces. We discuss the
problem in more detail below, for the case of the SCC
formed within the inertial field of a rotating disk.

The exponent k of the inverse power law via which the
particles interact with each other was put equal to 3
(dipole-dipole interaction). Then, the total force acting
on each of the particles was found numerically. Figure
6(b) presents the result.

In Fig. 7 the vertical components of the forces shown

hard wall

FIG. 7. The vertical component of the total force acting on
each of the particles shown in Fig. 6 versus its v coordinate.
The large, negative of forces acting on particles close to the
hard wall are not plotted.

in Fig. 6(b) were plotted versus v. As expected, in the vi-
cinity of the hard wall the numerically found values devi-
ate strongly from those predicted by Eq. (49). Results of
the simple test we performed show clearly that the equili-
bration of a finite conformal crystal will not be a simple
task. The long range of the interparticle interaction re-
sults in strong boundary effects which certainly perturb
the conformal lattice. Another problem, which needs an
explanation, is why in the conditions of a constant field,
which from the point of view of the theory we developed
is of a wrong shape, we did observe in the laboratory a
structure, which is so similar to the SCC. A partial
answer to it is given in Sec. IV.

I. Strictly conformal crystals and conformal crystals
on a rotating disk

Let us consider the case of the particular force field
within which the particles of mass m are immersed when
located on a disk rotating with a constant angular veloci-
ty co

F, =me@ R, (56)

0j 4
4 4

4

4 4 4 4
l a s I

where R is a vector whose origin coincides with the
center of a rotating disk. (& =

~

w ~.)

We now look for a conformal map w =w(z) such that
the SCC (i.e., the system of particles interacting via in-
verse power forces located in vortices of the conformal
lattice), which the map defines, will stay in mechanical
equilibrium when immersed in the external field given by
(56).

The equilibrium conditions [(43a) and (43b)j lead to
R =J(k) [n" (R)],

A dR
(57)

FIG. 6. (a) Configuration of a planar SCC cut from below by
a hard wall. (b) Total forces acting on each of the particles
shown in (a).

d R =0. (5&)
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We assume in what follows that n '~ (0)=0. In this case,
Eq. (58) is a mere consequence of Eq. (57): the supple-
mentary condition a SCC has to obey is automaticall
fulfilled. Equation (57) leads to

ica y

TABLE I. List of possible strictly conforrnal crystals formed
on a rotating disk.

Local symmetry Power law exponent Disorientation number
of the lattice k I

so that

b 3

2 2AJ(k)

2/k
4xkR (&9)

Hexagonal 1 (Coulomb interaction)
2

3 (dipole-dipole)

g(w) = 2aJ(k) 2

m Q7

Square 1 (Coulomb interaction)
2

3 (dipole-dipole)

—8

no solution

2aJ(k)
me@

1/2
2 ~ —2/k —i 2N/k

@ being the argument of m so that it coincides with the
angular variable of the polar coordinate system.

Analyzing (60) one finds the general form of the con-
formal mapping which describes possible SCCs formed in
the inertial force Aeld of the rotating disk

k/(k +2) (61)

In Sec. IIA we assumed that w=w(z) can be inverted
anywhere in the domain of the definition of the PL and
the CL. As a consequence, we shall assume that m=O
and z =O are excluded from the definition domains.
Moreover, if the inverse mapping z =z(w) has to be one-
to-one, we must deAne the PL on the Riemanian surface
around z =0.

The boundary condition we demand is as follows: the
orientation y must change by an integer multiple of a/3
when 4& increases by 2'. (This condition is valid for a
conformal lattice of a locally hexagonal symmetry. For a
locally square conformal lattice, one should demand a
change by an integer multiple of ~/2. ) With such a
boundary condition there are no crystallographic defects
throughout the disk. Now, (60) implies

one Ands that the density of such a crystal drops to zero
in the center of the disk. Locally hexagonal conformal
lattices defined by Eq. (61) are shown in Fig. 8.

Looking for a possible experimental setup, within
which a conformal crystal of the type discussed above
could be observed, we encounter a problem of the bound-
ary box. The most natural boundary, a hard (circular)
wall located at a radius Rb, is not best, since it does not
correspond to any of the constant phase lines. Thus per-
forming an experiment within such a circular boundary
box one should expect formation of defects in its vicinit .
Th e situation is even worse than in the case of the lanar

symmetry field, since there a hard bottom wall, althou h
be'ing neither a constant phase line, allows at least forma-
tion of a close packed structure. ) Below, we present re-
sults of a simple numerical simulation of a SCC within
such a circular boundary box.

Figure 9(a) presents the initial configuration of X=600
particles within a circular boundary box. The
configuration is cut out from an infinite conformal lattice
defined by Eq. (61). We assume that the diameter b of
their hard core equals 1, and that their mass m =1. The
radius of the box was set to such a value R& = 16.8 that at
the Axed X, the particles which touch the boundary wall,

(62)

In other words, any rotation AC? around the center of the
disk induces a disorientation Ap (a change of the orienta-
tion), which is of the opposite sign and proportional to

The conformal lattice will be, as demanded, free of
any defect provided

b,y(2~) =I—
3

(63)

The integer I is the disorientation number. Comparison
of (62) and (63) shows that I is negative and it depends on
the inverse power law exponent k [see Eq. (10)]. Not get-
ting into the problem of stability, we can now list the
types of the strictly conformal crystals of the locally hex-
agonal and square symmetry which can be formed in the
inertial force field on a rotating disk. See Table I. Table
I shows that the structure of the SCC formed on a rotat-
ing disk is basically determined by the value of the ex-
ponent k. Analyzing the physical meaning of Eq. (61)

~~)@5k

w +i

FICx. 8. Locally hexagonal conformal lattices de6ned by
mapping (61) for k = 1, 2, 3, and 4.
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FIG. 9. (a) Initial configuration: a piece of a SCC. (b) Final
configuration: a conformal crystal.

also touch their neighbors.
Assuming that the particles interact with each other

via forces given by Eq. (10) with k =3 and A = 1, we cal-
culated numerically the total force acting on each parti-
cle. The forces are shown in Fig. 10(a).

For particles located close to the box center (i.e., far
from the boundary wall), the forces are directed to a
great accuracy towards the center of the disk, their mag-
nitude growing with the distance from the center. Closer
to the boundary, the forces diminish and eventually
change their direction. Such is the result of the discon-
tinuity introduced within the SCC by a 6nite boundary
box. To check the accuracy of the theoretical predictions
presented above, we plotted the magnitudes of calculated
forces versus the radial coordinate of the particles see
Fig. 11.

The excellent accord with theoretical predictions, ob-
served for particles located close to the center of the box,
is obtained for a value J(k) =3.317, which one finds lim-
iting the summation from Eq. (31) but to 5. (The finite
size of the considered sample well justifies the choice. )

Putting the circular box into steady rotation around its
center allows one to compensate the interparticle forces

~~~' ~~~+&g /

)1Ilt

1I
r

I

3]I 1

4 4 I

(a) (b)

FIG. 10. (a) The field of interparticle forces calculated for the
initial configuration shown in Fig. 9. (b) Total (interparticle +
centrifugal) forces calculated for the angular velocity of the disk
co —0. 172.

FIG. 11. The magnitude of forces acting on the particles
shown in Fig. 10(a) plotted versus their radial coordinate. The
dotted line presents the theoretically predicted dependence (val-
id for an infinite crystal) with J(k) =3.317. k =3, see text.

with the centrifugal force. For an infinite crystal, at a
properly chosen angular velocity, the compensation
would be complete for all particles. In the finite case, we
consider, this is obviously no longer possible. Figure
10(b) shows the result of such an attempt, with the angu-
lar velocity of the disk rotation chosen in such a manner,
that the interparticle forces acting on the particles closest
to the disk center are fully equilibrated. Obviously, the
particles which at co=0 were already pressed against the
boundary wall, are now pressed against it even stronger.

It is interesting to check, if the conformal structure
does not break down, when the particles, which are not
equilibrated by the centrifugal force are allowed to move.
Below we present results of such a simple numerical ex-
periment. Its rules were as follows.

(1) To prevent formation of unnecessary defects we as-
sumed that the boundary wall is sticky, i.e., each particle
which touched it became immobilized.

(2) All other particles were allowed to move freely in
the directions and with velocities determined by the total
forces which act on them. The interparticle forces were
calculated by summing up forces stemming from particles
found within the range of five diameters around the parti-
cle in question.

(3) Overlappings, which occurred as a result of this
procedure, were removed simply by pushing the overlap-
ping particles apart.

Figure 9(b) presents the final configuration obtained in
a computer experiment carried out according to these
simple rules at co=0. 163, i.e., slightly below the value
which equilibrates the central particles of the sample.
We lowered the angular velocity to prevent formation of

.a close-packed layer at the boundary wall. Particles
which were immobilized by the sticky boundary wall are
marked with black dots. Particles which touch each oth-
er are marked with lines joining their centers.

Obviously, except for particles which were stopped by
the boundary wall and a few more, which came into
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close-packed contact with the latter, all particles of the
final configuration are in equilibrium, i.e., the interparti-
cle and centrifugal forces which act on them are in equi-
librium. The structure shown in Fig. 9(b) is not a strictly
conformal crystal. According to the terminology intro-
duced in Sec. I it should be considered as a conformal
crystal.

E"'=2m f dR Rn
m A + —AJ(k)n'"

2 2
(73)

To fix the upper limit of integration, let us assume that in
the limit the density of the SCC reaches its close-packing
value 2/&3b . Thus since according to (59)

2/k

G. Energy of a strictly conformal crystal

Let us consider the case where the external force F "'
is conservative, i.e., can be seen as a gradient of the po-
tential energy U:

F ext yU

2AJ(k)

2/k
2 [ meedn(a)= 4/k

V'3b 2 2A J(k)

(74)

(75)

We can then express the equation of mechanical equilibri-
um (43a) as an equation of conservation of energy for a
particle submitted both to the external and interparticle
forces

U+ AJ(k)n = Uo=const .

Eventually, the total energy of the SCC contained within
the disk of radius a is easily calculated if one notices that

2/k
2~~ &(2I+4)/k

2

=2[—,
' A J(k)n'" +"],

From Eq. (65) one can derive the density of energy

u =nU+ —'AJ(k)n'"+ '
2 7

so that the total energy of the system

E"'= g [ U(w)+ —,
' A J(k)n" (w) ]

occUpled
sites

(66)

3~ k
mro a n(a) .

8 0+1 (77)

i.e., the second term of the integral (73) is twice as big as
the first one. The integration gives

3~ k (men )
2 (k+2)/k

4(k+ 1)/k
8 k+1 [AJ(k)]»'

= f do n[U+ ,'AJ(k—)n ],
CC

(67)

F, =mao 8 = —VU . (68)

where the integration range covers the area occupied by
the CC. The l/2 factor takes into account the fact that
since the summation is carried out over all particles, thus
a contribution provided by a single pair or particle is
counted twice.

As an example, let us consider the SCC on a rotating
disk. The centrifugal force F, is given by

a k m coN=2~ dR Rn =2~
o 2(k +2) 2A J(k)

k
n(a)a2+@

I 2(k+2)]/k

thus, the total energy of the SCC within the disk of a di-
ameter a, at which the SCC becomes close packed, equals

On the other hand, the number of particles N inside the
disk of a diameter a is given by

2/k

In the reference frame rotating with the disk, the poten-
tial energy equals

3 3 (k+2)
16' k(k+1) (79)

RU= —mco 2

2

thus the total energy

E"'=2'f dR Rn[U+ —,'AJ(k)n "~ ],

(69)

(70)

Notice, that because of Eq. (75) co ~ a ~ 1/X, the total
energy E'" is eventually proportional to N.

III. THE STRICTLY CONFQRMAL CRYSTAL
AS A 2D SOLID WITH A UNIQUE

ELASTICITY MODULE

Etot Etot +Irot (71)

where the angular momentum of the system can be writ-
ten as

1.=2m f dR mcoR n,
0

so that finally

(72)

where a is the radius of the disk.
In the motionless (laboratory) frame, the total energyE"' is given by [6]

In the classical theory of elasticity, simple Auids are
characterized by a unique elastic modulus, namely, the
compression modulus E = —V(Bp/BV). This is obvi-
ous, because simple Auids cannot resist shear. On the
contrary, solids have at least two elastic moduli: isotropic
solids are characterized by Young's modulus and the
Poisson ratio, whereas solids with a lower symmetry ex-
hibit at least three independent parameters describing
their equilibrium behavior in the presence of static elastic
constraints. Even isotropic 20 solids are characterized
by two elastic moduli. Using a comparison with the clas-
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sical theory of linear elasticity we shall show here that
elastic properties of a strictly conformal crystal are de-
scribed with a unique elastic modulus. Thus, let us con-
sider a SCC submitted to an external force field F,„,.
(F,„, is the force exerted by the external field on a single
particle. ) In the case of a planar SCC, this would be a
gravitational force decaying exponentially with height,
whereas, in the case of a radial SCC, the necessary force
could be identified with the inertial (centrifugal) force
present within the coordinate frame of a rotating disk.

In the case of a SCC, (43a) would read

Bu~ Bup 2 Buy Buy

2 Bx~ Bx, , Bx. Bx~
(83)

(83) is a direct consequence of the definition (81) and the
form of ds =dx +dy and ds =du +dv . On the oth-
er hand, the displacement vector u may be expressed as

u =(u(x, y) —x, u(x, y) —y) . (84)

while, outside the range of the linear theory, c & takes the
form [6]

F,„,= AJ(k)V(n" ) . (80)
It is easy to rewrite (83) as

2

ds =ds, +2 g e Px dxp,
e,P=1

(81)

where, for the sake of simplicity (x,y ) has been replaced
with (x „x2 ). e &

is the strain tensor [7].
In the linear approximation

Now, let us rewrite (4) in terms of the classical theory of
elasticity

1

2

2
Bu + Bv

Bx Bx

Bu Bu B. B.
2 Bx By Bx By

2

1

2

Bu Bu Bv B.
2 B By B By

'2 2
Bu Bv

By By

(85)

Bu~ Bup
C~p= +

2 Bxp Bx. (82)
(see Ref. [4]). Being conformal, the mapping
(x,y )~(u, U ) fulfills the Cauchy relations (3). As a
consequence

1

2

2
BU+
Bx

0 Bu

By

0

2
BU

By

2
1

2
0 dM

dz

(86)

[compare (4) and (81)]. Equation (6) allows us to write E(k)V[Div u )
"

]=F,„, , (91)

1

&3b'

—1 0
0 n

from which we find

2
trE. =—F,1+E.22

= n
+3b 2

(87)

(88)

where the "elastic modulus" E(k) replaces all constant
factors appearing both in Eq. (80) and (88):

'k
21/2

F(k)= AJ(k) (92)
g 31/4

Now, because of (83), we have

1tre=V u+—
2 p

Bu~ :—Divu .
Bxp

(89)

Vu= + (90)

The important point here is that the definition (89) en-
ables one to rewrite (80) in a compact form as

The right hand side of (89) is a nonlinear differential
operator acting upon the displacement vector u. We
denote it Divu, since in the linear approximation it
reduces to the conventional divergence operator

On the other hand, in the linear theory of elasticity, an
isotropic body immersed within an external force f per
unit volume satisfies the following equation:

1
VV f-2(1+o )

1 —2o E (93)

where E is the Young modulus and o. is the Poisson ratio.
Comparison of (91) and (93) is very informative.

In the case of a SCC, the relation between F„,and u is
strongly nonlinear: first of all Div u is a nonlinear opera-
tor, moreover F„, and u are submitted to the comple-
mentary condition (43b). In the linear theory of elasticity
(93), the relation between g and u depends on two in-
dependent elastic moduli E and o., while in the ease of a
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SCC the analogous relation contains only one elastic
modulus E(k). In a certain sense the SCC case is much
more isotropic: large distortions and a strong departure
from the linear approximation allow the SCC to behave
within the gravitational field as isotropically as
possible —all due to appropriate variations both of the
size and orientation of its hexagonal unit cells.

IV. CQNFQRMAL CRYSTALS:
A MARE GENERAL CONCEPT

1
nn

(big )
(94)

(2) Fh,„—the total force due to all of the nearest neigh-
bors of p located on the same hexagon; in view of Eq. (20)
its magnitude is given by

(+2 (95)

Section II was devoted to the concept of strictly con-
formal crystals. Looking at the gravity rainbow struc-
ture, one can immediately notice that the concept of a
strictly conformal crystal is too narrow. Consideration
presented in Sec. II led to the conclusion that the only
external field within which a planar SCC can reach the
equilibrium state must decay exponentially with height.
Qn the other hand, comparison between the gravity rain-
bow, i.e., the structure formed in a constant (gravitation-
al) field Fig. 1 and a part of the SCC shown in Fig. 5,
leads to the conclusion, that they do not dilfer much [4].
The question arises: what happens to the SCC when the
external field within which it was built changes its v

dependence? Below we shall try to answer it. To fix at-
tention we shall discuss a SCC formed in an external field
of the planar symmetry.

Thus let us imagine that in an external field F"' of the
proper, exponentially decaying shape a SCC was built
and then, preserving the planar symmetry, the field
changed slightly its v dependence. Let us assume, that as
a result of the change, the structure of the crystal was
also slightly deformed: leaving the exclusive world of
strictly conformal crystals, the structure entered a much
broader domain of conformal crystals [5].

Consider a particle p from the CC and compare two
forces acting on it.

(1) F„„—the force due to one of the nearest neighbors
located on the hexagon surrounding p; its magnitude is
given by

in the direction of its density gradient can easily change
in suitable proportions the magnitude of Fh„without
changing its direction and without introducing any topo-
logical defects into the structure. Let us emphasize that
the reasoning presented above is valid for any conformal
map.

According to Eqs. (32) and (38) also the total force F,„,
is parallel to the direction of density gradient and thus to
the direction of the lines of constant orientation y, in-
dependently of its value. As a consequence, shifting a11

hexagons along those lines on a small distance propor-
tional to the local value of the density is likely to (i) modi-
fy the magnitude of Fjgg without changing its direction
(or sense), (ii) preserve the existing distribution of the
orientation throughout the whole structure.

Summing up, one can expect, that when the external
field F'"', under which a SCC stays in equilibrium, is
slightly distorted in the direction of its force lines, then a
small, appropriate uniaxial distortion of the SCC struc-
ture itself, in the direction of its density gradient, can
change the distribution of the F;„, forces in such a way,
that the distorted structure will reach a new equilibrium
with the distorted field. Below we study the problem in
quantitative terms.

Looking for a conformal map associated with a given force
field

Assume that a force field F=(F„,F, ) is given. Is it
possible to build a conformal crystal satisfying the neces-
sary (weak) condition, that the lines of constant orienta-
tion, y(u, v)=const, coincide with the integral trajec-
tories of Eq. (38)? Requirement (38) is equivalent to the
following one: there exists a function A, (u, v ), such that

Bg =A(u, v )F„~= —A(u, v )F„.
BQ Bv

On the other hand

(98)

dy(u, v ) =AF, du AF„dv—
is an exact differential form which vanishes along the in-
tegral trajectories of Eq. (38). The existence of A, is
guaranteed because the problem is two dimensional: k is
the integrating factor of the differential form
F,du F„dv. Equati—on (97) can be expressed as

Thus, because of Eq. (15)

(96)

V A,F= (A,F„)+ (A,F, ) =0 .
BQ BU

Let us discuss in more detail the sense and significance of
this simple result. Any conformal map transforms a cir-
cle into a circle, providing the radius of the mapped cir-
cle is vanishingly small. This means, that any regular
hexagon, of a vanishingly small size, is mapped onto
another regular hexagon, thus Fh„/F„„~O. As a conse-
quence, a small uniaxial distortion of the SCC structure

—~+ ~ = (&F„)—- (~F„)=0
Bu Bv ~u Bv

(100)

rotkF =O, (101)

Now, if y is to be interpreted as the phase, then it must
be harmonic
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which is equivalent to the demand that

AF(u, v)= —Vy .

Equations (98) and (102) lead to

(102)

The case, where 0;= —1 corresponds to a spiral lattice
[4].

V. CANCLUSIQNS

a~ ar
BQ BU BU BQ

(103)

Thus the phase y and function y defined by Eq. (102) are
conjugate harmonic functions: both satisfy the Laplace's
equation and the Cauchy-Riemann condition. As a
consequence

s( w) =y(u, v )+ iq&(u, v ) (104)

is also an analytical function. The existence of s(w) is
not guaranteed: Eq. (101) imposes a condition on the
force field I, thus, if I is given, it should be checked to
fulfill simultaneously Eqs. (99) and (101). If this is the
case, one can make use of Eq. (36) which leads to

in/gf= y .
(BE BQ BU BU

As a consequence,

dw -(w) =g(w) = ~g~e'P= const Xe'
dz

which can be solved to yield

z(w) =const X Idw e

(105)

(106)

(107)

Examples. (a) The gravity rainbow is characterized by
a force field F=(0, —mg). Equations (99) and (101) can
be satisfied in a trivial manner if one writes

(108)

whereby X is now a small arbitrary constant. Therefore

y=imgv, s(w)= ikmgw— (109)

z(w)=constx Jdw e ' s ~e (110)

(b) In the case of an arbitrary radial field

F=( (hR)u, (hR) )v, R =(u +v )'

s(w) =a(ln A +i@) (112)

const Xw, aW —1
z w const Xln w, a= —1 . (113)

where h(R) is a regular function everywhere, with a pos-
sible exception of the origin. Application of the pro-
cedure described above is straightforward if one looks for
functions A, and y depending on R alone. As a result one
obtains

The theory of analytical functions has many applica-
tions in elementary physics. For instance, in two-
dimensional electrostatics the distribution of the electric
field between conductors of simple shapes can be visual-
ized with the help of a suitable analytical function.

In this paper we discussed another type of such an ap-
plication. Pointlike particles interacting through inverse
power law forces and immersed in a static external field
are shown to build two-dimensional structures, called
conformal crystals, which can be well described by
analytical function images of a perfect periodic lattice.

Strictly conformal crystals, i.e., conformal crystal in
their pure form, cannot be built in external fields of any
shape. If one assumes a certain symmetry of the external
field, e.g. , planar or radial, then its dependence on the
variable along which the field is allowed to change proves
to be completely determined by the exponent of the in-
verse power law. Simultaneously, the analytical function,
which describes the structure of the SCC built in this
field, is also given.

The power law forces, which allow existence of the
conformal crystals are long range. As a consequence,
strong boundary effects cannot be avoided. In the ordi-
nary condensed matter, the interparticle forces are short
range. As a consequence, the boundary effects can be
safely accounted for by the introduction of the surface
tension. This is no longer possible in the case of confor-
mal crystals.

Another important problem one has to cope with is
that any realistic model of the interparticle interaction
has to contain a certain kind of a hard core of a finite ra-
dius. As a consequence, realistic conformal crystals al-
ways meet in their density an upper limit above which
they are forced to change their structure into a close-
packed one.

A certain drawback of the concept of a strictly confor-
mal crystal can be found in the mathematics itself: the
set of analytical functions is not rich enough to describe
shapes and symmetries one can find in nature. Thus
given a realistic, possible to create in a laboratory, exter-
nal field of force, there is only a small chance that we
shall be able to built within it a strictly conformal crystal.
On the other hand, as we know now, the chance is
nonzero: the field of the centrifugal force found within a
rotating disk proves to fit perfect1y well the requirements
of the theory we developed. A laboratory experiment
remains still to be done.

A reasonable weakening of the theoretical require-
ments, which we discussed in Sec. III, allows one to con-
sider structures which being not strictly conformal crys-
tals are topologically so similar to them that they deserve
the name —conformal. The gravity rainbow structure
observed in a uniform gravitational field makes a good
examp1e.
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Among the essential conditions, under which the
theory of strictly conformal crystals preserves its validity,
we find the requirement that the interparticle interaction
is described by a power law. Forces of this type are in-
variant with respect to a scale transformation. The con-
nection between the scale invariance and the conformal
mapping is well known in physics, notably in the theory
of the critical phenomena [8]. When the forces do not ex-
hibit scale invariance, the ordered state which may ap-
pear is not likely to display conformal structure.
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