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Sine-Cordon field theory for the Kosterlitz-Thouless transitions
on fiuctuating membranes
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In the preceding paper [J. M. Park and T. C. Lubersky, Phys. Rev. E 53, 2648 (1996)] we
derived Coulomb-gas and sine-Gordon Hamiltonians to describe the Kosterlitz-Thouless transition
on a Quctuating surface. These Hamiltonians contain couplings to a Gaussian curvature that are
not found in a rigid fiat surface. In this paper, we derive renormalization-group recursion relations
for the sine-Gordon model using field-theoretic techniques developed to study Bat space problems.

PACS number(s): 05.70.Jk, 68.10.—m, 87.22.Bt

I. THK SINK-GORDON HAMILTONIAN

The Hamiltonian and associated partition function de-
scribing p-atic order on a fIuctuating surface were derived
and analyzed in the Coulomb-gas model in the previ-
ous paper [1]. The renormalization-group (RG) recur-
sion relations for K, r, and y were also derived. from the
Coulomb-gas model. In addition, we described there how
the two-dimensional Coulomb-gas model can be trans-
formed into a sine-Gordon field theory.

Here we describe to w hat extent these results can
be verified by a well-controlled re normalization pro-
cedure based on the sine-Gordon field theory. The
two-dimensional Coulomb-gas model can be converted
into the sine- Gordon Hamiltonian via a Hubbard-
Stratonovich transformation. The advantage of this
transformation is that it makes available to us standard
field theory diagrammatics and renormalization proce-
dures [2,3]. This opens up a systematic way of obtaining
results for the RG recursion relations.

The p-atic membrane partition function in the sine-
Gordon field theory is written as

H=g ~K p ——6 8 h. +ByByh=V' 6,

8 = detg ~K p = —(9' hV' h —0;O, M, ct, h)
2

(1.7)

In performing a perturbation calculation with Hamil-
tonian (1.2) and (1.3) in two dimensions, one faces in-
frared as well as ultraviolet divergences. For the infrared
regularization, we introduce a tension term,

P'R = Po. d u~g = Po. d'x 1+ —,'(Vh)'

into the bending Hamiltonian (1.2) and a mass term

(cl.cI h cl.cl„h )K p
——N. D DpR =

1 + (V'h)2 ( y ~ y y )BBh clOh

(1 5)

where (V'h)2 = (cl h)2 + (Byh) . To lowest order in h,

t3R„P'Bp —i(p/—2n l I d—u~gsp

where P is the inverse temperature,

p'R„= pK d u—~gH,
2

(1.2)

and

2ss (2m)
2g

d u~gcos P (1 3)

with
&
H =

2 K the mean curvature and S = det K&
the Gaussian curvature. In the Monge gauge, the metric
tensor g p is written as

& I+ (0 h)2 8 Myh
s h.s h. ~ + Is hl' )

Go@~(x, a) = 47r2pK
p2

4~PK 1
Ko(mgx2 + a2)

p2 2~
1 4vr2PK

in[em (x + a )],4' p2

d q e'~"
(2vr)2 @2+m2 „,

into the sine-Gordon Hamiltonian (1.3). Our infrared
treatment is similar to the infrared regularization in Ref.
[3]. After perturbation theory is summed, we shall see
that our renormalization-group recursion relations have
a well-defined limit when surface tension and mass are
set to zero. Thus we will carry out our calculations in
the presence of the tension o and the mass m, and set
o ~ 0 and m —+ 0 at the end.

The ultraviolet regularization is introduced by a short-
distance cutofI' a in the free propagators in coordinate
space:

and the curvature tensor K p is
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and
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FIG. 1. Diagram contributing to the shift of the stiffness.

go(x2+ a2) « 1. (1.11)

The Fourier transforms of these functions are

g4~'pK 4~' 32~ (pK) ~ 4~pK

(2.1)

Gyp(q a) =

(1.12)

47r PK agq2+ m2
Ki a q2+m2)

p q +m
4vr'PK 1 a~0,

p2 q2+ m2
(PK) '=(PK) '+ (P )

' (2.2)

Thus, the effect of height fluctuation is to shift the hex-
atic rigidity from K to K, where to leading order in tem-
perature [(pv) ]

Gvbvh(q~ a')0 1 agq2+ cr
Ki (a Qq 2 + o.)q2+ o

1 1 a~0,
pr. q2+ rr

where Ko(x) and Ki(x) are the conventional Bessel func-
tions [4] and c = e2~/4 with p the Euler constant. We
use this ultraviolet regularization rather than the sharp
cutoff in momentum space since our calculations can be
easily evaluated in coordinate space [3,5,6].

II. RG RECURSION RELATIONS

In order to establish the RG recursion relations for
the bending rigidity, the hexatic rigidity, and the fugac-
ity of the fluctuating hexatic membranes, we study the
renormalizations of the two-point vertex functions I'&& (q)

and I && (q) for the total Hamiltonian in (1.1). We have
two independent sets of expansion parameters that are
small. One consists of the single parameter (Pr); the
other consists of the expansion parameters of the two-
dimensional XY model: the deviation of the hexatic
rigidity from the fixed point value, 8 = (7rPK/2p ) —1,
and the fugacity of the disclinations, y. We will carry
out calculations to lowest order in temperature [(PK) ]
and combined second order in b and y. Thus we divide
the renormalization scheme into two separate parts; first
we obtain the vertex functions I'( ) for y = 0 up to first
order in temperature, then we turn on the effect of the
disclinations (y g 0) and calculate the vertex functions
I"( ) up to combined second order in b and y.

Starting with y = 0, we calculate the two-point vertex
function I'&& for the sine-Gordon field P to lowest order(2)

in temperature. The only diagram contributing to I'@@ in
this limit is shown in Fig. 1. It arises from the coupling of
P to h. When o = 0, the resulting vertex can be written
a,s

Now taking into account the effect of the disclinations,
we calculate I'&@ up to second order in b and y. The(2)

first step in the computation of I'@& is the summation
of tadpoles. By expanding the cosP interaction of the
sine-Gordon Hamiltonian in powers of P, one generates
diagrams composed of vertices of all even orders and
bare propagator G&&(q, a). In Ref. [7], Coleman noted
that only diagrams containing tadpoles are ultraviolet-
divergent logarithmically and these divergences can be
removed by renormalizing the fugacity y. Tadpole di-
agrams are shown in Fig. 2. The effect of tadpoles is
to renormalize y. Any diagram can be described as a
diagram without tadpoles plus tadpoles adjointed. The
effect of adding an arbitrary number of tadpoles to a bare
vertex is to multiply each vertex by

—
2 G@&(+=0,a) (2.3)

thereby renormalizing y:
1 ~ya m ya e

= ycm (cm a') 2 ':—yA, (2.4)

FIG. 2. Circular dot represents the cos interaction and the
square dot represents the sum of tadpole diagrams.

where the last equation defines A.
Next we introduce some diagrammatic notation. The

sum of even numbers of intermediate propagators is

[cosh G&&(x) —1], and the sum of odd numbers of in-

termediate propagators is [sinhG~&&(x) —G~&&(x)]. The
diagrams corresponding to these sums are shown in Figs.
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+

FIG. 4. Sum of odd numbers of intermediate propagators
is represented by the sawtooth line.

FIG. 3. Sum of even numbers of intermediate propagators
is represented by the vertical line of circles.

The integral contributes a factor of lna:

3 and 4. Using this notation, all diagrams contributing
to I'l

&l up to second order in h and y are shown in Fig.
5. T eir sum can be written as

2(cm )

m —1
x3dx

[cm2(x2 + a2)]2+28

m —2
zdz

p (z + a')'
= —ln(cm a ). (2.8)

I'~~ (q) = = (q' + m') + 2yA
4' 2PK

—(yA) d x e'~ sinhG&@ x —
G&@ ~

—fcosh Gs&(c) —1]). (2.5)

To second order in b and y, the erst-order term in y
contributes a factor of lna:

The leading divergent contribution to I'( ) is thus

r,",(q) =
2

(q + m ) + 2ycm [1 + 8 ln(cm a )]
4vr2PK

32 (2y) q ln(cm a ). (2.9)

To establish the RG recursion relations for the hexatic
rigidity (PK) and the fugacity y, we define renormal-
ized parameters (PK„) and y„via

mPK

yA = ycm (cm a ) '~' = ycm [1+b ln(cm a )], yK) ' = Z~(PK. ) y = Zyy~. (2.1O)

(2.6)

where 8 = (nPK/2@2) —1. The divergent part of
the second-order term in y has no q -independent part.
When we expand e'~ in powers of q, the odd terms in q
vanish when integrated over angles. To second order in
b and y) the coefficient of q in I'@@ is

(ycm )
4

d xx [sinh Gp (x) —Gp (x)]

—1
(ycm2) 2 vrxsdx

+ (finite terms).
4 0 cm x +a +

(2.7)

All infinities can be absorbed by two independent renor-
malization constants. Z~ and Z„can be chosen as func-
tions of a to ensure that the renormalized two-point ver-

tex,
I'R~~ (q, y, b, p) = I' (q, y, 8, a),(2) (2.11)

is finite for some arbitrary length scale p, order by order
in a double expansion in y„and b = (mPK„/2p )—
1, in the limit a ~ 0. Thus we expand Z~ and Z„
in a double series in y„and b„. These expansions are
substituted into Eq. (2.10), which in turn are inserted in

Eq. (2.9). Then, terms of I'&& are rearranged by orders(2)

in the double expansion. The coefficient in Z~ and Z„
are determinied by the requirement that q and m have
finite coefFicients as follows:

I'Ry,'4, =(2)

—1 ~ln(cm a ) cm

2 K Z
i(q +m, )+2y Z„cm, 1+

~

—1 ~ln(cm a ) ——(2y„) q ln(cm a ),
2 2

(q + m ) + 2y cm + (ZIr —1) ——y ln(cm a ) q4~2@K 47r 2pK„
K Z

+2y (Z„—1) +
~ 2p (2.12)

The coefficients Z~ and Z„are chosen so that 1"R isRyyfinite in the limit a ~ 0:

2 27rspK
Zsc(p) =1+y in@ ap'

Z~(V) = 1 —I, —1
I

»S'a',(vrPK

)

(2.13)

(2.14)

FIG. 5. Diagrams contributing to I'&& up to second order
in y. The square dot represents the sum of tadpole diagrams
in Fig. 2, the verticle line of circles the sum of even numbers
of propagators shown in Fig. 3, and the sawtooth line the
sum of odd numbers of propagators shown in Fig. 4.
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where p is an arbitrary mass scale. From the renormaliza-
tion constants derived above, we obtain the RG recursion
relations

Defining the renormalized parameter r„by

(2.20)

and

8 ln Zy—
y7 p

t9p b

f~pK.
y~~

p

cl(PK )
~ —

~ Bin ZIr
~P b ~& b

(2.15)
3 1 2 2 3 pK„Z(p) =1 — in' a + "

in@ a
87r pv.„8~4(pK, )2

3 ~' (PK-)'—
8 4„,4(p„"),(2y. )'(l ~' ')'. (2.21)

and using the renormalization constants Z~ and Z ob-
tained in Eq. (2.13) and Eq. (2.14), we find I'&&~ is finite
in the limit a ~ 0 if we choose

4m

p
(2.16)

4 3

(PK) ' = y,p' (2.17)

where the subscript 6 means fixed bare parameters. In
terms of length scale p = ae, these equations are ex-
pressed as

BpK 0 ln Z„
s

&
= —p~v

p Bp, b

3 PK„
4vr 4pr„' (2.22)

when expressed in terms of l = ln(pa)

The renormalization-group recursion relation for r„ is

~PKIy= 2
2 y.

dl ( p2 )
(2.18) d 3 / PK&

4p~)
(2.23)

I'~&&l(q) = pKq + q ln(ccra ) — q ln(cm a )
(2) 4 3 4 2 3 pK 4

Svr Sar 4Pr.

(2y) q [1 + 8 ln(cm a ) ]

3 167r' (pK)
Svr p2 4Pv

'(2y)'q [ln(cm2a2)]2. (2.10)

To complete the RG recursion relations for our Hamil-

tonian, we study the renormalization of I'&& (q). We in-
troduce a surface tension term [Eq. (1.8)] to regularize
infrared divergences. Strictly speaking, we should renor-
malize o [8,9] as well as r Howeve. r, we will set the
renormalized tension equal to zero in the end. We will,

therefore, consider here only the q contributions to I'&&,
which will determine the renormalization of r.. All dia-
grams contributing to I && up to erst order in tempera-

' 0 (~)

ture and second order in b and y are shown in Fig. 6.
Their sum is written as

—(PK) ' = y,p' (2.24)

—y = 2—d ( 7rpK)„)y (2.25)

d 3 ( PKI
4~ ( 4pK

(2.26)

These equations and crikled-to-crumpled phase transi-
tion are analyzed in the preceding paper.

III. ASYMMETRY IN THE DISCI INATION
FUGACITIES

Thus the complete RG equations for our Hamiltonian
are

FIG. 6. Diagrams contributing to I'&& up to one-loop order
and second order in y. The dotted. line represents the height
Quctuation field h. The square dot represents the sum of
tadpole diagrams in Fig. 2, the verticle line of circles the
sum of even numbers of propagators shown in Fig. 3, and the
sawtooth line the sum of odd numbers of propagators shown
in Fig. 4.

On rigid Hat membranes, a single positive disclination
and a single negative disclination have the same energy
proportional to ln(R/a), where R is the linear dimen-
sion of the membrane and a is the size of the core region
of the disclination. However, the plus-minus disclination
energy symmetry present in rigid membranes is broken in
deformable membranes [10]. For deformable membranes,
the topological charges q = +1j6 of the disclinations
can partially be canceled by the curvature charges due
to the Gaussian curvature, when membranes buckle out
to form a cone or a saddle surface. Membranes with a
single disclination undergo a mechanical buckling tran-
sition from a Hat configuration to a cone configuration
for a positive disclination or a saddle configuration for
a negative disclination. The Coulombic interaction be-



SINE-GORDON FIELD THEORY FOR THE KOSTERLITZ- 2669

P'Ry —i (p/2m—) f d uvgs4

PQ„= Pr d u ~g—H
2

(3.2)

—
( ) d'u~gg ~s /spy

(y+ + y —) d u~g cos P —i y+ y—
Q

tween disclinations can be screened by Gaussian curva-
tures, and the disclination energies are reduced in de-
formable membranes due to buckling into the third di-
mension. Furthermore, the energy of the cone is lower
than that of the saddle, though both energies are pro-
portional to In(R/a) [ll]. The system creates and de-
stroys disclinations to minimize its free energy, and, in
the hexatic phase, it will always choose confi gurations in
which there is no overall In(R/a) term in the energy. In
flat membranes, this term can be eliminated by the condi-
tion of charge neutrality. In membranes whose shape can
change, this term can also be eliminated by an average
flat configuration and the condition of charge neutrality.
We believe that this is the most likely scenario, however,
it is not impossible that there are curved configurations
with an overall unbalanced charge that manage to elim-
inate the In(R/a) energy. Here we will consider only
charge neutral confi gurations. Local buckling may lead
to difFerent fugacities y+ and y for positive and nega-
tive disclinations. However, because of the constraint of
charge neutrality, physical observables such as the free
energy will depend only on the product y+ y

We can generalize the our charge neutral renormaliza-
tion calculation to take into account an asymmetry in
positive and negative disclination fugacities. Using the
Hamiltonian in Ref. [I] with difFerent fugacities for pos-
itive and negative disclinations y+ and y, respectively,
we modify the sine- Gordon model as follows:

hexatic rigidity, and the fugacities for positive and nega-
t ive disc linat ions:

d —
q 4'—(PK) ' = y+yp' (3 4)

d l' srPK )—y+ = 12— p' )

d 3 ( PK)
dl 4vr ( 4Pr )

Defining y = gy+y and z = gy+/y, we find

—(PK) ' = y (3.7)

rrPKI
dl ( p2 )

dl

Equations for y and K are identical to the symmetric
case. The equation for z implies the ratio y+/y does
not change under RG. Thus in the ordered phase, y+
and y scale to zero and the KT transition occurs at the
same temperature as in symmetric case.

For T ) TKT, both y+ and y grow. If there is an ini-
tial asymmetry between y+ and y, it will persist, and
positive disclinations will be favored over negative ones.
This presumably favors positive Gaussian curvature. A
complete discussion of the fluid phase would then require
a more complete treatment of Gaussian curvature. The
flat phase and the Kosterlitz- Thouless transition are, as
we have just seen, not affected by an asymmetry in p os-
itive and negative disclination fugacities.

d u~g sin P.

Following the same renormalization scheme as above, we
fi nd the recursion relations for the bending rigidity, the
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