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Shape transformations of vesicles with intramembrane domains
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Phase separation within the lipid bilayer of vesicles can lead to the formation of domains that
affect the equilibrium shape of these vesicles. As a result of the competition between the bending
energy of the bilayer and the line energy of the domain boundaries, the domains induce the formation
of buds if their size is sufficiently large. This phenomenon of domain-induced budding is studied
both for freely adapting and for fixed volume. The phase diagrams show that the constraint on the
volume acts against the budding process, but will not, in general, suppress it. In many situations,
domain-induced budding leads to limit shapes for which the bud consists of a closed sphere that is
connected to the "mother" vesicle by an in6nitesimal neck. This neck is characterized by a general
and simple neck condition for the mean curvature of the membrane segments adjacent to the neck.
Budding also occurs if the Gaussian bending energy is taken into account. The efFect of the Gaussian
curvature energy is to change the structure and the stability of those shapes that exhibit small necks.

PACS number(s): 87.22.—q, 82.70.—y, 64.60.—i

I. INTRODUCTION

Fluid lipid bilayer vesicles are spontaneously form. ed in
aqueous solution. They can occur in a large variety of dif-
ferent shapes [1—7]. The conformational energy of a fluid
membrane that is laterally homogeneous depends only on
the shape of the vesicle characterized by the local curva-
tures of the surface [8]. The shape can thus be described
as the shape of minimal bending energy taking into ac-
count global constraints on the surface area, the enclosed
volume, and the topology of the surface [6,7,9—11].

The experimental observation of vesicle shapes reveals
a variety of different families of shapes [2,3,12,13]. Most
of them are of spherical topology, but tori and vesicles
with higher topological genus have also been observed
[14—16]. Shape transitions can be induced by changing
control parameters such as temperature or osmotic con-
ditions. A prominent example is the budding transition.
In this case, the surface area of the membrane increases
due to thermal expansion and the mirror symmetry of
a prolate shape is broken in a discontinuous transition
when the temperature is increased. A bud is formed,
which is connected to the original vesicle by a small neck
[2,3].

A lipid bilayer membrane in its Quid. state has the prop-
erties of a two-dimensional liquid. If the bilayer consists
of more than one species of molecules, it can either repre-
sent a homogeneous mixture or phase separate into two
diff'erent ffuid phases [17].

Biological membranes consist of many different types
of lipid molecules and cholesterol [18,19]. Phase separa-
tion within mixtures of different lipid molecules has been
observed experimentally for monolayer systems [20—22]
and bilayers [19,23—26]. For lipid-cholesterol mixtures
it has recently been shown that a phase separation into
two Quid phases, one with a large and the other with

a low cholesterol fraction, exists in the phase diagram
of these mixtures [19,24—26]. Lipid-cholesterol mixtures
have attracted a lot of interest since cholesterol plays an
important role as a constituent of biological membranes
[27,28].

If phase separation occurs within a membrane, the or-
der parameter related to the demixing is an additional de-
gree of freedom that is, in general, coupled to the shape of
the vesicle. The shape therefore is not determined by the
bending energy alone since the bilayer composition cou-
ples to the bilayer shape [17,29—41]. In fact, shape trans-
formations induced by changes of the composition within
the bilayer have been observed experimentally [13].

A domain embedded in the bilayer is bounded by an
edge with a finite line tension 0. The line energy of a
circular domain can in general be lowered by forming
a bud connected by a small neck to the original vesicle
[34,35,38]. If the edge of the domain is within the neck,
the edge energy is essentially zero. The formation of a
bud leads to an increase of the bending energy that is of
the order of the bending rigidity K, independent of the
size of the bud. Budding will occur if the edge energy of
the flat domain is of the same order of magnitude as the
bending energy. The domain size at which both energies
are comparable is given by the invagination length ( =
r/o, which shows that budding should in general occur
if the domains are sufficiently large [34,35].

The present paper gives a systematic analysis of the
equilibrium shapes of vesicles with intramembrane do-
mains. A model for vesicles with domains is defined
in Sec. II. Shape equations with appropriate matching
conditions at the domain boundaries can be used. to de-
scribe stationary shapes with axial symmetry. Equilib-
rium shapes that are obtained from these shape equations
are discussed in Sec. III in terms of energy diagrams and
phase diagrams for two different situations: (i) vesicles
with no constraint on the enclosed volume and (ii) vesi-

1063-651X/96/53(3)/2670(14)/$10. 00 53 2670 1996 The American Physical Society



53 SHAPE TRANSFORMATIONS OF VESICLES WITH. . . 2671

cles with fixed volume. The role of the Gaussian curva-
ture energy for vesicles with domains is studied in Sec.
IV. Section V discusses the shape of a vesicle with a grow-
ing domain. The results of this work are discussed in Sec.
VI and experiments are suggested by which one may ob-
serve shape changes induced by domains. Technical de-
tails are given in the Appendixes at the end of the paper.
Some of these results have been reported previously in
Ref. [38].

K(~)
Eb—

2

Eg =—r~(~)

dA(Ci + C2 —CO )

dA CgC2 + r.~
(P) dA CgC2

dA. (Ci + C2 —Co )

(6)

II. EQUILIBRIUM SHAPES OF VESICLES
WITH FLUID DOMAINS

A. Free energy

A multicomponent vesicle consists of a mixture of dif-
ferent types of molecules that form a bilayer in aqueous
solution. Here we will restrict ourselves to systems that
undergo a phase separation into two Quid phases.

Within a lipid bilayer, phase separation can occur sep-
arately within both monolayers. We analyze two situa-
tions: (i) monolayer domains, which lead to an asymmet-
ric bilayer and are thus characterized by a spontaneous
curvature, and (ii) bilayer domains, for which the adja-
cent monolayers have the same composition. Thus we
will ignore the possibility that there are two monolayer
domains that will overlap only partially.

As long as the two types of molecules A and B mix
within the membrane, the membrane is homogeneous and
its surface area is fixed by the total number of molecules
N~+N~. If one enters the coexistence region of the phase
diagram, the membrane starts to separate into two coex-
isting phases. When the phase separation is completed,
the membrane consists of two phases n and P. The total
domain sizes A( ) and A(~) are fixed by the constraint

Here 2(Ci + C2) and CiC2 denote the mean curvature
and the Gaussian curvature on the surface. Since the
membrane is taken to be homogeneous within each do-
main, the bending rigidities r( ), K(~), K&, and K& as
well as the spontaneous curvatures Co and Co are
constants.

The model defined by Eqs. (2)—(6) is the spontaneous
curvature model for inhomogeneous vesicles [38]. The
model neglects the coupling of the two monolayers, which
would be important if the Hip-Hop of the lipid molecules
between the two monolayers was strongly suppressed.
For phospholipid-cholesterol mixtures, however, this cou-
pling should not be relevant since cholesterol molecules
have a relatively high rate of flip-flop [27].

With the assumption that shape changes of the mem-
brane do not acct the thermodynamics of the binary
system, the surface areas A( ) and A(~) are fixed by the
numbers N~ and N~ of the lipid molecules. The sur-
face densities of the free energy f( ) and f(~) are also
constant. Therefore, the bulk contribution to E in Eq.
(3) can be omitted as a constant contribution. In. order
to take the constraints of fixed areas A( ) and A(~) into
account, two Lagrange multipliers Z( ) and Z(~) are in-
troduced. The shape of the vesicle is then described as
the minimum of the functional

A( ) p( ) + A(&) p(&) —N N

where p = p~ —p~ is the density difFerence and p~, p~
are the number densities per unit area of the molecules
of types A and B within the membrane.

The total energy of the vesicle can be expressed as

K(~)
dA (Ci+ C2 —Cs ) + &I: CiC2

2

dA (Ci+ C2 —Co )'+ ~I- CiC2
p 2

+ dt0. +Z( )A( )+K~A~ +PV, (7)
E = E + Eb + E~ (2)

where Fb and EG are the normal and the Gaussian bend-
ing energy, respectively [8]. The contribution

= A(~) y(~) + A(P) y(&) + y,

where P is the Lagrange multiplier for the enclosed vol-
ume or, alternatively, the pressure difference between the
inside and the outside of the vesicle.

denotes the free energy of the binary mixture. Here f(
and f (~) are the free energy densities of the two coexisting
phases and

dl (4)

is the energy of the domain boundary with line tension
o, which involves the integral along the boundaries Bo. of
the o. domains.

The bending energies Eb and E~ of a phase separated
vesicle can be written as

B. Shape equations and matching conditions

For homogeneous vesicles, the calculation of axisym-
metric shapes of minimal bending energy has been stud-
ied by several groups; see, e.g. , [42,43,6]. In the following,
we will derive the corresponding shape equations that
determine axisymmetric stationary shapes of the func-
tional I" as given by (7). First, the axisymmetric shape is
parametrized by the arclength S of the contour as shown
in Fig. 1. The contour is described by the functions
B(S), Z(S), and @(S), where R is the distance of the
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I IG. 1. Parametrization of an axisymmetric shape that
consists of two domains o. and P. The coordinate along the
symmetry axis is denoted Z, B is the distance from this axis,
g is the tilt angle of the contour, and S is the arclength of
the contour. The domain boundary is located at S = Sz.

axis of rotational symmetry, Z is the coordinate along
this amis, and g is the tilt angle of the contour. We will
now focus on the case of vesicles that consist of two do-
mains, denoted o. and P. The domain P corresponds to
the interval So ——0 & S & Si and the domain o. is de-
scribed by the interval Si & S & S2. The axisymmetric
domain boundary is located at S = Si.

This parametrization is convenient to describe the
shape and to solve the shape equations. However, it
turns out that since Sq, R(Sq), and g(Sq) cannot be
varied independently, this parametrization leads to dif-
6.culties in the variational calculation if the position of
the doInain boundary is varied. We therefore use a gen-
eralized parametrization to carry out the variation. The
result is then reparametrized by the arclength S. This
method, which is described in Appendix A, leads to the
shape equations (A13) and (A14) for the contour line.
These shape equations reduce within each domain to the
well known shape equations for vesicles of spherical topol-
ogy [42,6,7]. Furthermore, as a result of the variational
method, one obtains the matching conditions (A21) and
(A22) for the contour at the domain boundary at S = Sj .

Note that the matching conditions (A21) and (A22)
do not determine the shape of the domain boundary in
a unique way. We will assume that the shape is smooth
at the domain boundary, i.e. , that the functions R(S),
Z(S), and Q(S) are continuous at S = Sq. This assump-
tion should be valid in a situation where the membrane
has a continuous bilayer structure at the domain bound-
ary. If, however, the molecular structure at the domain
boundary deviates from a smooth bilayer, other matching
conditions are conceivable. One could, for example, allow
for a discontinuity of g(S) at S = Sq that would alter
the constraints for the variations at the domain bound-
ary and would therefore lead to modified matching con-
ditions.

III. BUDDING INDUCED BY
INTRAMEMBRANE DOMAINS

V

(47r/3) Ros

Here Ro is the vesicle size deFined by A( ) +A(~) = 4vrRO.

A. No volume constraint

For a vesicle with freely adjustable volume, the equi-
librium shape is characterized by P = 0, i.e. , there is
no pressure d.ifference across the bilayer. We erst dis-
cuss the most simple case of identical bending rigidities
v = r( ) = v(~) of the domains and vanishing sponta-
neous curvatures Co ——Co ——0. The shape of the
vesicle is then controlled by two dimensionless parame-
ters: the relative domain size

g(P)

~( )+~(P)

and the red. uced. line tension

A = rrR

/rishi

= R /( (1O)

Here (—:Ki~i /cr is the invagination length, which governs
the competition between line tension and bending.

Energy diagrams

The energy E is displayed in Fig. 2 as a function of
A for different values of x. All curves start for A = 0
with a sphere and energy I"/87rr = 1. For increasing A,
the line energy increases and the shape begins to change.
This state of the vesicle is called the incomplete bud. For
larger values of A, the energy exhibits a Gibbs loop. Since

previous section. Stationary shapes are obtained by solv-
ing the shape equations (A13) and (A14) together with
the matching conditions (A21) and (A22).

One difference between homogeneous and inhomoge-
neous vesicles is important to note. For homogeneous
vesicles with v& ——vG the Gaussian curvature energy

4 ~ (~) (P)

is a topological invariant that can be neglected since it
does not affect the shape of a vesicle. In contrast, the
Gaussian curvature is relevant for the shape of inhomo-

geneous vesicles if K& g K& [38]. However, in this sec-
tion we focus on the discussion of the simpli6ed situation

= v&, where EG; can be neglected. The effect of(-) (~)

the Gaussian curvature energy on the shape transitions
is then discussed in Sec. IV.

Two cases will be considered. (i) The water is essen-
tially free of molecules that cannot permeate the bilayer
membrane. In such a situation, the volume can adjust
and there is no volume constraint on the vesicle. (ii)
There are some molecules within the aqueous solution
that cannot permeate the bilayer. The resulting osmotic
pressure leads to a constraint on the reduced volume

Equilibrium shapes of vesicles with two domains are
studied in the framework of the model introduced in the R(Sy)
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The slope of the function E(x) can be expressed by the
tensions

1.4- x=0.7
x=0.9
x=0.95
x=0.98

where the index denotes the variable that is kept con-
stant. Now

~(y(P) g(~) )Bx (BA0s) ) „
I

10

FIG. 2. Total energy I" as a function of the reduced line
tension A for diferent values of the relative domain size x and
no constraint on the volume. The energy exhibits a Gibbs
loop, indicating that a discontinuous transformation Db„g be-
tween an incomplete and a complete bud occurs. The com-
plete bud has a finite neck that closes continuously at the
limit shapes Lc,B.

determines the radius R(Sj) of the vesicle at the domain
boundary, the discontinuity of BE/BA at the point Db„g
corresponds to a shape transformation between an in-
complete bud and a complete bud. At this shape trans-
formation, the line energy decreases and a small neck
is formed. As A is further increased, the neck diameter
R(Sq) vanishes at the limit shape LGB. This limit shape
consists of two spheres and has an energy E/87rr = 2.

Budding also occurs for fixed A and increasing domain
size x. In Fig. 3 the energy E as a function of x together
with some corresponding shapes is displayed for fixed A =
7. A discontinuous budding transition Db„g occurs with
increasing domain size. The incomplete bud becomes
metastable at Db„g and unstable at MyB. At x 0.18, a
singular limit shape LgB with infinitesimal neck occurs.

BE 0
47rRo c—os @(Sg)Bx 1

(14)

The sign of BE/Bx is therefore determined by the tilt
angle g(Sq) of the shape at the domain boundary.

2. Genes al neck condition

The complete buds formed by domain growth have
a finite neck diameter that vanishes at the hmit shape
LGB. For P = 0, this limit shape consists of two spheres,
formed by the n and the P domain, respectively. Both
spheres are connected by an infinitesimal neck that con-
tains the domain boundary.

These limit shapes IGB satisfy a simple condition for
the curvatures of the adjacent spheres at the neck. Such
a neck condition has originally been introduced for ho-
mogeneous vesicles where an infinitesimal neck can only
exist for Co g 0 [6,44]. For limit shapes of inhomoge-
neous vesicles, this neck condition is now generalized.

The numerical study of the limit shapes LpB reveals
that these shapes can all be described by the relation [38]

Here A = A( )+A(~) is the total area of the two domains.
The tension difFerence Z(l ) —Z( ) can be related to the
geometry of the shape at the domain boundary. For two

domains with C = + and +( ) = K

using Eqs. (A17), (A18), and (A21),

~ I I I
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FIG. 3. (a) Total energy E as a function of the relative do-
main size x for fixed line tension A = 7 and no constraint on
the volume. A discontinuous budding transition Db„g occurs
with increasing domain size. The incomplete bud becomes
metastable at Db„g and unstable at Mi~. At Lc~, a singular
limit shape with closed neck occurs. A sequence of corre-
sponding shapes is displayed in (b) for different values of x.

Al, (x) = 2
~(&) +1

~() () (p)
(&)

(16)

for the lines A = Al. (x) of the limit shapes Lcn within

the (x, A) plane. Here co' ——Co' Ro with i = n, P de-(~) = (')

Here M( ) and M(~) denote the mean curvatures of the
domains at the point of contact. This neck condition can
also be obtained by extending a simple toy model intro-
duced by Fourcade et al. [44] to inhomogeneous vesicles
as described in Appendix B.

The limit shapes for P = 0 consist of two spheres.
Since A(~) = 47rRox and A( ) = 47rRo(1 —x), one has
M(~) = l. /(R x s ) and M( ) = 1/[Ro(1 —x) /2] If these
expressions are inserted into the neck condition (15), one
obtains
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FIG. 4. Neck diameter R(Sr) as a function of the line ten-
sion A close to the limit shapes L CB for diferent values of the
relative domain size 2; and no volume constraint. The gen-
eralized neck condition (15) determines the value A = Al, (x)
where the stationary shapes become singular with B(S&) = 0.
The plot shows that the neck condition (15) agrees with the
numerical solutions of the shape equations.

3. Since both domains have identical elastic properties,
the phase diagram is symmetric under the transforma-
tion x ~ —1 + x, which corresponds to an exchange of
both domains. The line AL, (x) of limit shapes ICB is
given by (17). For A ) Al. (x), the same limit shapes are
still shapes of lowest energy. However, they are no longer
stationary shapes but represent boundary minima.

Along the line Db„g with A = AD(x), discontinuous
shape transitions between an incomplete bud and a com-
plete bud occur. For this line, no analytic expression
is known. In order to study the effect of different val-
ues of the bending rigidities v('~ and the spontaneous
curvatures Cp' on the phase diagram, it is very helpful
to discuss an approximation for this line, which will be
denoted by A = AD(x). The discontinuous transition oc-
curs when the energies of the incomplete bud and of the
complete bud are the same. The incomplete bud can be
approximated by a sphere with a spherical cap and the
complete bud by two spheres. This approximation leads
to a budding transition at A = A~ (x) with

noting the dimensionless spontaneous curvatures of the
domains. For the simple case of domains without spon-
taneous curvatures and K( ) = r(~), Eq. (16) reduces
to

2 2
Al. (x) =

x 1 —x
(17)

10 (P)
0

The neck condition (15) has been checked by extrap-
olating the neck diameter R(Sq) as a function of A close
to the limit shape LgB. As an example, the scaled neck
diameter R(Sq)/Ro of stationary shapes is shown in Fig.
4 as a function of A for different values of x. The lines end
up for R(Sq)/Ro 0.02 where the numerical determina-
tion of stationary shapes breaks down. The extrapolation
of these curves to R(Sq) = 0 leads to a value for Al. (x)
that is in perfect agreement with Eq. (17).

For a homogeneous membrane, with Cp —Cp
(-) = (p) =-

Co, v( ) = K(~), and cr = 0, Eq. (15) reduces to the
weH known neck condition M( ~ + M(~) = Cp for ho-
mogeneous vesicles. For two identical domains and zero
spontaneous curvatures, the neck condition

0 I

0.0

10

LcB
Xr'
r

X X

bud X,(x)

I I I I I I 1

0.5 x

0; c

LCB

bud l, (x)

1.0

0
0 0.5 X

I I I I I I

determines the line tension 0, which is necessary in order
to stabilize an infinitesimal neck against the tendency of
the bending energy to open it.

8. Phase diagram

The phase diagram for domain induced budding is
shown in Fig. 5(a) as a function of relative domain size x
and line tension A for two identical domains with bend-
ing rigidities v( ) = K(~) and spontaneous curvatures

Cp ——Cp = 0. This phase diagram has been obtained
from several energy diagrams as shown in Figs. 2 and

FIG. 5. (a) Phase diagram as a function of the line tension
A and domain size x for vanishing spontaneous curvaturescp: cp and no volume constraint, i.e., pressure P = 0.(~) (P)

At the point Db„g, a discontinuous transition between an in-
complete bud and a complete bud occurs. The neck of the
complete bud closes at the limit shape L~~, where the shape
becomes completely vesiculated. This line is described by the
function Al. (x) as given by (17). The dashed line AD(x) is
the approximation for the transition line Db„p as given by
(19). The dotted-dashed line for A = 7 corrresponds to the
sequence of shapes shown in Fig. 3. (b) Same diagram but
fore =Oandc =1.



53 SHAPE TRANSFORMATIONS OF VESICLES WITH. . . 2675

AD(x) —=
2 ~(-)x+ K(~)(1 —x)

K(~) Qx —x'

+~&-)c,'-)[1 —*—(1 —x)'~']

+ iP) (I-'t)( 1/2) (19)

(a)
LL

2.25
0.02

I

MIB
LCB

0.04

For domains with identical bending rigidities and without
spontaneous curvatures, this expression simplifies and
reads

MIB

A~(x) =-
x —x2 (20) 0.0 0.025 0.032 0.032

The approximation AD underestimates the value of A

where budding occurs, i.e. , AL7(x) AD(x).
As a second example, the phase diagram for K(

) = 0, and co(~) = 1 is shown in Fig. 5(b). In
this case the line Ig~ is still symmetric with respect to
x ~ —x+ 1. The discontinuous phase boundary Db„p, on
the other hand, is asymmetric. The approximation AD
qualitatively describes the shape of this transformation
line.

The symmetry between the two domains is also broken
if the bending rigidities v. ( ~ and r(~~ are diferent. In
this case, the line Icg is not symmetric with respect to
x —+ 1 —x, according to Eq. (16). If the bending rigidity
r(~~ of the growing domain is larger than r( ~, budding
will occur for smaller values of x and A and a smaller bud
will be formed. The locus of the corresponding transition
is also well approximated by A~(x) as given by Eq. (19).

FIG. 6. (a) Energy I" as a function of the relative domain
size x for fixed v = 0.8 and A = 12. A discontinuous transition
occurs at Db„~. For growing domain size, the incomplete bud
becomes metastable at Db„g and unstable at Mi~. The limit
shape LzB occurs for x 0.56. A corresponding sequence of
shapes is shown in (b) for different values of x.

vanishes for x 0.56 at a limit shape I~8. The slope
BI"/c)x is again described by Eq. (14).

The complete phase diagram for v = 0.8 is displayed
in Fig. 7. It reveals that the line Db„g ends up in a
critical point at (x, A) = (x„A,) (0.05, 9.8). For A, )
A & A,~ 6.9, budding occurs continuously when a limit
shape at IgB is reached. This limit shape consists of
a spherical bud with area A(~~ = 47IRox and volume
V ~) = (47r/3)&ox ~, which is attached to a prolate,
characterized by its reduced volume

B. Fixed volume

equilibrium, shapes for fixed reduced volurae

~(P)

(47r/3) (A( ) /47r) s~

3/2

(1 —x)2&2

Domain growth provides a local mechanism for bud-
ding. Therefore, one expects that any global constraint
will act to suppress it. This is indeed what is found for
the constraint of fixed volume. This eKect is most pro-
nounced for v 1, where the shape cannot deviate from
a sphere and therefore only very small buds are possible.

Now consider vesicles of the same reduced volume v (
1 with diferent relative domain sizes x. For x = 0, the
membrane is homogeneous. It is well known that in the
case of homogeneous vesicles with vanishing spontaneous
curvature the shape of minimal energy is.a prolate within
the interval 0.65 + v ( 1 of the reduced volume [6]. If
x is now increased to a finite value, a small domain P
exists, which will be located on one of the two "caps"
of the prolate since this configuration is most symmetric
and energetically favored. In the following, we restrict
our discussion to the case of prolates and look at values
of the reduced volume that are suKciently large so that
prolates are the shapes of minimal energy.

The energy E as a function of x for A = 12 and v = 0.8
is shown in Fig. 6 together with some corresponding
shapes. Again, the formation of a complete bud with
a finite neck diameter occurs at Db„g. The neck size

Both parts are connected by an infinitesimal neck. Along
the line Icg, the prolate volume v~ increases with in-

15—

0
0.0

I I I J I I I I I I I I I I I I I I I 'I I

X
0.1

X

FIG. 7. Phase diagram as a function of A and x for reduced
volume v = 0.8. The line Db„d of discontinuous budding
transitions ends in a critical point C witii (x, A) = (x„A,).
For A ) A ) A,~, budding occurs continuously for increasing
x when the limit shape Lc~ is reached. The line of limit
shapes ends in the point L,~ which corresponds to a limit
shape consisting of two spheres. The dotted-dashed line for
A = 12 corresponds to the energy diagram as shown in Fig.
6.
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creasing x. The line ends at (x, A) = (x,~, A,~)
(0.21, 6.9), where the prolate becomes a sphere with
v~ ——1, which implies the relation

I I I I
i

I I I I

x=0.1

3//2
v —xgp1=

(1 x )3/2 (22)
X.p---

at the point L,p.
Extrapolation of the neck radius of numerically deter-

mined shapes as a function of A shows that the shapes
IgB are again described by the general neck condition
(15) introduced in Sec. III A above. This neck condition
determines the position. [x, A~(x, v)] of the limit shapes
Icy in the (x, A) plane. The phase boundary IcB can
therefore be obtained by using Eq. (15) as described in
Appendix C.

Budding induced by oatnotic deftation

0.8
I I I I I I I . I I I

sp 0.9

FIG. 9. Phase diagram as a function of the line tension A

and reduced volume v for fixed relative domain size x = 0.1..
For decreasing e, budding occurs continuously at I,p, which
is a stationary limit shape consisting of two spheres. At L zB,
the neck opens again. Budding does not occur for A ( A p.
The dotted line for A = 9 corresponds to the sequence of
shapes as shown in Fig. 8(b).

Shape transformations can also be induced by changing
the reduced volume osmotically. In this type of experi-
ment, a sequence of equilibrium shapes is generated that
difFer in their reduced volume.

Starting, for example, with a vesicle close to a sphere
and v 1, a decrease of the reduced volume v leads
to budding if the line tension is sufficiently large as will
be shown now. For decreasing v, the line energy can

x=0.1
(&)

k=9

be lowered by forming a bud. An example for such a
situation is shown in Fig. 8(a). In this figure the energy
is plotted for reduced line tension A = 9 and relative
domain size x = 0.1 as a function of v. The diagram
reveals that for decreasing reduced volume the energy
strongly decreases until it reaches the limit shape L,p,
where two spheres are connected by an infinitesimal neck.

A further decrease of v leads to a sequence of boundary
minima with infinitesimal neck until the shape IcB is
reached and the neck opens again. However, the neck
diameter stays relatively small up to v = 0.8; see Fig.
8(b). The phase diagram as a function of A and v is
shown in Fig. 9. For decreasing v only two situations
occur For A ) A p —8.43, the vesicle forms the limit
shape L,p consisting of two spheres as soon as one reaches
the reduced volume v = v,p. Since the volumes of the
two spheres are given by V( ) = (4~/3)Bo(1 —x)
V(~) = (4vr/3)Box /, respectively, one has the relation

0.8

CB ',
I

L,
( I

0.9

(1 )3/2 + 3/2 (23)

For A ( A p the shape changes without the formation
of a bud. If the relation (23) is inverted, one obtains
x = x(v,p), which determines A, p

= Al. (x(v,~), v,~). The
line IcB can be obtained from the neck condition (15)
as described in Appendix C.

IV. ROLE OF THE GAUSSIAN CURVATURE

0.8 0.885 0.95 0.99 A. Gaussian curvature energy
af axisymmetric shapes

FIG. 8. (a) Energy E as a function of the reduced volume
v for line tension A = 9 and relative domain size x = 0.1. The
limit shape Lc~ consists of a prolate and a sphere, while the
shape L,p consists of two spheres. The broken line connect-
ing both stationary limit shapes gives the energy of boundary
minima with vanishing neck diameter. A corresponding se-
quence of shapes is shown in (b) for different values of v.

The vesicle shapes studied so far have been ob-
tained IIrom the bending energy Eb without taking the
Gaussian curvature energy EG. into account. For homo-
geneus vesicles, this energy is a topological invariant due
to the Gauss —Bonnet theorem. The Gaussian curvature
energy (6) of an inhomogeneous vesicle with homoge-
neous domains can be simplified by the Gauss —Bonnet
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theorem, which leads to [45]

Ib = —(vt —m~ ) f dl Ca+2m(~~~~ + et~) LR

Here dt is the line element along the domain boundary
and Cg is the geodesic curvature along this line. The
orientation of the line element has been chosen in such a
way that one moves around the P domain in a clockwise
fashion when one looks down onto this domain from a
position outside of the vesicle. The geodesic curvature
can be expressed as [45]

1
0.0

LL

0.2

LR

( dK) d K
(25)

(' R(Si) sing(l) )R(l)—: B(Si)cos P(l)
Z(S, )

(26)

where P(l) = l/B(Si). Using

( sing(Si) sin It)(l) )
n(t) = sin@(Si) cos P(l)

cos @(Si)

the geodesic curvature simply reads

Cg (l) = —cos @(Si)/R(Si) (28)

Inserting this expression into Eq. (24), one obtains [38]

I'~ = 2m(v~() —K~()) cosg(Si) (29)

where the constant term has been omitted. This contri-
bution has been included in the derivation of the shape
equations and the matching conditions as described in
Appendix A.

B. Energy diagrams

The numerical solutions of the shape equations (A13)
and (A14) together with the matching conditions (A21)
and (A22) show that the structure of the energy dia-
grams changes significantly if the Gaussian curvature en-

ergy term with r& g rG is taken into account. The
total energy I" is shown in Fig. 10(a) as a function of x for
(~' ' —K'~')/~= —land X = 7 for ~= ~(-) = ~(» and

where K(t) is a parametrization of the domain boundary
with ~dR/dl] = 1 and n(t) denotes the normals of the
surface along the domain boundary. Note that the value
of the geodesic curvature C~ changes its sign if the ori-
entation of the line element is reversed and one moves
along the domain boundary in the opposite direction.

The first term in Eq. (24) depends on the shape of the
vesicle while the second contribution is a constant that
will be omitted in the following. For an axisymmetric
shape parametrized by its contour line, Eq. (24) can be
simplified further. The domain boundary at S = Si can
be written as

0.05

FIG. 10. (a) Energy I' as a function of the relative do-
main size x for line tension A = 7 and pressure P = 0
for two domains of difFerent Gaussian bending rigidity
(K& —r& )jr. = —1. The same diagram but with

(ro —Ko )/e = 1 is displayed in (b). At Db„s, a discontin-
uous transition between an incomplete bud and a vesiculated
configuration LR occurs. The branch of stationary shapes
ends up at the limit shape L~.

P = 0. The same situation but with (rG —r& )/r = 1(~) (P)

is displayed in Fig. 10(b). The branches of stationary
shapes end up in a limit shape L~ at x = 0. The broken
lines with E/(8vrK) = 1.75 describe boundary minima
LR, which for large values of x are absolute minima of
the energy. The shapes LR and L~ consist of two spheres
with a ratio of radii x ~2/(1 —x) i~2 that are connected
by an in6nitesimal neck.

At the point where the branch of stationary shapes
meets the line LR, a discontinuous transition between
an incomplete bud and a complete bud occurs. In con-
trast to the case without a Gaussian curvature term, the
complete bud corresponding to the shapes LR is a limit
shape that has an in'. nitesimal neck already at the tran-
sition. At the limit of metastability M, the stationary
shapes become unstable and a bud must be formed for
increasing x.

These plots can be compared with the diagram shown

in Fig. 2 for the corresponding case with K&
——KG

In this case, a 6nite neck is formed at the discontinuous
transition. This neck closes continuously at a station-
ary limit shape I cn For (r& —.K& )/r = +1, small
but finite necks correspond to the unstable part of the
branch of stationary shapes. The Gibbs loop and the en-
ergy barrier are much larger compared to the case where

(~) (P)
KG = KG

The two diagrams shown in Fig. 10 reveal the diÃer-

ence between the situations with K&( & r & and with

r& ( ~& . While the energy diagrams look qualita-
tively similar in both cases, tae scale of the x axis is dif-

ferent. For v& ) m&, the shape transition Db„g occurs(~) (P) e ~
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for smaller values of x compared to the case K&
(~) (P)

This can be understood by a simple argument. For
) KG, the Gaussian bending energy EG of a Hat

membrame with @(Si) = 0 is maximal according to the
relation (29). It follows from the same relation that bud-
ding leads to a decrease of E~ that attains its minimal
value for g(Si) = m. Therefore, the Gaussian bending
energy assists the formation of a bud and the shape tran-
sition occurs for relatively small values of x. Similarly,
for K& ( r& the Bat configuration is optimal with re-
spect to EG. Therefore, in the latter case, the Gaussian
bending energy hinders the formation of a bud.

I
I 1
i I

II
r

(a) x,")x,'"

S„r

(b) x' '
& ~'~'

C. Structure of small necks

The discussion of the energy diagrams in the previous
subsection indicated that the Gaussian bending energy
influences the structure and the stability of small necks.
For a homogeneous vesicle, an infinitesimal neck leads to
a Rnite contribution, —4mvG. , to the Gaussian bending
energy. On the other hand, the normal bending energy
Eb of a neck with vanishing diameter is zero.

For a vesicle consisting of two domains with diferent
K&, the energy E~ is minimal if the neck is formed com-
pletely by the domain with small K~. Thus the Gaussian
bending energy acts to shift the domain boundary away
from the neck. For K& ——r&, on the other hand, the(~) (P)

domain boundary prefers to sit in the neck at its smallest
diameter.

The interaction between the neck and the domain
boundary for KG g K& can be discussed in the limit of
vanishing neck diameter. The limit shapes L~ and the
boundary minima LR consist of two spheres connected
by an infinitesimal neck. For vanishing neck diameter,
the bending energy Ep of the neck and the line energy E~
vanish. The total energy of these shapes is then given by

The first term in Eq. (30) represents the bending energy
of the two spheres a and P for co ——co ——0 and the
second term is the contribution of E~ that depends on
the shape.

As shown schematically in Fig. 11, the angle g(Si)
can be chosen in the interval 0 ( @ & vr without afFecting
the limit shape. Thus, for K& & K& and r & ( v&

(~) (P) (~) (P)

there exist two difFerent minima with g(Si) = 7r and

g(Si) = 0. In both cases, the domain with smaller lc&
(i)

forms the neck. On the other hand, the limit shapes ICB
for r& ——r& are described by vP(Si) = 7r/2.( ) (P)

It is interesting to understand if the limit shapes L~
can also be characterized by a neck condition. A neck
condition fixes the position of stationary limit shapes in
the (x, A) plane. The analysis of the limit shapes I~
reveals that they always exist either for x = 0 or for
A = 0. The position of the shapes L~ in the (2:, A) plane
therefore does not depend on the local curvatures of the

FIG. 11. Schematic representation of the neck region of the
boundary minima LR and the stationary limit shapes L&. For
vanishing neck diameter B(Si) 0 one finds (a) Q(Si) = vr

for Ko ) K& and (b) vP(Si) = 0 for Ko ( K~

surface and the general neck condition as given by Eq.
(15) does not apply to these liinit shapes.

D. Phase diagrams

The structure of the energy diagrams for rG g K&
and P = 0 leads to phase diagrams with a transition
line Db„~, which is similar to the line Db„g in the phase
diagram for r G

——K& as shown in Fig. 5. However, for

r& g K&, the phase diagram lacks a hne Lcii, since a(-) (p)

continuous closure of a small neck at a stationary limit
shape does not occur in this case.

More interesting is the case of Axed reduced volume
v. For r& ——v& and v = 0.8, the line Db„g ends

(~) (P)

up in a critical point. Since for K& g K& the energy
diagrams always end up with a limit shape L~ at x =
0 and A = 0, the Gibbs loop cannot close and thus a
critical point cannot exist. In Fig. 12 the corresponding
phase diagram for (r& —K& )/r = —1 and v = 0.8(~) (P)

0
0.0

I s s s s I a ~ ~ I ~ ~ ~ ~ I

0.2

FIG. 12. Phase diagram as a function of line tension A

and domain size x for reduced volume v = 0.8 and Gaussian
curvature modulus (r~ —ro )/r = —1. Budding occurs
discontinuously at the line Db„d. This line ends in the point
Lsp.
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is shown for K~ ~ = K~~~ and co ——co ——0. Along
the line Db„~, discontinuous budding transitions between
an incomplete bud and a complete bud with closed neck
occur. Above the line Db„p, shapes of minimal energy
are boundary minima I~ consisting of a prolate o. and a
sphere P. Both shapes are connected by an infinitesimal
neck. The reduced volume vJ of the prolate is given by
Eq. (21). These limit shapes exist for z ( 2:,~, defined
in Eq. (22). For x ) x,~, budding is suppressed by the
volume constraint.

V. GROWTH OF NUCLEATED DOMAINS

In general, a multicomponent membrane will exhibit
a two-phase coexistence region as a function of temper-
ature and composition. This two-phase region exhibits
(i) a nucleation regime, in which one has to overcome an
energy barrier in order to form a "critical" domain, and
(ii) a regime of spinodal decomposition, in which such a
barrier is absent.

Now consider a membrane that is initially prepared in
a homogeneous state within the one-phase region and is
then quenched into the two-phase region. Let us first
assume that the membrane is quenched deep into the
spinodal decomposition regime. If the phase separation
process is suKciently fast, it may lead to complete phase
separation within the membrane and will thus create vesi-
cles consisting of one n and one P domain. The equilib-
rium shape of these vesicles, which has been described in
Secs. II and III above, will often exhibit a bud containing
the smaller domain.

Now let us assume that the membrane is quenched
into the nucleation regime. If the activation energy for
the critical domain is sufIiciently large, only one domain
will be nucleated initially and one may study the growth
of such a domain. Since the growth of this domain is lim-
ited by diffusion, the growth may proceed rather slowly
[34,35]. One may then use an adiabatic approximation
in which the shape is taken to adjust to the domain size
at any given time.

Since the volume will stay constant during this process,
one will then consider a trajectory in the phase diagram
for fixed volume. Since the growing domain leads to an
increase in the relative domain size x, the trajectory of
such a process is given by a straight line parallel to the
x axis. An example for such a trajectory is shown as a
dashed line for A = 12 in Fig. 7. This trajectory corre-
sponds to the sequence of shapes as shown in Fig. 6(b).
In this figure the incomplete bud is displayed up to the
point MyB, where it becomes unstable. At this point, the
vesicle therefore has to undergo a budding process. Sim-
ple estimates indicate that the lateral tension that builds
up during this process is sufIicient to rupture the mem-
brane along the domain boundary and thus to detach the
bud from the mother vesicle [34,35].

VI. DISCUSSION

In the previous sections, the shapes and shape trans-
formations of vesicles that consist of two fluid domains

that are separated. by a domain boundary have been stud-
ied systematically. This study confirms and extends the
results of siinpler models [34,35] and shows that vesicles
that contain intramembrane domains tend to form buds.
Budding represents the shape transformation from the
incomplete bud to the complete bud. This shape trans-
formation can be either continuous or discontinuous. The
complete bud is connected to the original vesicle by a
neck with small or vanishing diameter. The structure
and the stability of the small necks that occur as a re-
sult of the budding transition are strongly influenced by
Gaussian bending energies. As soon as the Gaussian
bending rigidities of the two domains differ, the domain
boundary is pushed out of the neck and necks of finite
diameter tend to become unstable and close completely.

Shape trans formations of multicomponent vesicles
have also been studied experimentally. In these exper-
iments, multicomponent vesicles consisting of a mixture
of sphingomyelin molecules with difFerent chain length
and vesicles consisting of phospholipid-cholesterol mix-
tures were used [13].

Calorimetric measurements revealed that a phase tran-
sition occurs at 41 C in the sphingomyelin mixture.
However, the structure of the coexisting phases is not
known. Facets of the vesicle observed in the low-
temperature phase indicate a fluid-gel coexistence. At
the phase transition, small buds are forming, which im-
mediately detach from the original vesicle (fission). The
physical mechanism that leads to budding in this case
remains unclear. In a second set of experiments, vesicles,
consisting of a phospholipid-cholesterol mixture, were os-
motically deflated. As a result, budding and fission oc-
curred. The mechanism that drives the shape changes
in this situation is again not clear. The shape transfor-
mation could be partly due to phase separation within
the mixture. However, in this experiment another effect
could also be important for the observed shape change:
As the vesicle is osmotically deflated, water Bows across
the bilayer outwards. This water flow can drag some lipid
molecules from the inner to the outer monolayer. An in-
creased number of lipid molecules in the outer monolayer
could lead to a tendency of the bilayer to bend and to
form a bud [46]. In this experiment, budding induced
by a redistribution of lipids across the bilayer cannot be
distinguished from budding induced by intramembrane
domains.

In order to confirm the mechanism of budding induced
by intramembrane domains as studied in this paper, fur-
ther experiments are necessary. A very important sys-
tem for this study is the phospholipid-cholesterol mix-
ture that exhibits a coexistence region of a cholesterol
rich and a cholesterol poor phase that are both fluid
[19,24—26]. The experimental data within the coexistence
region are usually interpreted in terms of lateral phase
separation. In principle, one could also envisage trans-
verse phase separation for which both monolayers differ
in their cholesterol concentration. However, in both sit-
uations, the coexistence region will contain a nucleation
regime in which the phase separation starts with the for-
mation of intramembrane domains.

If phospholipid-cholesterol vesicles are formed by a bi-
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layer with a composition corresponding to a homoge-
neous phase in the phase diagram of the phospholipid-
cholesterol mixture, a temperature change can move the
system to the region of two-phase coexistence. In the nu-
cleation regime of this coexistence region, small domains
will grow after their nucleation. Budding will then occur
when the domain size becomes comparable to the invagi-
nation length ( = r/cr Fo. r a phospholipid-cholesterol
bilayer, the bending rigidity r 4x10 3, as measured
by optical microscopy [47]. An estimate for the line ten-
sion can be obtained from relaxation measurements of
domains in monolayers, which suggest 0. 10 3/m
[21]. Thus this estimate leads to ( 400 nm.

In general, the buds that will be formed as a result
of domain growth in the nucleation regime are expected
to be too small to be visible under the microscope. As
soon as budding occurs, the original vesicle will lose area.
If many buds are formed, this area loss can be detected
even if the buds themselves are invisible. In order to
show that the missing area is in fact hidden in small
buds, additional methods are necessary. For example, the
sudden occurrence of many small vesicles with a size of
the order of 100 nm could be detected by light scattering.

Another way to induce budding and to generate large
buds is to start with a vesicle in the homogeneous phase
of the lipid mixture with a shape close to a sphere, i.e. ,
v 1. Now the vesicle is moved to the coexistence re-
gion of the phase diagram. On the sphere phase sepa-
ration will occur, but the shape cannot change since the
constraint on the reduced volume does not allow a shape
change. Two domains will form on the sphere, their rela-
tive size again depends on the composition of the original
vesicle. A shape change can now be induced by osmoti-
cally deflating the vesicle, which leads to a decrease of the
reduced volume. The line energy of the domain boundary
can now be lowered by forming a bud. In this case, the
bud formed will always consist of two spheres connected
by an infinitesimal neck. A further decrease of the re-
duced volume can open the neck again in some cases; see
Fig. 9.

The mechanism for budding induced by intramem-
brane domains as studied in this paper might also be im-
portant for shape changes within biological membranes
[34,35]. In fact, biological membranes are lipid mix-
tures consisting of a large number of diferent molecules.
Many biological membranes also contain a high fraction
of cholesterol.

Budding of biological membranes is very common [18].
The small vesicles, formed as a result of budding, en-
close molecules that have to be transported to a difFerent
place within the cell. The bud detaches from the original
membrane and can then move away &om it. Such trans-
port vesicles could be the result of domains that form
in the membrane. The existence of domains within bi-
ological membranes is now well established [48]. These
domains either have a diferent lipid or cholesterol com-
position than the environment or are formed by a cluster
of membrane proteins.

Cholesterol plays an important role in biological mem-
branes [27]. A membrane with high cholesterol compo-
sition is less permeable for small molecules than a mem-

brane with a small amount of cholesterol. Therefore, the
cholesterol composition of the outer plasma membrane is

relatively large, but the cholesterol concentration inside
the cell is smaller [28]. In order to build up this con-
centration gradient of cholesterol, the cell needs a trans-
port mechanism for cholesterol. One possible transport
mechanism would be the use of transport vesicles that
have a higher concentration of cholesterol compared to
the membrane from which they originated by budding.
This would imply that these vesicles were formed from a
cholesterol-rich domain within the membrane. Domain-
induced budding provides a simple mechanism for this to
occur.

APPENDIX A: SHAPE EQUATIONS
FOB. TYPO-COMPONENT VESICLES

The shape equations for a vesicle consisting of two
domains n and P are derived as stationary shapes of
the functional F defined in Eq. (7). The contour is
parametrized by the functions B(t), Z(t), @(t), and S(t)
of a generalized parameter t with S(to) = 0, S(tq) = Sq,
and S(t2) = S2. In this parametrization,

ta

dt )c(~) + dt )c( ) + ~a(t, )

+(K~ —K~ ) cos @(t]) (Al)

where Eq. (29) has been used. Here

( )
K( )

i if
'lp slnl/1 (i))

+Z(')AS'+ PR S' sin@ +—p(B' —S' cos@),
2

(A2)

~(t) = @.(t)+ ~@(t)
B(t) = R, (t) + SB(t),

(t) = o(t) + ~ (t)
S(t) = S.(t)+ ~S(t)

(A3)
(A4)

(A5)
(A6)

of the shape, the functional E is varied according to

6Ii = 8I" + bF ~ + 27rrrbB(tg)

27r(r. ~(
) —r.~(~) )—sin Q(t, )8@(tg) (A7)

Here

'with i = n or P. The primes denote derivatives with
respect to t and the I agrange multiplier function p(t) is
introduced in order to incorporate the geometrical con-
straint B' = S' cos g.

Under a variation
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bj(~)
27r

d OK(')

dt Bg'

OK(')
,(')2 OK(')

, 8R

g(') Bg

OK(') d OK('),
OR dt OR'

OK(') d OK(')

Op dt OS'

OK(')
, bS

mined by the geometrical relation Z + sing = 0.
The condition bI' = 0 for variations bs(tq) g 0, and

bS(t2) g 0, together with (A14), leads to the conditions

~(~) ~(P) 0 (A18)

The geometric conditions R(Sp) = R(S2) = 0, g(sp)
0, and g(S2) = m, together with (A18), fix the boundary
conditions p(sp) = p(sg) = 0.

Stationarity of I" with respect to variations bR(tq) g 0
and bg(tq) g 0, together with (A7) and (A8), leads to
the conditions

(As)

where tz' and t2' are the lower and upper interval bound-

ary of the n and P domain, respectively: tP = tp,

tj ' ty t] ~
and t2 ——t2. The variation bF(p) = (-) = (-) =

can be separated into bulk terms for the o. and the P
domains and in boundary terms at tp, ty, and t2.

The bulk terms vanish if the Euler-I agrange equations

OK( )

t=t1+e

OK(~)

OK( )

OB'
OK(»

OR'

= [r~ —r~ ] smg(tg),(P) (~) ~

(A19)

(A20)

OK(')

c)g
OK(')

OR

d OK(')

dt c)g'

d OK(')

dt OR'
OK(')

Op

d OK(')

dt OS'

(A9)

(A10)

(A11)

(A12)

p(sg + e) —p(sg —e) = o,

K( )g(s, +.) —~(~)g(s, —.)

(A21)

(
(p) ( ) (~) ( ))" g(s')

R(s, )

at t = tq. After reparametrization with the arclength S
one obtains from (A19) and (A20) the matching condi-
tions

cos g sin g
R2
P y+ (. Rcosg+ . sing,

2K K R
v.(') - ~(') sin'+{i))2

+Z(') + ~Rsing,

——cos gR

R = cosg,
A(') = 0.

(A13)

(A14)

(A15)

(A16)

Here the overdots denote derivatives with respect to S.
Equations (A13) and (A14) are the well known shape
equations for homogeneous vesicles of spherical topology
[42,6]. The functions

are satisfied in the corresponding intervals tz'
Insertion of Eq. (A2) into (A9)—(A12) leads to shape
equations, which in the parametrization by the arclength
S reads

( )/( ) (&)/(~)
0 0 (A22)

at S = Sq. Here the continuity of R(S) and g(s) has
been assumed. [If, for example, one allows the shape to
have a "kink" with g(sq —e) —g(sq+e) g 0, bg(tq —e) and
bg(tq+ e) have to be varied independently. The matching
condition (A19) is in this case replaced by two indepen-

dent boundary conditions e)K(~)/Og' = rG sing(tq —e)
and c)K( )/c)g' = r& sing(tq + e) at t = tq p e.] For
a homogeneous membrane with o. = 0,

= rG, and Cp = Cp, Eqs. (A21) and (A22)
reduce to continuity conditions for g and p at S = Sz.

The shape of a vesicle with two domains can be deter-
mined as a solution of the shape equations (A13)—(A16)
together with the matching conditions (A21) and (A22).
This method can be generalized for an axisymmetric vesi-
cle with three domains. For more than three domains, the
assumption of axisymmetry can no longer be justified.

(,)
OK(')

OS'
r()R (g') ' (sing ())

is' )

APPENDIX B:THE GENERAL NECK
CGNDITION

—Z(')R ——R sing+&cosg
P
2

(A17)

play the role of Hamiltonian functions, which are con-
served according to (A14). The function Z(s) is deter-

The generalized neck condition that describes the limit
shapes L CB can be discussed in the context of a simple
toy model introduced by Fourcade et aL [44]. In this
model, the nearly vesiculated shape is approximated by
a variational contour, which consists of four parts I—IV;
see Fig. 13. The parts I and IV are hemispheres of radii
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Rii

S

'~

A' =47r(R') +27rR'a —7ra ln . +O(a )
' — '

B()
(B2)

IV

The enclosed volume can be expressed as V = V( )+V(~)
with

V(*) = —7r(R(')) + 7r(R(')) a+ O(a )3 (B3)

FIG. 13. Simple toy model for vesiculated shapes. The
shape consists of four parts I—IV. Parts I and II form domain
o., III and IV form domain P. Parts I and IV are hemispheres
of radii R and R ~, respectively. Parts II and III form the
neck region with neck diameter a.

R('), described by sing = R/R('), where i = n, P. The
neck region is formed by the parts II and III, where

B a(') asin@= . +R(') + a R(R(') + a)
(Bl)

and a denotes the neck diameter. The two domains are
separated by a domain boundary located within the neck
where B = a.

For small a, the surface areas A( ) and A(~) of the
domains can be expanded as

The total energy

2

» . +o(a2)
0 0

(B5)

where B0' denote the radii of the spheres that form the
limit shape for a = 0. Inserting Eq. {B5)into (B2) and
(B3), the energy F reads

E = Eg+ 2vroa+ PV

of this shape can be expressed as a function of the neck
diameter a for fixed areas A( ) and A(~). %within this toy
model, only two parameters B( ) and B(~) are available
to take into account the constraints. Here both parame-
ters are used to Gx the areas A( ) and A(~). Therefore,
the enclosed volume cannot be fixed at the same time
and the pressure ensemble is used. In order to fix the
areas A('), the radii B(') of the limit spheres obey

—c'-'
~ + 2~~(~)(R"')' —c"'( 2

(Ro '
I" = 27rK( )(R ) ~R(~)

K( ) „(~)—4~ ~(~) ~(P)
0 0

1——~( )C' ' ——~(/')C' ' ——a a+O(a'lna) . (B6)

The vesiculated shape with a = 0 is stationary with respect to variations of the neck diameter a if

~(~) ~(P) 1 (K K (~) (~) (p) (p)

0 0

(B7)

This condition is equivalent to (15).

APPENDIX C: NGNSPHEHICAL LIMIT SHAPES Here

v( ) 2Mo[vt {x,v)]Ry 2

&(P) (1 &) j./2 &1/2

(~) (P)
(~)

(P)
(C1)

Limit shapes Lgg for I = 0 consist of two spheres,
connected by an infinitesimal neck. For these shapes,
the general neck condition leads to the exact expression
(16) for the line Al, (x) in the phase diagrams.

The limit shapes Lca that occur for fixed reduced. vol-
ume consist of a sphere and a homogeneous spherical
prolate. For such a shape, AL, can be expressed as

V —X'~2
(c2)

is the reduced volume of the prolate introduced in Sec.
III B, Mo(v~) is the mean curvature at the pole of the
prolate with reduced volume v~, and surface area A =
4mR&. The function Mo(v~) can be easily obtained by
solving shape equations for homogeneous shapes. The
lines LgB shown in Figs. 7 and 9 have been obtained
using Eq. (Cl)
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