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Relevance ef surrogate-data testing in electroencephalogram analysis
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Surrogate-d. ata testing has been propounded to detect nonlinearity and chaos in experimental
time series and to differentiate them from linear stochastic processes or colored noises. The surrogate
tests of brain signals [electroencephalograms (EEG's)j have produced equivocal results. Therefore,
we examine the surrogate testing procedure using numerical data of classical chaotic systems, mixed
sine waves, white Gaussian and colored Gaussian noises, and EEG s. The white Gaussian noise
and chaotic time series are easily discerned by the surrogate-data test. However, the surrogate-
data test fails to detect colored Gaussian noise data of low correlation dimensions (D2) or mixed
sine waves containing a smaller number of wave forms. The colored Gaussian noise appears linear
and stochastic only when there is an increased randomness in its pattern and the data set is high
dimensional. Therefore, the "surrogate test" may not be a sufBcient test for chaoticity and wrong
conclusions can be arrived at if analyses are based only on the surrogate test. The EEG time series
produce finite correlation dimensions. The surrogate testing of eight independent realizations of
different forms of EEG activities produces significantly different Dq values (Student s t test) than
the original data sets. Thus the EEG is proven to be chaotic in nature. Apparently many natural
phenomena follow deterministic chaos, and as the dimensional complexity of the system increases
(D2 ) 5) it may be approximated to be stochastic.

PACS number(s): 87.10.+e

I. INTROI3UCTION

Biological systems are poorly defined and investigators
face the dilemma of interpreting a system's behavior from
the observed experimental time series. Consequent to the
recent developments in nonlinear dynamics and the the-
ory of chaos, many biological systems have been found to
exhibit chaotic behavior [1—5]. Esthetically a dynamical
model driven approach is preferred to a phenomenolog-
ical stochastic. description. Therefore the formalism of
chaotic dynamics has found application in understanding
brain functions. Brain signals can be recorded by placing
electrodes on the scalp surface and these signals reflect
the dynamical behavior of the underlying neural struc-
tures. The &equency content of an electroencephalogram
(EEG) is of importance in its assessment and hence ex-
tensive studies have been made based on the &equency
analysis of KEG's. Thus ere find frequent mention in the
EEG literature of four rhythmic activities characterized
by their frequency bands, which are designated as 8 (0.5
to 3 Hz), 0 (4 to 7 Hz), n (8 to 13 Hz), and P (14 to
30 Hz) activities. The ci and P EEG activities are nor-
mal rhythms. The 6 and 0 EEG activities are associated
with sleep, altered states of consciousness, or pathological
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conditions. The random-looking EEG signals have been
examined in the past by spectral estimates or parametric
linear modeling with little consideration of the processes
that generate these signals [6,7]. EEG signals show dra-
matic changes in their structure pattern in deep sleep,
epilepsy, coma, etc. A linear stochastic model of EEG
generation may not account for such transitions, whereas
the time evolution of chaotic systems shows transitions
from periodic states to aperiodic states. Therefore the
concept of chaos introduces a dynamical perspective for
understanding brain functions. It has led to the applica-
tion of nonlinear dynamical measures to the analysis of
EEG signals recently. Reference to such applications may
be encountered in books on chaos, reviews, and mono-
graphs [8—13].

The calculation of the attractor dimension or correla-
tion dimension (D2) of EEG time series has dominated
recent literature [9,14—17]. The dimension of the attrac-
tor is a characteristic feature of the underlying neuronal
processes generating the EEG signals. The D2 value
of the attractor may be of significance in detecting fea-
tures of various brain states, classification of patterns of
neural activities, and identification of specific drug ef-
fects on the brain. The attractor dimension directly re-
Bects the degrees of freedom of the system under study.
Therefore nonlinear dynamics provides a model for sig-
nal generation and temporal prediction which may help
in determining the nature of neuronal processes govern-
ing brain activity. Results on attractor dimension anal-
ysis of EEG s are available in the literature in the nor-
mal resting state, epileptic seizures, diferent sleep stages,
and states of anesthesia. Correlation dimension analysis
is also available &om cases concerning attentional tasks
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in humans and experimental learning situations in rats
[8—10,18-20]. The human data on the attractor dimen-
sion in the resting state have been rather less consistent
with a range &om 3 to over 10. The dimensionality has
been consistently seen to drop during an epileptic epoch
and stage IV deep sleep. DiKculties in comparing dis-
parate results arise because of the algorithms used and
the definition of dimensionality employed. Certain uni-
form conventions may emerge for handling experimental
time series in future. However, using the parameter of
the attractor dimension, a specific predictive model can
be built and experimental verification of the model is
possible [21]. This newly gained insight into the chaotic
dynamics of the brain is a significant departure from the
earlier stochastic visualization. Thus nonlinear dynam-
ics may be the method of study for complex systems and
their experimental time series. The application of non-
linear methods to EEG analysis has been discussed in
detail in a previous paper [22].

The chaos conjecture of EEG's is based on a finite cor-
relation dimension and a positive dominant Lyapunov
exponent (Ai) of the time series [23,24]. A number of
technical problems may cause EEG's to be contaminated
with signals &om noncerebral sources making the D2 or
Ay estimation spurious. Therefore the chaos theory of
EEG's has been seriously questioned and surrogate-data
testing has recently been proposed as one way to detect
the presence of nonlinearity and low-dimensional chaos
in experimental time series [25—27]. The suggestion for
"surrogate-data testing" stems from the observation that
linear-stochastic systems ("colored noises") also result in
finite D2 estimates [28,29] and the surrogate testing may
difFerentiate chaos &om colored noises. The details of
surrogate testing with numerical test data has been de-
scribed by Theiler et al. [25]. In their observations, one
set of EEG's did not show nonlinear structure while an-
other set did show nonlinear structure. Following a simi-
lar line of thinking, a number of investigators claim that
EEG activity is a colored noise and not chaotic [25,27,30—
32].

In this paper, we evaluate the validity of the surrogate-
data test using numerical data of the classical chaotic

II. NUMERICAL AND EXPERIMENTAL DATA
SETS

A. Larenz xnap and Henen xnap

The well known Henon map and Lorenz map are the
classical examples of chaotic systems. The Lorenz system
is given by

x = cy —cx)
y = rx —y —xz,
z = bz+ xy,

where c = 10, 6 = 8/3, and r = 28. Gill's routine is
used for integration with a step size of 0.006. The initial
conditions z(0) = y(0) = z(0) = 1 are used for the Lorenz
map. 200000 data points are generated, of which 5000
points are discarded to remove the initial transients.

The Henon map is given by the equation

x;+g ——bx, g + 1 —ax, ,
2 (2)

where a = 1.4 and 6 = 0.3. 90000 data samples are gen-
erated using the initial conditions x,. = x; ~

——0.0 for the
Henon map. The initial 5000 data points are discarded to
avoid transients at the beginning of the data. The Lorenz
map (x component) and the Henon map data, the corre-
sponding surrogate-data sets, and the power spectra are
shown in Fig. 1

B. Mixed sine waves

The standard sine function is used to generate varying
points of sine waves.

systems of the Lorenz map and the Henon map, white
Gaussian noises, colored Gaussian noises, and mixture of
sine waves along with experimental EEG data.
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where f; denotes the frequency (randomly chosen in the
range 0.5—100 Hz) of the ith sinusoid and f, the num-
ber of data samples per cycle. Eight realizations of each

mixed sinusoid (mixture of 3, 5, and 20 wave forms)
are generated. The resulting signals are made to have
zero mean and unit variance. The probability distribu-
tion is almost Gaussian. The signals, the corresponding
surrogate-data sets, and the power spectra are given in
Fig. 2.
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C. White Gaussian noises and colored Gaussian
noises

Normally distributed random numbers of zero mean
and unit variance are generated as white Gaussian noise.
The signal, its surrogate-data sets, and the spectrum are
given in Fig. 3(a). Colored Gaussian noises are generated
by applying linear phase low-pass 6nite impulse response
(FIR) filters and varying cutoff frequencies from 3 Hz to
900 Hz. The representative 3, 300, and 900 Hz colored
noises, the corresponding surrogate-data sets, and the
power spectra are shown in Figs. 3(b), 3(c), and 3(d),
respectively.

D. Experimental data

EEG data were collected from the eight loci of the in-
ternational 10-20 system using a conventional EEG ma-
chine coupled to a 486 PC-AT system with analog to dig-
ital converters (DT2841) and array processors (DT7020)
of Data Translation Inc. Seven normal male subjects
having no history of neurologic or psychiatric disorders
participated [mean age 28.5 yr, (SD) 3.25, range 22—35].
Subjects were tested in the morning in a soundproof, elec-
trically shielded room while lying on a comfortable bed.
Silver cup electrodes were attached to the eight scalp loci
(Epi, I"7, Ts Oi with reference electrode at Ai, I"pz, Is,
T4, 02 with reference electrode A2, and the forehead the
ground electrode) for monopolar recording. They were

instructed to be in a relaxed state with eyes open for
15 min and then eyes closed for 15 min. On-line digital
recording was continued for 30 min for each subject and
the procedure was repeated four times on the same sub-
ject. The same subjects were also taken for a whole night
sleep recording [one channel of EEG Cs —Ai, one channel
of electromyogram (EMG), two channels of electrooculo-
gram (EOG)], after two nights of acclimatization. The
procedure described by Rechtschaff'en and Kales [33] was
followed. The whole night digital data of the seven sub-
jects were obtained.

The EEG signals were digitized at 128 samples/sec to
the PC-AT and later ported to a HP-9000/735 graphics
workstation. The signals were filtered through a band-
pass filter (0.5—32 Hz by fourth order Butterworth twice
cascaded) prior to analysis. The data of each subject
were visually screened to obtain artifact free data of at
least 8 sec duration in various traditional EEG activity
bands. The data blocks were classified as n, P, and in-
determinate activity patterns with the help of two expe-
rienced electroencephalographers who differed by ( 5%
in their scoring. The differences were resolved by dis-
cussion and consensus rating. The sleep EEG data were
screened to obtain 0 and b, sleep activity patterns. A rep-
resentative sample of o. , P, 0, b and indeterminate EEG
activities, the corresponding surrogate-data sets, and the
power spectra is given in Fig. 4. Eight independent real-
izations of difI'erent activity patterns of EEG's are used
for estimation of the correlation dimension and surrogate
testing.
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III. ESTIMATION OF D2 AND
SURROGATE-DATA TESTING

We have employed the maximum-likelihood D2-
estimation method developed by Takens [34] and ex-
tended by Ellner [35]. The Takens-Ellner algorithm is
chosen over the Grassberger-Procaccia algorithm for its
computational efEciency and its use for small data sets
[27]. Dq is estimated for embedding dimensions 4—16 for
all data. The same data sets are subjected to the sur-
rogate test as employed by Theiler et al. [25] in their
investigations of real and siinulated data (no windowing,
original amplitudes, type-II surrogating). The surrogate
data are designed to test the null hypothesis that, al-
though the dynamics of the observed signal is linear, it
may be subject to nonlinear distortions. The original sig-
nal xz is transformed into y& by a static nonlinear Alter
H(.). The filter is static in the sense that yq depends only
on the current value of xq. First a time series gq having
an independent identical Gaussian distribution is formed.
Next, we reorder gq so that its ranking agrees with the
transformed time series yq,

. that is, if yq —,is the nth small-
est of all the y's, then g~ —,. will be the nth smallest of all
the g's. Therefore the reordered gq is a time series which
follows the time series yq and has a Gaussian amplitude

distribution. The gq is then Fourier transformed, phase-
angle shuRed, and inverse Fourier transformed to form

g~, a surrogate of the Gaussian time series. The fi.nal sur-
rogate is obtained by reordering y& so that it follows g~

[25,32].
Sixteen such phase shuRed surrogate sets are gener-

ated for a single set of original data. A minimum of eight
original data sets are evaluated for surrogate testing in
each category. The surrogate D2 values are statistically
compared (Student's t test) with the Dq values of the
original signals across the embedding dimensions.

IV. RESULTS

A. Chaotic time series

The Lorenz map and Henon map clearly show satu-
ration of their D2 values for embedding dimension 6—
16. The D2 curves of the original data of Lorenz (x
component) for difFerent embedding dimensions and the
surrogate-data sets are given in Fig. 5(a). The D2 curve
of the original data levels o8' at embedding dimension 6.
The corresponding surrogate-data sets do not show sig-
ni6cant saturation in D2 values with increasing embed-
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ding dimensions. The D2 values of the surrogate data
are significantly higher than the original sets (p ( 0.01)
for all embedding dimensions for both Lorenz and Henon
data.

H. Mimed sine maves

The mixed sine waves constituting 20 difFerent sinu-
soidal wave forms do not have a saturable or finite cor-
relation dimension [Fig. 5(d)]. The surrogate-data sets
show similar behavior in D2 values. However, the D2 val-
ues of the surrogate sets are significantly different from
the original data sets (p & 0.001 for embedding dimen-
sions 4, 6, 8, and 14, p=0.03 at embedding dimension 10,
p= 0.0025 at embedding dimension 12, and p=0.0097 at
embedding dimension 16). The mixed sine waves with
fewer sinusoids (three and five) display saturation of D2
values [Figs. 5(b) and 5(c)] and the corresponding sur-
rogate data sets have significantly difFerent (p & 0.001)
D~ values for the entire range of embedding dimensions
except for the mixed sine wave of five wave forms at em-
bedding dimension 4 (p=0.1716).

C. White Gaussian noise and colored Gaussian
noises

The white Gaussian noise as expected does not have
saturable D2 values [Fig. 5(e)]. The surrogate sets can-
not be differentiated from the original values and the D2
values of the surrogate sets are not statistically different
from the original (p ) 0.17) for the entire range of embed-
ding dimension. The colored Gaussian noises, those gen-
erated by low-pass filtering and containing low-frequency
components, show saturation in their D2 values between
4 and 16 and 6 and 16 embedding dimensions for the
3 Hz and 300 Hz cutoff signals, respectively, [Figs. 5(f)
and 5(g)]. The surrogate-data tests of these signals show
statistically different behavior. The colored noises fil-
tered between 3 Hz and 300 Hz have significantly difFerent
D2 values than the corresponding surrogates (p & 0.001
for 3 Hz and 300 Hz low-pass cutofF). However, the col-
ored noise signals containing high-frequency components
show no saturation in their D2 curves and the D2 val-
ues of the original data sets are not significantly different
from their surrogate counterparts (p & 0.083). At the
frequency cutofF of 900 Hz the signals show gross similar-
ity with white Gaussian noise [Fig. 5(h)].

D. ERG signals

We have analyzed a large number of segments of EEG
signals from different locations of the scalp in behavioral
states. In this paper, we present the surrogate-data tests
of known EEG wave forms or activities. It is found that
the 0 and b range of EEG activities pass through the
surrogate testing. These have saturable D2 values and
the surrogate sets are significantly different in their D2

values from their original sets (p & 0.001 for 8 and 0
activities but p = 0.0018 for embedding dimension 8 of
0 activity) for the entire range of embedding dimension.
While there is an appreciable saturation in the D2 curves
of the o. and P range of activities, the majority of these
activities prove positive in surrogate testing and have a
saturable or finite correlation dimension. The surrogate
sets of o; activities have D2 values that are significantly
higher than the original data sets (p & 0.001 but p =
0.0412 at embedding dimension 4). For the P activities,
the surrogate sets have significantly different D2 values
than the original data (p ( 0.01) for all embedding di-
mensions except 6 (p= 0.0708). The average correlation
dimensions of a and P activities are also higher than
the 0 and b activities. For the indeterminate EEG ac-
tivities, the surrogate sets have significantly higher Dq
values than the original set (p ( 0.05) for all embedding
dimensions except 6 (p= 0.4238).

We point out that when a single realization is taken the
232 value of the original data set and that of surrogate-
data sets may not show significant differences in some
segments of the EEG in the n and P range of activities.
For all of the b and 0 range of EEG activities, the D2
values of the surrogate-data sets are significantly different
from that of the original signal. A test of significance may
not be appropriate while comparing a single set of values
of original data with many sets of values of its surrogates.
Therefore these results are not included in this paper.

V. I3ISCU SSION

The understanding that deterministic dynamical sys-
tems can display aperiodic behavior has strong bearing
on EEG research: random-looking EEG activities may
be the outcome of a chaotic process. This new approach
of nonlinear dynamics to EEG's envisages deterministic
rules underlying EEG generation in contrast to the tra-
ditional approach where EEG activity is considered to
be due to a linear stochastic process or a filtered noise.
While a number of technical problems need to be ad-
dressed for application of nonlinear dynamical measures
to EEG s, criticism has cropped up about the utility of
nonlinear dynamical measures of EEG's. It has stemmed
from the need for a test procedure that can distinguish
colored noises from chaotic processes. Surrogate-data
testing has been used to detect nonlinearity and chaos
in EEG [25—27]. We have evaluated the surrogate-testing
procedure for chaotic time series, mixed sine waves, white
Gaussian noises, colored Gaussian noises, and EEG's.
Our results clearly indicate that the surrogate testing
alone may not resolve such ambiguities. The test fails
for colored noises of low-frequency content and mixed
sine waves. These signals also have low correlation di-
mensions.

The Lorenz and Henon systems are classic examples of
known chaotic systems of low dimensions. The surrogate-
data sets have statistically different D2 values from the
original data across different embedding dimensions rang-
ing from 4 to 16. Therefore it may be inferred that
the original series are not due to linear stochastic pro-
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cesses. There is no ambiguity in differentiating the low-
dimensional chaotic time series and its linear stochastic
counterparts resulting from surrogating the original data
[Fig. 5(a)].

The mixed sine waves (a mixture of 20 sinusoidal wave
farms) do not have saturation in the D2 values and the
D2 increases with increase in embedding dimensions. Its
behavior is like white Gaussian noise. However, unlike
white Gaussian noise, the surrogate-data sets of mixed
sine waves have statistically different D2 values from the
original data sets. This shows that the linear stochas-
tic counterparts of the time series may have statistically
diferent D2 values in the absence of a limiting correla-
tion dimension [Fig. 5(d)]. In the case of white Gaussian
noise, the D2 values of the linear stochastic parts are
indistinguishable from the original data sets and the sur-
rogate test positively identifies it to be linear stochas-
tic in the absence of a limiti:ng correlation dimension
[Fig. 5(e)]. In the case of mixed sine waves, the sur-
rogate testing is ambiguous. The results do not diBer-
entiate it from chaotic systems and thus in the absence
of other measures the surrogate testing may interpret it
as chaotic. Therefore a limiting correlation dimension
or saturation of the D2 value with increasing embedding
may be considered as a prerequisite for identification of
chaotic systems. This conjecture has been implied in the
theory of chaos [36]. The saturation of D2 curves or a
limiting correlation dimension have an intrinsic relation
to surrogate testing in that a stochastic system does not
define an attractor and the finite D2 value of any system

is a measure of its minimum number of degrees of free-
dom. Further, the saturation of D2 values is seen if the
mixed sine waves contain fewer sine waves [Figs. 5(b) and
5(c)]. This makes the surrogate testing totally invalid as
a means to detect low dimensional chaos.

For the colored noises, we have shown that at a low-
frequency range up to 300 Hz of the filter setting the re-
sulting colored signals pass surrogate testing [Figs. 5(f)
and 5(g)]. These signals have limiting correlation di-
mensions. These forms of colored noises are mistaken as
low-dimensional chaos by the test. The surrogate testing
only difFerentiates colored noises of high-frequency con-
tent [Fig. 5(h)]. This makes the surrogate testing indeed
irrelevant. Surrogate-data testing, therefore, cannot be
construed as a test for detecting low-dimensional chaos.

In our study of EEG data we have extracted eight
independent realizations of diferent EEG activity pat-
terns. The D2 curves show saturation and limiting cor-
relation dimensions (Fig. 6). While the P and indeter-
minate activities have saturations at high embedding,
the b, o., and 0 activities show saturation at 6—8 em-
bedding dimensions. The surrogate sets have D2 values
that are significantly diferent for all embedding dimen-
sions. These results strongly contradict the results of
previous claims on surrogate testing that EEG activity
is nonchaotic [26,27,29]. Almost all EEG segments have
limiting correlation dimensions.

For EEG time series, physiological imperatives suggest
that dynamical changes in the EEG pattern occur dur-
ing sleep and other states of behavior. The EEG patterns
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change from the random-looking awake state to periodic
slow wave patterns in deep sleep. Therefore it is perti-
nent to address the brain mechanism that may produce
such transitions. It is unlikely that linear stochastic brain
processes produce such transitions. Our results suggest
that the basic underlying brain dynamics may be chaotic.
The difFerent transitional states may be brought about
by a varying degree of relaxation of the control mech-
anisms. This may account for transitions to difFerent
chaotic regimes of varying dimensional complexities [37].
The brain activity ln high-dimensional states may be ap-
proximated by linear stochastic processes.

The nature of randomlike signals such as EEG's that
arise from a dissipative dynamical system may be chaotic
in nature and may display varying dimensions depending
on the control parameters that govern the degrees of free-
dom of the system. It is known that oscillations in single
neuron and neuronal ensembles underlie the generation
of various pattern features in EEG's. Since mathemati-
cians have long known that the periodic forcing of non-
linear oscillators can give rise to complex phase locking
patterns, bifurcations, and aperiodic dynamics [38], one
anticipates that such behavior might be observable in
forced neuronal oscillators. Studies on the periodic forc-
ing of biological oscillators have, in fact, been interpreted
in the context of chaotic dynamics [39]. It has been pro-
posed that complex ERG patterns which occur normally
arise from interactions between a large number of neural
relaxation oscillators [40]. All these observations raise
the possibility that some of the observed variability in
neural electrical activity may be a refIection of intrinsi-
cally chaotic dynamics.

From the results of analysis of a large number of seg-
ments of EEG data, we put forth the following practical
considerations for EEG analysis.

(1) It is premature to conclude that "EEG activity is
nonchaotic and at best nonlinear or it is due to a linear
stochastic process" or "colored noise. " Notwithstanding
the mechanism of EEG activity being a linearly corre-
lated noise or stochastic process, it has a finite correla-
tion dimension and positive Lyapunov exponents. It has
been repeatedly reproduced in the literature by a large
number of research groups [13,40]. A parallelism between
the attractor dimension and the Aq curve in our earlier
studies may be seen as indirect evidence for the Kaplan-
York conjecture to be true for EEG data [41]. It is not
clear how "surrogate testing" would be valid for systems

exhibiting dimensions ) 3. Our study suggests that the
attractor of chaotic systems (dimensions ) 8) is likely to
be near stochastic regimes. The phase space may have a
near random distribution. Any phase scrambling will not
lead to a positive surrogate test. We have found similar
trends in testing single blocks of EEG data in the o. and
P range of activities.

(2) Unlike a dominant positive I yapunov exponent,
surrogate testing is not a definite criterion for testing
chaos. It may only distinguish very low-dimensional (di-
mension ( 5) chaotic signals from very high-frequency
colored noises. Therefore, surrogate-data testing should
not be considered as a valid test for chaos. A limiting
correlation dimension and at least one positive Lyapunov
exponent may be sufficient to characterize chaos.

VI. CONCLUSION

From the studies on surrogate testing it is difficult to
prove the claim that EEG signals are colored noises hav-
ing finite correlation dimension. It is difFicult to sus-
tain the argument that EEG activity needs to be un-
equivocally proved to be chaotic by "surrogate testing. "
Surrogate-data testing may not distinguish chaotic time
series and colored noises of low-frequency content. Given
a finite correlation dimension, it is difIicult to resolve
whether it is of a strange attractor or a chaotic process.
This may be a valid question for those who adhere to
stochastic descriptions of dissipative dynamical systems.
There is no short answer to this question by surrogate
testing as of now. An indirect and partial answer is in
Mandelbrot's remark that if any natural process were a
fractional Brownian motion (fBm), it would have grown
enough to destroy nature. From the clinical and physio-
logical evidences we assume that the EEG is not noise or
filtered noise. The transitions seen in the normal waking
state EEG's, normal sleep EEG's and other behavioral
states call for alternate explanations and thus the chaotic
conjecture of EEG generation is appealing.
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