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Starting from the rate equations that are derived from quantum kinetic equations, the level
population of the different atomic states is calculated for a nonideal hydrogen plasma in strong
electric fields. A change in the balance between excitation and deexcitation processes is produced
by the non-Maxwellian form of the electron distribution function that accounts for field and density
effects. The result is a considerably higher population of the excited atomic states for densities
where both field and density eKects are of importance.
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The developments in the field of laser-produced plas-
mas and capillary discharge x-ray lasers lead to a growing
interest in the population kinetics of dense plasmas [1—5].
It is well known that the degree of ionization as well as the
population of the difFerent atomic levels in dense plasmas
in thermodynamic equilibrium is determined by a non-
ideal Saha equation [6,7], which accounts for correlation
efFects such as screening, self-energy, and lowering of the
ionization energy. This equation represents a mass action
law, which results from the detailed balance relation of
the reaction processes in the plasma.

But for nonequilibrium plasmas, found in static elec-
tric and magnetic fields or produced by a high-energy
laser pulse, this theory is not always justified because of
deviations of the momentum distribution function from
its Maxwellian form. Physical observables such as, for
instance, the opacity would be certainly afFected by non-
Maxwellian occupation numbers. In this paper we will
consider a dense plasma in an electric field where the
distribution function deviates froIn the Maxwellian form
as the field strength increases. There follows a field-
induced change of the balance between the excitation
and deexcitation processes. The ionization equilibrium
between the free and the bound particles will be modi-
fied. Such plasma conditions could be relevant for short
times in dense Z pinches formed from frozen hydrogen
fibers through which currents are driven [8]. These high-
density Z pinches are of interest as a possible alternative
approach to fusion.

In recent papers [9,10], the plasma composition in
strong electric fields was considered for a hydrogen
plasma. Introducing a Maxwell-like distribution function
with a field-dependent electron temperature, the plasma
composition was determined by a Saha-type but field-
dependent mass action law.

Of course, such a treatment represents a first approxi-
mation only because the applied strong electric field. pro-
duces a nonequilibrium plasma state. This requires that
the plasma composition has to be determined in a conse-
quent way from the system of rate equations instead of a
modified Saha equation. Especially, there is no relation
between excitation (ionization} and deexcitation (recom-

bination) coeflicients as it exists if a Maxwellian form
of the electron distribution function is assumed. That
means, all the rate coefIicients have to be calculated in a
direct way from their quantum statistical expressions.

The aim of this paper is to solve the problem in such
a strict manner starting from the set of rate equations.
Field and nonideality effects will be taken into account by
the field and density dependence of the rate coefFicients
for the difFerent excitation and reaction processes. These
rate coefIicients will be calculated quantum statistically
from generalized kinetic equations considered here for a
hydrogen plasma that consists of free electrons, protons,
and hydrogen atoms. It will be shown to what extent
the combination of nonideality and a strong electric field
will change the ionization equilibrium. Especially, an in-
teresting new behavior for the population of the excited
atomic states will be found following from the competi-
tion of field and density effects.

As mentioned above, the composition and level popula-
tion of a dense partially ionized plasma follows in general
from the set of rate equations that reads for a hydrogen
plasma [12]

d2= . j' j 3 . 2

dt
—nH —— n~nH ~ t~ —n~nH ~~ + n, ~

—n, n~o'~

Here n and n~ are the number densities of electrons and
atoms where j denotes the set of quantum number of the
atomic states. The total electron density is

tot
n~ n~ + n+ o

The K,i, nz, and Pi are the coefficients of excitation (de-
excitation), impact ionization, and three-body recombi-
nation, respectively. They have to be considered as in-
medium reaction rates because dense plasma effects in-
fluence essentially the scattering processes. Therefore, to
model the population kinetics, a foundation of rate equa-
tions is required starting from quantum kinetic equations
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valid for dense many-particle systems with bound states.
This problem was considered in a series of papers [11—15].
The final result is that the rate coefFicients are given in
terms of bound-bound and bound-free transition T ma-
trices averaged by the corresponding set of distribution
functions of free and bound particles. For a nondegener-
ate plasma in a constant electric field, the coefIicients of
ionization can be written as

In order to determine the rate coeflicients, one has to
solve two problems: (i) The cross sections must be cal-
culated from the transition T matrices. (ii) The field-
dependent electron distribution function has to be deter-
mined from the kinetic equation.

Let us consider first the calculation of the cross sec-
tions. In a generalized Born approximation, the total

2

ionization cross section is given by (e = z"' )

8vrm,

(27rh)s eff
2

dE'E'
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and the three-body recombination coe%cient is 8+$2 pmax
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Here, the adiabatic approximation (m, /m„« 1) was
applied. Thus only the field-dependent electron distri-
bution function occurs in the formulas. The do'. " is the. 2
in-medium difFerential cross section of ionization, which
depends on the impact energy of the incident electron
and the energy of the ejected electron. I is the efFec-
tive ionization energy and E denotes the electric field
stength. Similar expressions follow for the coeKcients of
excitation and deexcitation.

where the limits of integration are determined by energy
conservation in the in-medium ionization process. In (4)
P~~ denotes the atomic form factor

&.v(q) = d r@,*(r)4'+(r)e'~'. (5)

At this point, it is worth noting that in a nonideal plasma
the two-particle properties, i.e. , the wave functions and
the energies, are essentially influenced by the surround-
ing plasma. Therefore, these quantities have to be deter-
mined from an efFective wave equation that is given by
[16]

p'
+ " + A;I (P Pi, z) —z @,I, (P,PI,z)

(2me 2m'

+ [1 fe (pe) fp (pp)] d q I ~& (pep&qz) @e& (pe + q, p& —q, z) = 0. (6)

In comparison to a Schrodinger equation of an isolated
pair of particles, there are self-energy corrections 4 „ to
the kinetic energy and an efFective potential V b . Both
include many-body efFects and therefore they are compli-
cated functions of dynamical screening.

In this paper, the static approximation for the screen-
ing will be used and momentum-independent quasipar-
ticle shifts are assumed (rigid shift approximation I17]).
Therefore efFective potential and quasiparticle shifts are
given by

2 24me z ~
4xe n~

q2+ V2 ' k~Ta

and

d pg 'mfa

with ReZ denoting the real part of the retarded self-
energy [16]. In lowest order, the quasiparticle shift is

= —2Ke . Then the efFective ionization energy is

= IE~ I

—&' + & + &~ (9)
where Ez is the binding energy in the atomic state

l j)
and Lz is the corresponding self-energy shift following
from the efFective wave equation (6). According to (4)
and (5), the determination of the cross section requires
the knowledge of the wave functions. After partial wave
expansion, the atomic form factor can be calculated nu-
merically from the radial Schrodinger equation with the
efFective potential and the self-energy corrections given
by (7) and (8). In Fig. 1, results are shown for the ion-
ization cross section of the 2p atomic state as a function of
the electron impact energy for different screening param-
eters. Due to the influence of the dense plasma medium,
the behavior of the cross section is determined by the
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they gained from the electric Geld more efFiciently and the
distribution function tends to the Maxwellian form. The
dependence of the distribution function on the electric
field strength for a fixed density is shown in Fig. 2(b).
As expected, the deformations of the Maxwellian form
increase with increasing field strength.

Now the influence of field and density efFects on the
rate coefFicients shall be considered. In Fig. 3, coefIi-
cients of impact ionization and three-body recombina-
tion of the 2p atomic state and the 18 —2p excitation
coefIicient are shown as a function of the free electron
density for difI'erent fields. Two density regions can be
observed with a difFerent behavior of the rate coeKcients.

At lower densities, there are strong field efI'ects. The
non-Maxwellian tail of the electron distribution function
gives rise to considerably higher ionization rates. On the
other hand, the recombination rates are lowered more
than two orders of magnitude in comparison to the zero-
Geld case. At high densities, the influence of the Geld
becomes smaller. But now, the rate coefficients' behav-
ior is dominated by many-body efFects, especially by the
lowering of the ionization energy and the Mott effect, i.e. ,
the pressure ionization of atomic states in the dense non-
ideal plasma. The main result is the strong increase of
the impact ionization coefIicients with growing density.
The density dependence of the excitation, deexcitation,
and recombination rates at high densities is smaller be-
cause it is determined not directly by the lowering of the
ionization threshold but only by the efI'ective potential
and the screened atomic form factor in the in-medium
cross section.

With the knowledge of the rate coefIicients, it is possi-
ble to determine the field-dependent level population of
the atomic states in a nonideal hydrogen plasma. This
was done solving the stationary system of rate equations
in a self-consistent manner with the determination of the
electron distribution function given by (11). The nu-
nierical results for the degree of ionization c, = n, /n, t

for different electric fields are shown in Fig. 4(a). Both
the field and medium efI'ects produce changes in the de-
gree of ionization. An enhancement of c at low densities
can be observed, which follows from the higher ionization
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FIG. 3. Different rate coefFicients as a function of the free
electron density for diff'erent field strengths R (1: 0 V/cm, 2:
2 x 10 V/cm, 3: 4 x 10 V/cm, 4: 10 V/cm). The degree of
ionization is c, = n, /n' ' = 0.1. (a) Impact ionization coeffi-
cient for the 2p atomic state. (b) Three-body recombination
coefficient for the 2p atomic state. (c) Excitation coefficient
for the 18-2p transition of hydrogen.
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PIG. 4. Degree of ionization for a nonideal hydrogen
plasma as a function of the total electron density. (a) For
diff'erent field strengths (same as in Fig. 3). (b) Compari-
son of the present calculations with the effective temperature
model of [9] (dashed lines).
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rates due to the electric field. The effect of the field can
be neglected at higher densities. But now the influence
of many-body effects on the ionization threshold begins
to dominate the plasma composition. Again, there is
an increase of the degree of ionization. Here, the Mott
transition is indicated by a strong increase of the ioniza-
tion degree. In Fig. 4(b), a comparison of the degree
of ionization is given with results obtained in an ear-
lier paper [9) where a Maxwe[lian distribution function
with an effective field-dependent electron temperature
was assumed. In the present calculations, considerably
lower values of c follow at lower densities compared with
the effective temperature approach. That means, the ef-
fective Maxwellian-like momentum distribution overesti-
mates the ionization rates. With increasing density, the
situation changes, and the degree of ionization obtained
here is higher up to densities where Geld effects can be
neglected.

Finally, the results obtained for the field-dependent
population of atomic states in the nonideal hydrogen
plasma shall be discussed. In Fig. 5(a), the level pop-
ulation is shown for the states with the principal quan-
turn numbers n=1, n=2, and n=3. The full lines are
the results for a field strength E = 10 V cm and,
for comparison, the dashed lines give the zero-field case.
An interesting feature is the enhanced population of the
excited atomic levels when the electric Geld is applied.
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Especially, well developed maxima of the number frac-
tions are formed in a density region around n = 10
cm, which tend to be ten times higher than that in
the field free case. This behavior is determined by the
non-Maxwellian electron distribution function and re-
sults from a competition between field and density effects
in the plasma. In order to demonstrate the effect of the
field, the total population of states with n=3 is shown in
Fig. 5(b) for difFerent field strengths. With increasing
field, the maximum increases and moves to higher elec-
tron densities. At very high densities, the field effects
disappear and the nonideality of the plasma governs the
population dynamics leading to the Mott efFect discussed
above.

In order to study the field and density efFects on the
population dynamics in more detail, the effective popu-
lation flows between the different levels are shown in Fig.
6. Effective population flow means the net flow of the
populating and depopulating processes (deexcitation, ex-
citation and recombination, ionization, respectively) for a
certain transition. The nonvanishing effective population
flows, presented in Fig. 6, correspond to a Geld-induced
deviation from the detailed balance valid in thermody-
namic equilibrium. Negative values describe a change to
higher deexcitation rates, positive values to higher ex-
citation rates for the considered transition process. The
stationary level population is realized by a vanishing sum
of the different flows that determine the population and
depopulation rates of the level. At low densities, where
the occupation numbers of the atomic states are small,
the effective population flows are, of course, also small.
At higher densities (around 10 cm ), a maximum be-
havior can be observed that describes a strong deviation
from the detailed balance caused by the non-Maxwellian
electron distribution function. The comparison with the
results given in Fig. 5 shows that this behavior is related
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FIG. 5. Population of the different atomic levels for a non-
ideal hydrogen plasma vs the total electron density. (a) For
a field strength R = 10 V/cm (full lines). A comparison is
given with the zero-field case (dashed lines). (b) Total popula-
tion of the atomic hydrogen levels with the principal quantum
number n=3 (3s+3p+3d) for different field strengths.

FIG. 6. Effective population Hows between the different
atomic levels (denoted by the two quantum numbers) and
between atomic levels and the continuum (one quantum num-
ber), respectively, vs total electron density for a Geld strength
E = 10 V/cm. Negative values describe a higher deexcita-
tion rate, positive values higher excitation rates for the con-
sidered transition process.
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to the increased level population of the excited atomic
states in that density region. At higher densities, the
effective population Hows tend to zero because the inHu-
ence of the electric Geld becomes negligibly small, and the
electron distribution function becomes Maxwellian. The
population dynamics is determined then by the detailed
balance of the different in- and out-scattering rates and
the composition of the dense plasma is given now by the
nonideal Saha equation.

As a possible experimental situation with parameters
we used, we could think, as already mentioned in the in-
troductory remarks, of a high-density Z pinch in its ini-
tial phase. In order to see spectroscopically the inHuence
of the Geld and nonideality effects on the population in
different atomic levels, the occupation of the ground state
should be measured absolutely by absorption of Lyman-
o. , whereas the occupation of the excited levels should be
determined from emission measurements.

We can conclude that for certain ratios of Held strength
and density the population of atomic states in the dense

plasma deviates signiGcantly from that of thermody-
namic equilibrium. The reason is that even the isotropic
part of the electron distribution function becomes non-
Maxwellian and, therefore, there is no detailed balance
for the different processes. In the stationary case, the
composition of the dense plasma has to be determined
from the rate equations now instead of the Saha equation.
It is important to take into account both nonideality and
Geld effects. An interesting feature is the enhanced pop-
ulation of the excited atomic levels.
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