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Experimental visualization of acoustic resonances within a stadium-shaped cavity
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Acoustic resonances of an insoni6ed water-filled stadium-shaped cavity are located and visualized
in a noninvasive manner using a schlieren technique. The chaotic nature of the geometry is seen
to affect the form of the resonance patterns observed. Individual eigenstates of the cavity can
be resolved at low frequencies; in particular, the "bouncing ball" modes. In the high-frequency
(overlapping resonance) regime, nodal patterns are characterized by a network of ridges similar in
form to those produced by a random superposition of plane waves.

PACS number(s): 05.45.+b, 43.35.+d, 43.20.+g, 03.65.Ge

The solutions of the Helmholtz equation are of great
importance in acoustic, electromagnetic, water-wave,
and quantum contexts. Recent interest in the spectra
and eigenfunctions of two-dimensional cavities (or "bil-
liards" ) arose out of semiclassical studies of quantum sys-
tems whose classical mechanics are chaotic, such as the
stadium-shaped cavity of Bunimovich [1—4]. It is known
that the shape of the boundary is of great importance
in determining the behavior of the system: integrable or
nonintegrable, regular or chaotic motion. The equiva-
lence of the time independent Schrodinger equation and
the Helmholtz equation would seem to suggest that phe-
nomena discovered in the quantum. context can be sought
in other fields.

The study of chaotic systems is important in all fields
since such systems are ubiquitous in realistic scattering
situations; integrable systems are the exceptions, not the
rule. The spectra of nonintegrable chaotic systems can
be described by Gaussian orthogonal ensemble (GOE)
random matrix statistics [5,3], unlike the spectra of in-
tegrable systems (circular, elliptical, rectangular geome-
tries, etc.), which obey Poisson statistics. Also, unlike
integrable systems, the eigenfunctions of chaotic systems
are characterized by nodal lines that meander around
with few crossings; eigenfunctions of integrable systems
have families of nodal lines with many perpendicular
crossings (Ref. [4], Chap. 15).

The classical trajectories of a completely chaotic sys-
tem, such as the stadium-shaped cavity, access every re-
gion of phase space, and it was conjectured [6] that the
eigenstates of such systems are governed by the random
superposition of plane waves, all having the same wave-
vector magnitude but differing amplitude, phase, and di-
rection. Such a superposition was shown [7] to result not
in a "speckle pattern, " but in a wave field characterized
by a network of ridges which have since become known
as "scarlets" [8]. In the stadium-shaped cavity these
ridges appear to be localized along classical periodic or-
bits, manifesting themselves as enhanced (or diminished)
amplitude; they are known as "scars" of the periodic or-
bit. The importance of the periodic orbits was shown
by Gutzwiller [9], who expressed the density of states as
a sum over the classical periodic orbits. More recently
Doron and Smilansky [10] have extended the summa-

tion approach to scattering systems. Many theoretical
predictions of scarred eigenstates have been presented in
the literature (see, for example, Ref. [2], and references
therein). Scars have even been identified in quite low-

energy states [11]; scars and scarlets are thought to be
general wave phenomena. Scars have also been observed
in the high-frequency vibrations of stadium-shaped plates
[12].

The little published experimental work concerning it-
self with nonintegrable systems and chaotic scattering
has mainly involved microwave cavities [13,11],although
the manifestation of scarlets and scars have been demon-
strated for water surface waves by Bliimel [14]. Stockman
and Stein have used microwave resonators to obtain spec-
tra of both the stadium and the Sinai billiard [15] and
have obtained wave functions for the stadium-shaped
cavity [16] which give good agreement with Gutzwiller's
semiclassical representation, convincingly demonstrating
the inBuence of the periodic orbits on the wave functions.

In this paper we describe an experimental arrangement
which permits the location and visualization of the wave
functions of two-dimensional acoustic cavities. By us-
ing a schlieren technique we are able to study the Huid-
column resonances within insonified cylindrical cavities
of "stadium" cross section, and compare them with the
resonances of a circular cavity. This technique has previ-
ously been used successfully to locate and image the reso-
nances within submerged circular and elliptical cylindri-
cal shells [17,18] and to study the scattering of pulses by
various objects and geometries [19]. The extension of this
technique to the study of nonintegrable systems seems a
natural one. To our knowledge this is the first application
of acoustics to the determination of the wave functions of
two-dimensional cavities having nonintegrable topology.

The pressure (vP) within the Huid column of a cylindri-
cal shell satisfies the Helmholtz equation (V + k )Q = 0
with impedance boundary conditions. For a shell pre-
senting an infinite impedance to the cavity, this is just
the requirement that the normal derivative of the pres-
sure field vanishes at the boundary (Neurnan boundary
conditions), and the resonance &equencies constitute the
spectrum of eigenvalues of the cavity. However, an in-
sonified shell having finite impedance constitutes a true
scattering problem and yields a resonance spectrum char-
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acterized by resonances of Gnite width which may overlap
at high frequencies. Of particular interest in the circular
geometry is the hybridization of eigenstates in the over-
lapping resonance regime, and the efFect this has on the
resonance patterns.

One advantage of this technique is that it is noninva-
sive and permits wave fields to be recorded instantly on
filin or video (with a resolution limited only by that of the
film), or analyzed by computer using an image-grabbing
system. This allows resonance modes to be rapidly iden-
tiGed as the &equency is swept. A disadvantage of the
present experimental arrangement is the low Q factor
of the acoustic system, which prevents individual reso-
nances from being resolved at high frequency (although
the semiclassical regime is one of overlapping resonances
[20])

The experimental arrangement is shown in Fig. 1
and has been described in detail elsewhere [17,19]. The
principle upon which schlieren operates is that light is
difFracted during its passage through an acoustic field in
a Quid; the diffracted light contains information about
the spatial distribution of the acoustic Geld. Light &om
a high-power light emitting diode is focused onto a pin-
hole, or an array of pinholes having a random basis. The
resultant light beam is collimated by the first parabolic
mirror and passed through a glass walled tank containing
the acoustic field. In the present application a transducer
placed in the tank, with its axis perpendicular to the light
beam, is used to insonify a cylinder suspended with its
axis parallel to the light beam. The light emerging &om
the tank is brought to a focus by the second parabolic
mirror; the resultant di8'raction pattern contains the light
which has passed straight through the acoustic field un-
diffracted (zeroth-order) and the difFracted light (higher
orders). By removing a part of the light in the diffrac-
tion pattern and allowing the remainder to recombine in
a still camera or video, an "image" of the acoustic Geld
is obtained. The optical distribution in the image has,
in general, a complicated dependence on the spatial 61-
tering arrangement and the pressure amplitude in the
acoustic field. However, it has been shown [21] that for
lou acoustic pressures and zeroth-order Gltering, the op-
tical distribution approximates the square of the acoustic
pressure distribution. As any variations in the acoustic
6eld along the light path are integrated out, the system
is restricted to the visualization of resonances of bodies

having translational symmetry.
The cylinder used in these experiments was a stadium-

shaped cavity in an aluminum block; the semicircular
ends of the cavity had radii (a) 12.7 mm and the straight
sections of the cavity were of length 2a. The cylinder
was 100 mm long and could be insoni6ed at various
angles to the minor axis of the stadium (see Fig. 1).
The transducer was driven in continuous mode, and by
sweeping the &equency and altering the angle of insoni-
fication, resonances within the cavity were easily located
and recorded on 61m. The current experimental arrange-
ment incorporates parabolic mirrors of focal length 1.8
m, has an aperture of approximately 25 cm, and can
be used to visualize acoustic Gelds down to about 100
kHz. The upper-&equency limit of the visualization sys-
tem is unlimited, although individual wave &onts cannot
be resolved at very high frequencies (above several inega-
hertz).

The ability to resolve individual modes of the cavity
depends upon the density of resonances and the Q factor
of the scattering system; in this case in8uenced by the
losses &om the cavity due to the 6nite impedance of the
shell, and the method of excitation. For a truly bound
system (discrete eigenvalues) the average density of states
of a cavity of area A is given by

p(v) = (1)

where c is the speed of sound in water and v is the &e-
quency. The average separation of states is 1/p(v) Hz
and it follows that Q factors of the order

v 277 A 2Q = = p(v)v = v2

are necessary for individual states to be resolved at a &e-
quency v. The average number of states with a &equency
less than v is given by

mA
N(v) = v

c . 2

For our stadium [A = (4 + vr)a, c = 1480 ms ] the
1000th eigenstate exists around 800 kHz and a Q of about
2000 would be required to resolve these 1000 states; the
Q of our present system is not that high. The overlap-
ping resonance regime begins at around several hundred
kilohertz, in the megahertz region we have many over-
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FIG. 1. The schlieren visualization system
and scattering geometry (inset).
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lapping states and the consequences of their interference
must be considered when interpreting the resonance pat-
terns obtained with the system.

At the lowest frequencies analyzed with this system the
cavity resonances are clearly resolved in &equency. Fig-
ure 2(a) shows a typical low-frequency resonance found
at 150.9 kHz. The "bouncing ball" (BB) periodic orbit
can be associated with this mode which is confined to
the portion of the cavity between the Hat sides, avoid-
ing the semicircular ends. Such resonance modes are the
most easily excited and identified; by insonifying the sta-
dium at "normal incidence, " members of the family of
BB resonances can be isolated and visualized over a wide
frequency range; a mode found at 720.2 kHz is shown in
Fig. 2(b). The resonance shown in Fig. 2(c) was found
at 261.1 kHz and has an altogether different appearance.
Unlike the BB modes, a significant portion of the distur-
bance is present in the semicircular ends, and the focus-
ing effect of these ends is clearly seen. At 664.8 kHz a
wave function is shown [Fig. 2(d)j that can be associ-
ated with the "double-diamond" periodic orbit. The res-
onance widths have become significant at this frequency;
modes are thought to overlap and the appearance of the
wave field. alters as the incident angle is varied.

Figure 2(e) shows a typical wave field observed at very

IJ~PH %jib

II

,IIll
'M""':.

J) ilP I

"8 ( 64@8 rRRR~~~~ ip) IJPIJI-",R~g~ P
IP'R:Z' PI%II KM I J l RJ RJ ~.

8 :-. II;S~ eZ -.

r::.R I Ri P ...g [.'~ ~

~P... , ~ a~& SIR

P' '
-I '

JR.' 'I

JJR RJ

Rp JRI ~si I I'll

F=~$51@=~' Fz~g m P,
"'

s

(e)

Rl

'&S I I ' ' —SIRI~

RR. —

I PI:,:~ II I " ~ "- '
--Jll ~ il JJRI R

.a.

V
I

* . IIIII.l . R

FIG. 2. Acoustic wave fields within the stadium-shaped
cavity. Frequencies are (a) 150.9 kHz, (b) 720.2 kHz, (c)
261.1 kHz, (d) 664.8 kHz, and (e) 2.5 MHz. Different angles
of the incident beam (not shown) were used to excite each
resonance [see Fig. 1 (inset) j.

(b)

FIG. 3. (a) A portion of the schlieren image shown in Fig.
2(e); 500 x 500 pixels. (b) Two-dimensional Fourier transform
of (a); higher Fourier amplitudes are represented by darker
pixels. ko is the wave number of the incident (driving) field.



53 EXPERIMENTAL VISUALIZATION OF ACOUSTIC. . . 275

high frequency (2.5 MHz). The network of ridges is rem-
iniscent of the "scarlets" predicted in [7] and observed in
water surface waves [14]. In the acoustic case presented
here there are many overlapping resonances contributing
to the wave function at this &equency and varying the
angle of the incident beam causes the pattern to change,
although the ridge structure remains. There is some ev-
idence in this image that the scarlets are aligning them-
selves along the trajectory of a periodic orbit.

In an efFort to obtain more quantitative information
&om the schlieren images the photograph shown in Fig.
2(e) was digitized and a square portion selected for fur-
ther analysis [Fig. 3(a)]. The discrete Fourier transform
of this portion of the field was calculated and the resul-
tant Fourier ainplitudes are shown in Fig. 3(b). The
observed circular symmetry of the Fourier transform in-
dicates that there is no preferred direction. This is con-
sistant with a wide distribution of plane waves. As the
optical field is (approximately) proportional to the square
of the pressure distribution, each plane wave component
interacts with all the others to produce a a series of cir-
cles in the Fourier transform plane, each passing through
the origin, and all bounded by a limiting circle at twice

the frequency of the incident wave field (k = 2ko).
Figure 4(a) shows the square of the pressure in a por-

tion of wave Geld obtained by adding together 1000 cosine
waves with random phases and directions, and Gaussian
random amplitudes. The Fourier transform of this field is
shown in Fig. 4(b). The resulting distribution of Fourier
amplitudes is similar in form to the experimental results
[Fig. 3(b)]. The intersecting circles can be seen more
clearly here and this is thought to reflect the fact that
there are more plane wave components present here than
in the experimental result.

For comparison we present results for an insonified cir-
cular shell, a geometry that is integrable. The shell is
made of brass, and has inner and outer radii of 14.25 mm
and 15.85 mm. In the low-&equency regime we again see
isolated resonance modes (n, m) whose wave functions
are of the form J (k )cos(nP); the separable nature
of this geometry reflects itself in the presence of nodal
line families which intersect perpendicularly. Figure 5(a)
shows the (2,4) quid column resonance. At a higher fre-
quency of 2.5 MHz where resonances overlap, the nodal
crossings are, in places, destroyed and new symmetries
appear [Fig. 5(b)]; in this case a five-pointed star is
clearly evident. Similar efFects are to be expected in the
overlapping resonance regime of the stadium-shaped. cav-
ity.

k k 0 -- ass

(b)

0
krak

FIG. 4. (a) Superposition of 1000 cosine waves with ran-
dom direction, random phase, and Gaussian random am-
plitudes. The square of the pressure amplitude is plot-
ted, white representing higher values. (b) Two-dimensional
Fourier transform of (a).

FIG. 5. Wave fields within the circular cavity (a) 218 kHz
and (b) 2.5 MHz.
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In conclusion, we note the ease with which the reso-
nance modes can be located and visualized over a wide
range of frequencies makes the schlieren system a valu-
able tool for studying the eigenfunctions, and to a lim-
ited extent the spectra, of two-dimensional cavities. The
main disadvantage of the current experimental setup is
the low Q factor of the acoustic system, preventing spec-
tra &om being obtained at high &equencies. It is pro-
posed that alternative acoustic arrangements, perhaps
involving excitation of water 6lled shells in air, would
yield significantly higher Q factors, permitting a greater
number of resonance modes to be resolved and spectra
obtained. A preliminary study undertaken by the au-
thors has demonstrated that such a technique could, with

care, be incorporated into the schlieren visualization sys-
tem. The association of periodic orbits with the acoustic
wave functions of the stadium-shaped cavity has been
demonstrated, and the appearance of scarlets at higher
&equencies noted. The importance of considering the
effects of overlapping resonance states in realistic scat-
tering systems has also been noted.
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