PHYSICAL REVIEW E

VOLUME 53, NUMBER 3

MARCH 1996

Space-charge-dominated bunched beams in the frequency domain
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The effect of space charge on high-phase-space-density bunched beams in an ion storage ring
with electron cooling is investigated in the frequency domain for bunches in the vicinity of the
local microwave instability threshold. Space charge causes a splitting of synchrotron satellites into

incoherent and coherent lines.

Results of measurements of the splitting and shift are compared

with analytical formulas as well as with simulation of the noise spectra by multiparticle computer
simulation. Coherent frequencies of the quadrupole and sextupole modes of Gaussian bunches are
found to deviate slightly from the analytical mode frequencies. Consequences for the interaction with
narrow-band impedances and on the possible accuracy of Ap/p momentum-spread measurements
for high-phase-space-density bunches are briefly discussed.

PACS number(s): 29.20.—c, 29.27.Bd, 41.75.—i

I. INTRODUCTION

High-phase-space-density bunched beams dominated
by space charge can be achieved in high-intensity proton
synchrotrons or in storage rings with electron cooling.
This condition leads to the well-known “potential well
flattening” effect due to space charge below the transi-
tion energy. Above the transition space charge increases
the applied rf voltage as was found experimentally in
the intersecting storage rings for protons of about 20
GeV energy [1]. There, contrary to the present study
of cooler rings, the inductive-wall impedance was found
to be dominant over the space-charge impedance and ex-
plained as the origin of bunch lengthening due to self-
forces that reduce the effective rf voltage. In Ref. [1] it
was suggested that these self-forces can be determined
indirectly—as a direct measurement of the incoherent ef-
fective synchrotron frequency is difficult—by measuring
the shift in the coherent quadrupole or sextupole mode
frequency and using an analytical linear relationship be-
tween the coherent and incoherent shifts.

The space-charge potential well flattening for nonrel-
ativistic energies is particularly important if very high
phase-space densities are considered. This can be the
case, for example, in cooler storage rings or in storage
rings considered for heavy ion inertial fusion [2]. The
flattening is of practical importance since the effective
synchrotron frequency w, enters into the expression for
the momentum spread
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with zo the bunch (half) length and 7 the slip factor in
circular machines. For negligible space charge (w; = wso)
the momentum spread is determined by measuring zo;
for increasing phase-space density zo approaches a limit-
ing value given by intensity and we obtain Ap/p o< ws.
This behavior was recently discussed in connection with
measurements of cooled proton bunches, where the at-
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tainment of space-charge-dominated bunches with prac-
tically vanishing momentum spread was concluded from
the measurements [3,4].

In the context of bunch instabilities the space-charge-
induced splitting and shift of synchrotron satellites need
to be considered if very narrow band impedances exist
that overlap with individual lines of the bunch spectrum.
It is not obvious that the coherent eigenfrequencies de-
rived analytically for strictly parabolic bunches also ap-
ply to Gaussian bunch shapes and strong potential-well
flattening. In the present paper we therefore investigate
this subject by direct measurements of both the incoher-
ent and coherent frequencies and a comparison with the
noise spectra derived from computer simulation of differ-
ent bunch models (“simulation noise”).

For an interpretation of both experimental and sim-
ulation data we briefly summarize results from ana-
lytical theory. The bunch equilibrium, which allows
one to derive exact expressions for coherent frequen-
cies, is that of a parabolic bunch with line density
A(z,t) = Ao (1 — 2%/2¢), which is consistent with the el-
liptic phase-space distribution f(z,2') o« [1 — 22/23 —
22 /(nAp/p)?|}/?, where 2/ = dz/ds (s = [ct) [5,6].
This is based on the asumption that the externally ap-
plied rf force varies linearly from the bunch center and
that the bunch is long compared with the beam pipe
diameter. These conditions are responsible for the lon-
gitudinal space-charge electric field to vary also linearly
with longitudinal distance from the bunch center: E, =
(—qeg/4meg)(OA/0z). Here g is the charge state of the ion
and g a geometry factor given by g = 0.5+ 2In (R,/Rs),
which is valid for a circular pipe and includes an av-
eraging over the transverse beam dimension [7]. In this
expression, R, is the pipe and R the beam radius, which
is assumed to be constant along the bunch.

The effective (harmonic) potential Vg is the sum of the
focusing rf potential Vp and the defocusing space-charge
potential Vsc. Hence the zero-space-charge synchrotron
frequency wso is given by
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with h the rf harmonic, A the ion mass, and R the ring
radius. This leads to an effective incoherent synchrotron
frequency w, in the flattened potential according to
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with 7, the classical proton radius and N the number of
ions per bunch. Eigenfrequencies of coherent oscillations
of the stationary bunch have been obtained for different
mode numbers m in Ref. [8] by means of Vlasov’s equa-
tion. In the bunch frame the resulting frequencies can be
written in terms of the incoherent and zero-space-charge
synchrotron frequency

wf = w.?Ov (4)
wg = 3w§0 + wf, (5)
wi = 3wl + 202 + (Yl + 3wiw? + w2, (6)

w2 = 5w?) + 5w? + (25wi; — bww? + 16wH)Y/2. (7)

The mode m = 1 describes a “dipole” mode or rigid
bunch oscillation, m = 2 a “quadrupole” or length oscil-
lation, m = 3 a “sextupole” mode with the bunch getting
asymmetric, and m = 4 an “octupole” mode (see Fig. 1).
For zero space charge these coherent frequencies are mul-
tiples of the synchrotron frequency. Note that the dipole
mode frequency is unchanged by space charge since it
has no effect on the motion of the bunch center. For
small space-charge shift one finds from Eq. (5) a linear
relationship

1
Wg — 2(113() = ’2“(“)3 - wsO)s (8)

which was suggested in Ref. [1] as an indirect way to
determine the incoherent w, and thus the strength of self-
forces.

II. MEASURED COHERENT
AND INCOHERENT NOISE SPECTRA

The existence of coherent eigenfrequencies has impor-
tant consequences on the measured noise spectra. For a
single bunch the Fourier transform of the signal on a lon-
gitudinal pickup contains “coherent” lines at multiples of
the revolution frequency due to the periodic passage of
the bunch. Assuming a bunch that is perfectly matched
to the rf bucket, Schottky noise in its proper sense is
the noise from the synchrotron oscillations with random
phases of a finite number of particles. The random phases
give rise to statistical fluctuations of the electrical cur-
rent and induces a voltage on the pickup, which is Fourier
transformed (for a mathematical treatment see Ref. [9]).
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FIG. 1.

Schematic contours of bunch modes m = 1
(dipole), m = 2 (quadrupole), m = 3 (sextupole), and m = 4
(octupole) in synchrotron phase space.

This procedure results in the “incoherent” Schottky spec-
trum consisting of synchrotron satellites at multiples of
Ws.

For high intensity there is also coherent noise due to
phase correlations associated with the above-described
coherent oscillations. These oscillations produce satel-
lites distinct from the multiples of the single-particle
synchrotron frequency w,. Their strength depends on
the competition of excitation and damping. It should
be noted that for ion bunches oscillating in a strictly
harmonic potential there is no phase mixing or Landau
damping as all particles have the same synchrotron fre-
quency. A length oscillation induced by a small jump
in the rf amplitude, for example, may thus persist for a
long time and can be observed as a coherent signal. We
note that due to the absence of damping the notion of
coherent noise of a bunched beam is applicable to low
intensity as well. The coherent signals, in particular, can
be excited artificially by appropriately perturbing the rf
bucket (rf phase or amplitude jump or higher harmonic
rf cavity).

We have measured, in the ESR storage ring for heavy
ions, bunch profiles by using the position pickups and the
corresponding fast Fourier transform spectra of a Ne'**
beam of 244 MeV /u and a rf voltage of 100 V (harmonic
2) in the presence of electron cooling. In the example of
Fig. 2 we had 1.5x10® particles (circulating beam cur-
rent I = 840 pA). The spectrum was measured at the
tenth harmonic of the revolution frequency (1.69 MHz).
Typically 64 spectra have been averaged in order to raise
the confidence level for the incoherent noise. Such mea-
surements have been successful only for sufficiently stable
operation of the electron cooler and relatively low inten-
sity. For intensities exceeding 1-2 mA we have found
unstable behavior of the bunches, which made the mea-
surements impossible.

The spectrum contains a central line at a multiple
of the revolution frequency and a large number of side-
bands. Some of the sidebands are at multiples of 50 Hz
and not related to bunch frequencies. We assume they
are caused by the power supply of the cooler, rf system,
or magnets. The first relevant satellite is a small peak
shifted 185 Hz from the central line; a much stronger peak
at 230 Hz is ascribed to coherent dipole motion (m=1)
as it occurs exactly at the same frequency for different
intensities. Hence we associate the small peak with the
effective (incoherent) synchrotron frequency w, and the
larger peak with the zero-space-charge synchrotron fre-
quency wgo. The splitting into these two lines is obviously
due to space charge. The applied rf voltage of 100 V is
thus flattened to an effective voltage of 65 V. It is noted
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FIG. 2. Top, bunch signal of electron cooled bunches (sec-
ond harmonic); bottom, corresponding FFT power spectrum
(64 averages) at the tenth harmonic with space-charge split-
ting of synchrotron satellites (relevant peaks filled black).

that the measurement also shows the second harmonic of
these frequencies at 370 and 460 Hz, furthermore lines
at 428 Hz as well as at 660 and 690 Hz. This coordi-
nation of lines and frequencies is also supported by the
findings from computer simulation noise (see Sec. III).
Using w,s and wso we calculate from Eqgs. (5) and (6) the
frequency for the quadrupole mode (m = 2), as 439 Hz
and for the sextupole mode (m = 3) as 644 Hz, which
can be identified with the measured lines at 428 and 660
Hz. Hence space charge gives rise to a splitting of the
2w, satellite into three lines: the incoherent line 2wy,
the coherent quadrupole line (m = 2), and the second
harmonic of the coherent dipole line (m = 1). We em-
phasize that in the bunch frame the mth mode of Fig. 1
is related to the mth sideband; in the laboratory frame
it also generates higher harmonic lines at multiples of
the fundamental frequency, hence it is not quite correct
to identify, as frequently done in the literature, the mth
sideband with the mth-order mode.

By using Eq. (3) and a measured bunch length of 80
ns (full length of equivalent parabolic bunch) we can de-
rive from the frequency measurements the g factor of this
example as 7. This allows us to estimate R,/Ry = 30,
which is an averaged ratio around the machine. With an
averaged pipe radius of R, = 0.06 m, this is consistent
with an (unnormalized) emittance of 17 mm mrad. Such
a value is in good agreement with emittance measure-
ments of coasting beams of the same local current by a
charge exchange detector [11].

The agreement between analytical and measured
quadrupole and sextupole mode frequencies is satisfac-
tory, if one keeps in mind that the analytical formulas
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are based on the parabolic bunch model, whereas the
real bunches are more likely to be Gaussian [12]. Mea-
surements at different intensities indicate, however, that
the quadrupole frequencies are systematically slightly be-
low and the sextupole frequencies above the analytical
values. A closer comparison is the subject of Sec. IV.

III. COMPUTER SIMULATION OF NOISE

We have used the particle-in-cell computer code
SCOP-RZ, which assumes rotational symmetry around the
beam axis. Particles are traced by solving Newton’s
equation of motion for typically 50 000 simulation parti-
cles. Each time step we create a density on a mesh in r,z
and solve Poisson’s equation by assuming an infinitely
conducting cylindrical pipe. Space charge is thus self-
consistently taken into account, whereas other sources of
impedance have been ignored in this context.

As a check on the accuracy of space-charge calcula-
tion in the simulation program we have evaluated the
self-consistently calculated electric field induced by a
parabolic bunch with uniform radial density profile (in-
dependent of 2) for different ratios R,/R; and assuming
a long bunch with zo/R, = 150. The self-electric-field on
axis is shown in Fig. 3 for R,/Ry = 8. It is seen that
the electric field has a linear dependence on z, which is a
necessary condition for the validity of the elliptic phase-
space distribution. We note that this “cylindrical” bunch
model differs from an ellipsoidal bunch (R dependent on
z), where E, is found to be a nonlinear function of z in
the long-bunch limit [10]. We find that the g factor de-
termined from the electric field agrees with the analytical
formula within 1% deviation. This g factor is identical
to that of longitudinal space-charge waves on coasting
beams, where the transverse density remains invariant
(see, for example, Ref. [7]).

In analogy to the real experiment we evaluate the noise
of computer simulation by recording the line density over
a large number of time steps and carrying out a Fourier
transformation. As in real beams the simulation noise
is caused by the discreteness of particles. The resulting
fluctuations of E, depend on the number of simulation
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FIG. 3. Self-consistent E, (arbitrary units) in the com-
puter simulation of a bunch with a parabolic current profile
and cylindrical spatial boundary.
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particles. For the present example they are shown in Fig.
3. For the same reasons as in the experiment we also
carry out an averaging of spectra obtained in subsequent
time intervals. Simulation results for zero space charge
and with finite space charge are shown in Fig. 4 for a
parabolic bunch with elliptic phase-space distribution in
a harmonic rf potential. The synchrotron frequency has
been increased in the simulation in order to reduce com-
puting time. The identification of mode frequencies is
made using the analytical formulas of Eqs. (4)—(7), which
apply to the same phase-space distribution. It should be
noted that, in contrast to the analytical frequency calcu-
lations, the simulation noise is seen in a frame of reference
where the bunch is moving, hence multiples of the bunch
oscillation frequencies are seen as well. The incoherent
(single-particle) synchrotron frequency is the lowest ob-
servable frequency followed by the dipole frequency. The
second satellite splits into the second harmonics of the
incoherent frequency and the dipole frequency as well
as the quadrupole mode frequency. The agreement with
the analytical formulas is found to be excellent, as will
be summarized in Fig. 5 for different strengths of space
charge.

IV. COMPARISON AND DISCUSSION
OF RESULTS

Results of theory and experiment are compared in Fig.
5. On the abscissa we have introduced the parameter «,
which is the factor by which the rf potential is flattened:

VO u.)zo
= = 22, 9
e A (9)

Experimental points have been obtained for a maximum
a of 1.73. « is the inverse of the “voltage reduction” k;,
defined in Ref. [5]. The achieved values of a or k; can
be formally compared with the “local microwave insta-
bility threshold” (the Boussard criterion [13]), which is
relevant if the high-frequency broadband impedance (re-
sponsible for an instability at wavelengths much shorter
than the bunch length) is of the same magnitude as the
space-charge impedance (causing the rf potential flatten-
ing). In Ref. [5] this threshold is calculated as k; = 0.6
(e = 1.67), which is equivalent to 40% of the space-
charge limited current. We emphasize, however, that the
prediction of instability according to the Boussard crite-
rion in its original form is not applicable here, where the
space-charge impedance is by far the dominant one.

Note that the experimental o values have been derived
from the measured w, values according to Eq. (9), hence
it is trivial that the measured points coincide with the
analytical curve for ws;. The independence of w; from
intensity is a clear identification of the dipole mode fre-
quency.

The measured quadrupole frequencies are systemati-
cally lower than the analytical values and opposite for
the sextupole mode. This is of a practical consequence if
one uses the measured quadrupole frequency to calculate
a. From the analytical expression in Eq. (5) we obtain
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FIG. 4. Top, synchrotron satellites from computer “simu-
lation noise” without space charge for the parabolic bunch;
bottom, space-charge splitting into incoherent and coherent
lines (frequencies and amplitudes in arbitrary units).
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FIG. 5. Normalized frequencies vs rf potential reduction
factor comparing analytical formulas (continuous lines), ex-
periment, and simulation. Dashed lines are limiting values at
the space-charge limit (a — o0).
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a nonlinear relationship

2

1
22 34— (10)
wso [0

This formula was recently used to calculate the effective
potential for high-intensity cooled proton bunches in Ref.
[3]. Values of a as large as 4 (i.e., Vi¢/Veg =~ 0.25 in Ref.
[3]) have been suggested by this evaluation. By inspect-
ing the quadrupole branch of Fig. 5 and using Eq. (10)
we find, however, that we would have overestimated o
by 50-70% for our experimental points. For an expected
a as large as 4 the uncertainty is even larger due to the
nonlinear dependence on a.

It should be noted here that an error in determining
the actual Vg leads to an error in determining Ap/p for
very space-charge-dominated bunches, since we readily
obtain from Eq. (1) Ap/p x zo/+/a. In order to explore
possible discrepancies by computer simulation we have
also compared in Fig. 5 the frequencies from a parabolic
and a Gaussian bunch. The agreement with the ana-
lytical formula for the parabolic bunch justifies that the
measurement of wy allows an accurate calculation of the
potential-well flattening factor o and thus Ap/p. The
quadrupole frequencies of the simulated Gaussian bunch,
however, show deviations of varying sign. We assume

that the deviations are connected with the practical dif-
ficulty of obtaining a well-matched beam of a Gaussian
distribution and possibly also with the nonlinearity of the
space-charge force, which leads to an increase of the syn-
chrotron frequency with amplitude. The simulation sex-
tupole frequencies follow the tendency of the measured
values and are slightly higher than the analytical values.

Hence it is concluded that for satisfactory accuracy
in determining high phase-space density a direct mea-
surement of the single-particle synchrotron frequency is
necessary. As an alternative, the octupole frequencies are
also promising, since they have a larger dispersion with «
than the quadrupole frequencies or sextupole frequencies.
If the spontaneous signal is insufficient (as was the case
in our experiment), the mode can be excited by a higher
harmonic rf bump. This is of practical consequence in
heavy-ion-fusion storage rings, where values of o as large
as 5-10, hence currents close to the space charge limit,
are required.
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