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Stochastic Hopf bifurcation: The effect of colored noise on the bifurcation interval
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We consider a general nonlinear dynamical system undergoing a supercritical Hopf bifurcation,
and driven by a Gaussian colored noise. Using normal form theory and an approximate effective
Fokker-Planck equation, valid for weak intensity and small correlation time of the noise, we obtain
an explicit expression for the stationary probability distribution of the full general system close to
the bifurcation, and analyze the changes in the shape of the distribution to discuss the effect of the

noise on the bifurcation interval.
PACS number(s): 05.40.+j, 02.50.Ey

There are many physical situations in which the
stochastic nature of some of the relevant parameters in-
volved in the problem play a fundamental role in the evo-
lution of the system [1]. Of particular significance is the
analysis of the behavior of systems perturbed by colored
noise, i.e., with a nonzero correlation time.

Among the many different aspects analyzed in the lit-
erature, the study of the influence of fluctuations on the
appearance of a Hopf bifurcation has a prominent place
[2-11]. In the absence of fluctuations, center manifold
and normal form theories provide a powerful tool for the
study of dynamical systems. The idea of introducing
successive coordinate transformations to simplify the an-
alytic expression of a general problem has been extended,
with different success, to stochastic problems. Some of
the early works on this subject started with the reduced
dynamical system and then introduced the fluctuations
[4,5], or made the reduction of variables in the associated
Fokker-Planck equation [6]. However, those descriptions
do not contain all the terms describing the system-noise
coupling as they arise when the parameter fluctuations
are included in the original system and all the nonlin-
ear variable changes to arrive at the normal form are
performed [3,7,9,11]. It is clear that this more complete
analysis is necessary to fully account for the effect of noise
on the bifurcation.

When the reduction to the normal form is done in a
two-dimensional system of equations including a stochas-
tic term, only the deterministic part of the equations re-
tain the characteristic radial symmetry. This makes it
necessary to work with the two-dimensional probability
distribution. In Ref. [3] Hoffmann considered the effect of
white noise of weak intensity on the Hopf bifurcation of
a general two-dimensional system. After performing the
necessary transformations to obtain the normal form and
making an expansion on powers of the noise intensity he
was able to identify a noise-dependent bifurcation inter-
val wherein the two-dimensional approximate stationary
distribution of the system changed its shape from a focus
type to a craterlike (limit cycle) structure. The existence
of a whole bifurcation interval instead of a single bifur-
cation point is a feature of not making any kind of phase
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averaging in order to obtain an oversimplified description
of the bifurcation in terms of a single variable, and has
been further discussed theoretically [8,12], and observed
in analog experiments [10]. However, to our knowledge,
the influence of the correlation time of the noise on the
position and width of the interval has not been previ-
ously considered in the literature. In this paper we fill
that gap by extending the method used by Hoffmann to
the case of colored noise for a general model that includes
most of the physical significant systems that undergo a
supercritical Hopf bifurcation. In order to do that, we
use a recently proposed geometrical method [13] to ob-
tain an effective Fokker-Planck equation, the so-called
best Fokker-Planck equation (BFPE) [14], and look for
the changes in the shape of the probability distribution
as indicators of the transitions. As in the white noise
case the transition from a single peak (focuslike distribu-
tion) to a crater (limit cycle behavior) occurs in a whole
interval instead of at a single point, but now the charac-
teristics of the interval depend not only on the intensity
but also on the correlation time of the noise.

In a practical situation, we normally begin with a phys-
ical model perturbed by noise (it may be multiplicative,
additive, or both). To analyze the effect of the fluctua-
tions close to a Hopf bifurcation point, it is convenient
to look for the corresponding (stochastic) normal form.
Performing the adequate nonlinear variable changes in
the original model, and being consistent with the noise
in the different transformations, we may write the general
complex stochastic differential equation

z= f(z,Z) + £(t)g(za2) ) (1)

which we will take as our starting point, and in which
an overbar denotes complex conjugation. We will also
assume the following conditions:

(a) The function f(z,z) admits an expansion of the
form [16]

b

2)

f(z,2) = Az 41222+ -« + 2 tizF 4 O(|z|#*+3)
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where we also have Re(c;) < 0 to recover the standard
deterministic normal form of a supercritical Hopf bifur-
cation, and the complex eigenvalue A = u + iw is chosen
such that w > 0.

(b) The noisy term £(t) is a real-valued Ornstein-
Uhlenbeck process with zero mean and correlation func-
tion given by

(£(t)(s)) = 02 /27 exp (= |t —s|/mn) , 3)

with o and 7,, the intensity and correlation time of the
noise, respectively.

(c) The function g(z,%) is an analytic function of z
that accounts for the coupling between the noise and the
system. Due to the complexity of the nonlinear coordi-
nate changes involved in the passage to the normal form,
9(z, Z) appears as a power series in z, Z, even in the sim-
plest case when one started with an additive stochastic
force. Moreover we assume that lim|;| 0 g(2,2) # 0,and
we can write

9(2,2) = goe™° + O([2]) , (4)

with ¢o € [0, 2], and go # 0.

From the deterministic point of view, the proximity to
the origin can be invoked to truncate the normal form
expansion (2). To be more precise, the amplitude of the
oscillations appearing at the bifurcation point grows as
|z| ~ u'/2, remaining small near the critical value p. = 0.
When a stochastic term is added, as in Eq. (1), the situa-
tion becomes more delicate. If the noise is strong enough
or if it is highly correlated, a trajectory could leave the
neighborhood of the origin, and the higher-order terms
in (2) and (4) would become important. It is, therefore,

appropriate to restrict the analysis to the case of small
intensity and correlation time, and we shall calculate the
stationary probability density of the process z as an ex-
pansion around zero noise.

For this purpose we rescale appropriately our variables
and introduce polar coordinates by means of the coordi-
nate change

z = +/— w/Re(c1) nrexpi[f + po] (5)

with 7 = [goy/—Re(c1)w™! 0]*/? as the parameter that
we shall assume small. The deterministic behavior near
the bifurcation point suggests the advantage of a change
to a new order parameter §2 defined by [3]

2 =u (wn2)~1 . (6)
With these new variables, defining the parameters
I = —Im(c;)/Re(c1), v = —wRe(cz)/ [Re(cy)]?, v =

—wIm(cz)/ [Re(c1)]?, and using w=! as the time unit,
Eq. (1) reads

SG)sli]oeoeli]. o

where £(t) is a new Ornstein-Uhlenbeck process with
correlation function (£(t)€(s)) = 1/27exp (—|t — s|/7)
where 7 = wT,, and the new functions F and G are
vectors given by (note that in the expression for G,
the second- and third-order terms in 7 are general [3].
In a particular application, the explicit calculation of
the model-dependent coefficients a; and 3; will indicate
which are the angular terms actually present)

e 0 §2p — 3 5
F[;]=Zn2’“sz=[1]+n2[ T2 ]+n4[z:4]+0(776) ®)
k=0

and

r _°° k . cos @ 2
G[a] = Gk“"[—lsin0]+”

k>1 r

r [al cos? 0 + (ag + B1) cos @sin @ + B, sin® 6]

B1cos?0 + (B2 — ay) cosOsinf — oy sin? 0

r2 [ag cos® 0 + (aq + B3) cos? Osin 6 + (as + fB4) cos O sin? 6 + B5 sin® 0]

+n?

+0(*) . (9)

r [ﬁg cos® 8 + (B4 — a3) cos? Osin 6 + (Bs — ) cos Osin? 6 — g sin® 0]

It is important to notice that the different time scales
governing the dynamics of the system are now related
through the parameters 77 and 7. Thus, 7 gives the sepa-
ration between time scales of the angular and radial vari-
ables, and 7 measures whether the noise evolves faster
than the phase (7 < 1) or vice versa.

The two-dimensional process solution of (7) is non-
Markovian, and to obtain an approximation for the sta-
tionary probability density P(r,#) we use the geometrical
treatment of Ref. [13] to write the BFPE [14], valid for
short correlation time and small intensity [17].

In the BFPE approximation the stationary probability

[
density P(r,0) satisfies the equation (see Ref. [13] for
details)

[—LF + LgLD] P,(’I‘, 0) =0, (10)

where Ly is the Lie derivative in the direction of the field
F [18], and the field D is given by

_ ° 1 _1sl —a1*
D_/0 ds§7—_e [¢6°] G, (11)

where ¢ is the flow defined by the deterministic part of
Eq. (7).
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To obtain an expression for the stationary distribution we use a perturbative method similar to that of Ref. [3] and
some properties of the Lie derivatives. Skipping the technical details, and after some tedious calculations we finally
obtain the stationary probability density, up to second order in 7, as

Py(r,0) =Nr {1 + n’r? [ar" +b6%r2 4 ¢ — %T(l —7%)[6% - r?)?

+(sin 20 — 7 cos 20) [2(1 +72) (62 —r?)2 — 1]:, } exp [(1 + 72)(26%r% — 7'4)] +0(n?),

where

a=—(1+717%) [§7+ %b] ,

b=(1+’7'2) [6a3+2a5+2ﬂ4+2(a1 +ﬂ2)2+8FT2+

1 2 2 1— 72
c=—3 [2013 +B8s+ (1+7%) a1+ B2)° — 1(as + 205) — 87'————]

N is the normalization constant, and the multiplicative
factor r is a consequence of the use of polar coordinates.

We now take as an indicator of the transitions the
changes in the shape of r~! P,(r,0) [1,3,11]. It is not
difficult to see that » = 0 is always an extremum, and
the others, if any, are given by

2
r2,(0) = 6% + ﬁ [c — (sin26 — 7 cos20)] , (16)
where terms of O(n%, §%) have been neglected.

The angular term in (16) oscillates between the values
++/1 + 72, and, therefore, three intervals of the param-
eter 62 can be distinguished in which 7= P,(r,§) shows
different structures. .

(a) 6% <821 =~ 3% [c+ (1+72)!/2]. The dis-
tribution exhibits a single peak centered at the origin.
We can think of this shape as representative of a stable
focus.

(b) 53,1 < 6 < 53,2 = -
For certain angles one maximum at r # 0 and a local
minimum at r = 0 appear, while for others there is a
unique maximum located at the origin. This is a typ-
ical situation of stochastically perturbed systems that
has no equivalence with any deterministic case. The ex-
istence of this bifurcation interval has been established
theoretically for the white noise case [3,8], and also ob-
served experimentally [10]. The width of the interval is
A =7n?/(147%)Y2 | and it is centered at — cn?/2(1+72).
The nonzero correlation time tends to reduce the width
of the bifurcation interval.

(c) 8% > 62,. For any value of the angle we always have
a maximum at r # 0 and a minimum at » = 0. Therefore,
all vertical cross sections are bimodal, and the probability
density undergoes a transition to a crater shape with a
closed rim at 62 = 6;"72. A limit cycle behavior appears.

The presence of region (b) makes it difficult to define
the bifurcation position in the stochastic case. Instead of
a point we find a whole interval separating stable focus
and limit cycle behavior. Following the arguments in

2 .
sy le— @+ 7))

(12)
(13)

,'.2
llfﬁ [(@1 = B2)* + (o2 + 61)2]] , (14)

1+ 72 (15)

f
[2,10] , we adopt 62, as the bifurcation value because it
fixes the point at which stochastic fluctuations are not
able to destroy the limit cycle oscillations.

Now we apply the previous results to the model known
as the Brusselator [15], defined by the equations

t=A— (1+B)z+z%y,
Yy = Bz — z2%y .

(17a)
(17b)

Without loss of generality, we take A = 1, and consider
B as the control parameter. As is well known the system
undergoes a supercritical Hopf bifurcation at the critical
value B, =1+ A2 = 2.

We are interested in the effect of fluctuations of the
parameter B on this transition. Taking B = B.(1+0) +
£(t), where 3 is a new bifurcation parameter (8 ~ 0)
and £(t) is an Ornstein-Uhlenbeck process as defined in
(3), we arrive, neglecting terms O(n*), at the stochastic
normal form Egs. (7)—(9) with 7 = 7,, 62 = 8/n%, T =
1/9, and a; = —2v/2/3, az = 16/9, as = —16/9 as the
only coefficients different from zero in (9). Therefore, the
coefficient ¢ for this model is
[r*+97® + 67 —97 +5] .

cp=— (18)

9(1 + 72)
Note that cg < 0, V7, and, therefore, the bifurcation is
always postponed (6% . > 0) with respect to its determin-
istic position , as observed in the analog experiments [10].
For very short correlation times, for which our theory is
valid, this postponement is smaller than that obtained
in the white noise situation, since cg — ¢p,r=0 > 0 for
T < 1, in agreement with the results in [10,11]. Finally,
in terms of the original parameter B, the position of the
second transition point is
Be2=2+20%[1.2 - 47] + O(7?) . (19)
To complement our analysis we compare this theoret-
ical result with a numerical simulation of the equations
(17) when the noise is present. Figure 1 depicts the pre-
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FIG. 1. Critical parameter B.> of the Brusselator as a
function of o2, and for different values of 7. The theoreti-
cal results are obtained from (19), and the points from the
numerical simulations are indicated by diamonds (7 = 0.01),
triangles (7 = 0.1), and squares (7 = 0.2).

dicted variation of Bz with respect to o2 for a fixed
value of 7 (7 = 0.01, 7 = 0.1, and 7 = 0.2, respectively)
compared with the critical values obtained from the sim-
ulations. Although the theory always underestimates the
values (with an error of 0.5% for the best case of small o
and 7, and of 2% for the worst situation of high 02 and
T), the qualitative and quantitative coincidence between
theory and numerical simulations is quite good. Notice
also how the postponement is reduced by increasing the
correlation time of the noise.

To summarize, in this paper we have calculated an ap-
proximate stationary probability distribution for a gen-
eral system showing a supercritical Hopf bifurcation and
perturbed by a colored noise. Our results are valid close
to the bifurcation point, and with a noise of small inten-
sity and short correlation time.

Because of its explicit angular dependence, the sta-
tionary probability distribution is no longer symmetric,
and as a fundamental consequence we do not have a sin-
gle bifurcation point but an interval, and inside that in-
terval, and for the same values of the parameters, bi-
modal vertical cross sections for some angles coexist with
monomodal ones. We wish to stress that this angular de-
pendence is an important ingredient in the behavior of
the system, and therefore, any study in which the angu-
lar variable is integrated out can only capture a limited
amount of information, and in particular cannot predict
the existence of the bifurcation interval [9,11].

The different transition values of the new control pa-
rameter 2 depend not only on the deterministic order pa-
rameter, but also on the characteristic values of the noise,
and in particular the correlation time of the noise makes
the width of the bifurcation interval smaller. Therefore,
noise-induced changes in the bifurcation values, as the
advancements and postponements predicted in [9], can
in general occur, depending on the values of ¢, although
the actual appearance of these changes will be model de-
pendent.
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