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Topological defects on fluctuating surfaces: Ceneral properties and the
Kosterlitz- Thouless transition
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We investigate the Kosterlitz-Thouless transition for hexatic order on a free fluctuating membrane
and derive both a Coulomb gas and a sine-Gordon Hamiltonian to describe it. The Coulomb-gas
Hamiltonian includes charge densities arising from disclinations and from Gaussian curvature. There
is an interaction coupling the difference between these two densities, whose strength is determined
by the hexatic rigidity, and an interaction coupling Gaussian curvature densities arising from the
Liouville Hamiltonian resulting from the imposition of a covariant cutoff. In the sine-Gordon Hamil-
tonian, there is a linear coupling between a scalar Geld and the Gaussian curvature. We discuss a
gauge-invariant correlation function for hexatic order and the dielectric constant of the Coulomb gas.
We also derive renormalization-group recursion relations that predict a transition with decreasing
bending rigidity m.

PACS number(s): 05.70.Jk, 68.10.—m, 87.22.Bt

I. INTR.ODUCTION

Bilayer fluid membranes [1,2] spontaneously self-
assemble when aliphatic molecules are dissolved in water
at a sufficiently high concentration. At high tempera-
ture, these membranes have no internal order and can be
modeled as fluctuating structureless surfaces character-
ized by a bare bending rigidity v. The bending rigidity
is length-scale dependent and becomes zero at the persis-
tence length („:——ae "~,where a is a molecular length
and T is the temperature. At length scales less than of
order („,the membrane is flat; at longer length scales, it
is crumpled.

A fiat rigid membrane can have quasi-long-range
(QLR) hexatic order [3] at low temperature and undergo
a Kosterlitz-Thouless (KT) disclination unbinding transi-
tion [4—6] to a disordered high-temperature phase. A fluc-
tuating membrane can also have QLR hexatic order [7].
Hexatic order stifFens the bending rigidity so that, rather
than scaling to zero at long length scales, it approaches
a constant times the hexatic rigidity K [8,9]. The hex-
atic membrane is thus more rigid than a Buid membrane,
and it is said to be "crinkled" rather than crumpled. A
fiuctuating hexatic membrane can undergo a KT transi-
tion from the crinkled to the crumpled state. Reference
[9] discusses two possible mechanisms for the crinkled-to-
crumpled transition: disclination melting and crumpling.
The latter Inechanism is analogous to that producing the
flat-to-crumpled transition in tethered membranes [10]
and is argued to be associated with the buckling instabil-
ity [11] of a membrane with a single disclination. Figure
1 shows a schematic phase-flow diagram in the (PK)
(Pr) plane (P = 1/T) for a two-dimensional mem-
brane embedded in three dimensions adapted from Ref.
[9]. The vertical line at (PK) = vr/72 is the Kosterlitz-
Thouless disclination unbinding line of a fiat membrane.
The curved line joining the vertical line at (PK) i = 7r/11
is an estimate of the crumpling transition obtained by

equating the energy of a single positive disclination in
a buckled membrane to its entropy. Thus, the crum-
pling transition in this estimate is a Kosterlitz-Thouless
transition in a buckled membrane. This schematic phase
diagram describes qualitatively features that are in agree-
ment with simple physical reasoning: for large v, there
should be a disclination melting to the crumpled phase as
temperature is increased, and at fixed K, there should be
a transition to the cruinpled phase as r. is decreased. It,
however, has features that are either unexpected or un-
explained. The discontinuous change in curvature where
the melting and crumpling lines join is surely an ar-
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FIG. 1. Schematic phase diagram in the (PK) (Pr)-
plane adapted from [9]. The vertical line BP is the Koster-
litz-Thouless disclination melting line of a Hat membrane.
The curved line PC is an estimate of the crumpling criti-
cal line based upon a comparison of the energy and entropy
of a single positive disclination in a buckled membrane. The
line OP is the mechanical buckling instability line of a mern-
brane with a single positive disclination. Above this line the
zero-temperature membrane is buckled. Decreasing K or in-
creasing T at fiwed K in the vicinity of P leads to a disclination
melting transition to the crumpled phase. On decreasing v at
fixed K, the crumpled phase can only be reached by crossing
the crumpling line.
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tifact. It suggests that the physics of the crinkled-to-
crumpled transition produced by decreasing K at fixed
v. and by decreasing K at fixed K are totally difI'erent,
the latter being associated with the buckling instabil-
ity of a membrane with a single disclination. It leaves
unanswered whether the buckling instability line for the
zero-temperature membrane has any significance for a
membrane in thermal equilibrium, which is allowed to
choose disclination configurations to minimize its free en-
ergy and thereby to reject highly energetic configurations
with an excess of positive or negative disclinations.

In this paper, we present a detailed analysis of the
low-temperature crinkled-to-crumpled transition in hex-
atic membranes. Our approach treats both disclinations
and Gaussian curvature in the same real-space renormal-
ization procedure and allows us to obtain recursion rela-
tions for K, K, and the disclination fugacity y. Previous
treatments used momentum space renormalization pro-
cedures to calculate the recursion relation for K and did
not actually provide a complete set of recursion relations
for K, K, and y nor a prescription for doing so. Our
procedure shows that thermally induced shape fluctua-
tions cause a K-dependent reduction in K, which to our
knowledge is missed in previous calculation, that leads
to the phase-flow diagram shown in Fig. 2. The verti-
cal line in Fig. 1 is now curved. , and the mechanism for
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FIG. 2. Phase diagram for hexatic membranes (p = 6) in
the (PK) (/3r) plane o-btained from Eqs. (5.2), (5.3),
and (5.7). The dark curved line [ (PK') + (3/32vr)
(Pr) = m/72 = 0.0436] is the critical line separating the
crinkled from the crumpled phase. The line OP is the crin-
kled line with 4(pr) = (pK) + (3/32vr)(pK) ]. P is
the crinkled-to-crumpled fixed point. Unlike Fig. 1, the crit-
ical line has curvature at P. The dashed curve OA is the
curve 27r(PK) = (/jr) . The calculations in this paper
are approximately valid in the region below this line where
(/3K) & 1 and PK & 2vr(/3K) . The crinkled-to-crumpled
transition occurs via disclination melting in the vicinity of
P when either e or K is decreased or when temperature is
increased. Though our calculations da not apply abave the
curve OA, it plausible that the crumpled-to-crinkled transi-
tion occurs via disclination melting for all v and K except
at K = oo, i.e. , that the only efFect of higher-order terms in

(PK) and PK/(Pr) is to change the shape of the critical
line. Alternatively, there could be some other phase bound-
ary above the curve OA separating melting from some kind
of crumpling transition.

the crinkled-to-crumpled phase transition in the vicinity
of P, the termination of the crinkled line, is the same
for decreasing both r and K. Our renormalization equa-
tions allow us to study the fluid phase in the vicinity
of the transition point P and to show that near P the
persistance length is (KTe "/ rather than ae
where (KT = a exp(b/~T —TET] / ) is the KT correlation
length (with b a constant), and K is the bending rigidity
at length scale (KT.

Our calculations are, strictly speaking, restricted to
(Pr) i & 1, (PK) i & 1, and (PK)/(Pr)2 = TK/r2 &
1, i.e. , to the region below the curve OA in Fig. 2. We
cannot, therefore, make any definitive statement about
the interesting K ~ oo limit, which should be related
to the crumpling of tethered membranes. However, we
believe that the phase diagram shown in Fig. 2 makes
physical sense beyond the region of validity of our calcu-
lations. In this scenario, the transition from the crinkled
to the crumpled phase would be controlled by the fixed
point P in Fig. 2 for all K ) 0 and v ) 0. The
transition at K = oo would, however, be controlled by
another fixed point.

We begin in Sec. II with a review of how to describe
tangent plane order on fluctuating surfaces. We pay par-
ticular attention to correlation functions of orientational
order. In order to compare tangent plane vectors at two
different points on the surface, it is necessary to paral-
lel transport one of the vectors along some path I' to
the position of the other vector. When Gaussian cur-
vature is nonzero, the direction of a parallel transported
vector depends on I' even when there are no disclinations
present. Physical correlation functions are invariant with
respect to local coordinate transformations and for a par-
ticular membrane shape and distribution of disclinations
depend on I'. When correlation functions are averaged
over shape and position of disclinations, the dependence
on I' vanishes.

In Sec. III, we discuss various models for hexatic mem-
branes. We begin with the Hamiltonian for hexatic mem-
branes expressed in terms of the orientational angle 0 and
a height variable. We then transform this model into a
Coulomb-gas model in which "charge" density arises both
from disclinations and from Gaussian curvature. There
are two Coulomb-like terms in this Hamiltonian: one that
is zero when the local disclination density equals the local
Gaussian curvature and one, arising from the imposition
of a covariant cutofF [12], that couples Gaussian curva-
ture to Gaussian curvature. Finally, we transform the
Coulomb-gas Hamiltonian to a sine-Gordon Hamiltonian
with a term coupling the sine-Gordon field P to the Gaus-
sian curvature with an imaginary coefIicient. The latter
term is analogous to the dilaton coupling of string theory
[13].

In Sec. IV, we relate the dielectric constant and hex-
atic rigidity to correlation functions of the disclination-
Gaussian curvature density. We show in particular that
the renormalized hexatic rigidity appearing in the orien-
tational correlation function is the same as that calcu-
lated from the free energy. We also calculate the charge-
density correlation functions.

Finally in Sec. V, we derive renormalization-group
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(RG) recursion relations for A, v, and the disclination
fugacity y. These equations show that height fluctua-
tions renormalize the hexatic rigidity in the absence of
disclinations. This renormalized rigidity then flows under
renormalization in the presence of disclination in exactly
the same way as the rigidity of a flat membrane. If the
initial height renormalized rigidity is less than the criti-
cal rigidity for a flat membrane, there is no rigid phase.
Thus, height fluctuations can destroy the crinkled phase.

In Sec. VI, we review results and discuss some unan-
swered questions. In particular, we address the effect of
asymmetry in the energies of positive and negative discli-
nations [14] on our results.

The focus of this paper is on the nature of tangent-
plane order and the Kosterlitz-Thouless transition on
fluctuating sur faces. It will not present a complete
derivation of the RG equations used in Sec. V be-
cause they involve some two-loop graphs, which should
be treated in a sophisticated regularization procedure. In
a companion paper, [15] we derive the complete recursion
relations from the sine-Gordon model using a real-space
regularization procedure generalized from that used by
Amit et al. [16] to treat the flat-space problem.

t& X t2
it, xt,

i

(2.4)

The curvature tensor is then

Kp ——N 6 BpR. (2.5)

From the curvature tensor, one can construct the mean
curvature,

1 1 1 f 1 1H= ——K
2 2 2 (Rz R2

(2 6)

and the Gaussian curvature,

1 1S = detKp ——

Bi A2' (2.7)

where Ri and B2 are the principal radii of curvature at
the point of the surface in question. The integral of the
Gaussian curvature is a topological invariant,

Vt where V =t . Vand V =t V=g PVp are,
respectively, the covariant and contravariant components
of V. A unit normal N to the surface can be constructed
from ti and t2 .'

II. DIFFERENTIAL GEOMETRY AND
TANGENT-PLANE ORDER d u~gS = 47r(l —q) = 2vry, (2.8)

We are concerned with the nature of tangent-plane or-
der on fluctuating membranes. In this section, we will
review relevant concepts in diA'erential geometry, mostly
to establish notation. We will also discuss how to de-
scribe long-range order (or lack thereof) on a metric with
fluctuating curvature.

where q is the number of handles and y = 2(1 —q) is the
Euler characteristic. In the Monge gauge, u = (x, y) and
R(u) = (u, h(u)), and the metric tensor g p is written
as

f' 1+ (0 h)2 8 h(9yh
1+ (~

A. Differential geometry of a plane

t =BR, (2.1)

Points [17—19] on a two-dimensional surface embed-
ded in three-dimensional Euclidean space are specified
by a three-dimensional vector R(u) with components
R, (u), i = 1, 2, 3, as a function of a two-dimensional
parameter u = (u, u ). Covariant tangent-plane vectors
are then defined as

and the curvature tensor K p is

( 0 oj h 0 Byh 5K p
——N-D DpR =

1 + (V'h)2 & y y y jOBh 00h,

(2.10)

where (V'h)2 = (0 h)2 + (Byh)2.
The antisymmetric tensor p p will be particularly use-

ful in what follows. It is defi. ned via

where 0 = 8/Bu . We will use Greek letters o. , P, p, . ..
to denote components of covariant and contravariant
tangent-plane tensors and Latin letters i, j, k, ... to denote
components of vectors and tensors in Euclidean space.
The metric tensor is

p p=N (t xtp)
gal gP2 gn2gP1

xt
= v getup~ (2.11)

g p
——t tp.

Its inverse g P satisfying

(2.2)

(2.3)

where g = det g p and e p is the antisymmetric tensor
with ei2 ———e2i ——1. The contravariant tensor

(2.12)

allows us to define contravariant tangent-plane vectors
t = g Ptp satisfying t . tp ——bp. Any vector V in
the tangent plane can be expressed as V = V t

equals e p j~g and satisfies p ~pp = —b, . Finally the
mixed tensor

(2.1S)



53 TOPOLOGICAL DEFECTS ON FLUCTUATING SURFACES: 2651

rotates vectors by 7r/2 since V p &V~ = p pV V~ = 0
I

andy &V~p ~Vp ——V V.
We are interested primarily in order in the tangent

plane of unit (or fixed) magnitude. For this, it is useful
to introduce orthonormal tangent-plane basis vectors e~
and e2 satisfying

=e' e (2.22)

is a complex order parameter with unit length % +* = 1.
We now turn to tensor tangent-plane order. The sim-

plest nontrivial tensor order parameter is a symmetric-
traceless tensor Q with Cartesian components

e . eh=6 b, N e =0. (2.14)
Q,~

= Q~be~, eb~. (2.23)

A tangent vector V can be expressed in the basis (eq, e2)
as well as that de6.ned by the covariant or contravariant
vectors: V = V e where V = e .V. We will use Latin
subscripts a, 6, c, ... to denote vector and tensor compo-
nents with respect to the local orthonormal basis. Co-
variant derivatives are derivatives projected into the tan-
gent plane. Components of the covariant derivative of a
vector V relative to the orthonormal basis are

Q b = v2(n nb —-8 b) (2.24)

or

The traceless constraint implies Q;, = Q = 0. Q is a
uniaxial tensor with a principal axis lying along a unit
vector N = n e in the tangent plane. If we require that
Q have a fixed magnitude defined by Trg = 1, then we
can write

D V—:e (0 V)=B V+e 0 ebVb

= 6~V~ + ~~bA~Vb, (2.15)

1
Q,~

= [cos(20)(eq;eq~ —e2, e2~)
2

+ sin(20)(er, e2~. + e2, eq~)]. (2.25)

where

A = eg . 6 e2 (2.16)

This tensor, like the vector S, can be expressed in terms
of the real part of a complex tensor. We introduce the
direct product tensor,

is the spin-connection whose curl is the Gaussian curva-
ture:

4'2 ——@Cs@=$2e Cse =e * e Cse

with components 4,z
——e ' e;e ~. Then

(2.26)

p ~B Ap=S. (2.17) Q=v2Re+2. (2.27)

1
(eq + ie2) = e+,

2
(2.18)

satisfying e . eb ——6 b with a, 6 = +. In this basis,
V = V e*, and the covariant derivative,

We will also find it useful to use a circular basis deGned
by the vectors

Generalization of this construction to higher-order ten-
sors is straightforward. Let

+„=4g e+=g„e (2.28)

4'„=4","*,4;, ",, 4' % = IC'
I

=1, (2.29)

with g„=e'" a pth-rank complex tangent-plane tensor.
If we de6.ne the inner product of two tensors by

D V~=e~-6 V=6 V~+e~ 6 e*V

=6 V~~iA V~

=(8 piA )V~, (2.19)
Qp ——v2 Re @„. (2.30)

then a real tensor, symmetric under interchanges of all
indices and traceless with respect to all pairs of indices,
ls

has a particularly simple form.

B. Vector and tensor order

A vector order parameter S that is restricted to lie in
the tangent plane of a surface can be written as S t
or S e . If S is a unit length vector, it is conveniently
expressed in terms of its angle in the local orthonormal
basis as

The tensor 4'q ——4' describes vector order such as is
present in the smectic-C phase in which the long axes of
molecules comprising the membrane tilt relative to the
normal N. N2 describes tangent-plane nematic order
with inversion symmetry. 46 describes hexatic order. 4'4
would describe "4-atic" order, etc. Thus %„for general
p describes what we call "p-atic" order.

C. Tangent-plane correlations and parallel transport

S = cosoeq+ sin0e2 ——S e, (2.20)

where

S = ~2 Re 4' (2.21)

where Sq ——cos0 and S2 ——sino. The unit vector S can
thus be written in the circular basis as

In flat space, the basis vectors eq 2 or e~ are indepen-
dent of spatial coordinate. Information about the exis-
tence of long-range order and about p-atic order param-
eter correlations is contained in the correlation function
(4'„(x).4'„*(x'))= (e '"~ l" l l"l~). Basis vectors at dif-
ferent points on curved surfaces are not identical (or even
in the same plane) and the simple dot product of vec-
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tors at difI'erent points does not carry information about
tangent-plane order. In order to compare order parame-
ters 4'„(u)and @„*(u')at two difFerent points u and u',
we need to parallel transport the order parameter at u
along some path I' to u'. The parallel transported tensor
4'„(u,u') is now in the tangent plane at u' like 4'„*(u')
and we can take its dot product with %„*(u').Thus the
correlation function,

III. MODEL HAMILTONIANS

In this section, we will derive various equivalent repre-
sentations for the Hamiltonian and associated partition
function describing p-atic order on a fluctuating surface.

A. Fluid membranes

G ( u') =(+ (u): +,*(u'))—:(@,'(u u') @,*( '))

(2.31)

where the ":" means parallel transported inner prod-
uct, is what is appropriate for describing correlations in
tangent-plane order. Note that this correlation function
depends on the path I' when the membrane has nonzero
Gaussian curvature. We will find, however, that it be-
comes independent of I on nearly flat membranes after
averaging over height fluctuations.

The parallel transported order parameter can be ex-
pressed in terms of the spin connection. Let V(u)
V (u)e (u) be a tangent vector at u and let V (u+bu) =II

V (u+ 8u)e (u+ 8u) be the vector V (u) parallel trans-II

ported to a nearby point u + bu. Then by defi.nition
V" (u + Su) = V (u) + 6V (u) with

+Hc —+v. + +G' + +o. ~ (3.1)

The first term is the mean curvature energy,

'R„= Kd u—~gH
2

(3.2)

where H = K, and the second form is valid for the
Monge gauge. The second term is the Gaussian curvature
energy,

It is now well established that the long-wavelength
properties of a fluid membrane are well described by the
Helfrich-Canham Hamiltonian 'RHc [20,21,1], which can
be expressed as a sum of three terms,

8V (u) = ebA—Vb(u)()u

Alternatively in terms of the circular basis,

(2.32)
(3.3)

or

8V~(u) = +iV~(u)A (u)8u, (2.33)
where S = det K&. This term is a topological invariant
depending only on the genus of the surfaces. Since we
will consider surfaces of fixed genus, we will drop this
term. Finally

I

VI'( &) +i f" A (u)du. V ( ) (2.34)
= o- d'u~g (3.4)

Applying this result to the vector @ = ge, we obtain

@"(u, u') = e*f- -(") " 4'(u),

or
I

@I'( I) i I" A (u)du is(u)
( )

Thus we have

(
i) i(8(u') —S(u)— f" A (u—)du )u, u) — c

(2.35)

(2.36)

(2.37)

is the surface tension energy. We are mostly interested
in free membranes for which the renormalized surface
tension obtained by difI'erentiating the total free energy
X with respect to the total surface area A (o R = c)%/OA)
is zero. Since there are entropic contributions to o~ as
well as contributions from internal order, the value of the
bare surface tension o will have to be adjusted to keep
o~ zero. In what follows, we will ignore 'H with the
understanding that it is really present if we want to keep
track of how o~ actually becomes zero.

The partition function for a fluid membrane,

This function is invariant under changes in the local coor-
dinate system (i.e. , under nonlocal rotations of the vec-
tors eI and e2). The generalization to p-atic order is
straightforward since by construction 4'„(u):%„'(u')=
[%(u): %*(u')]" so that

( ( '& — —* (9("')—"(")—)'" A-(")d ")) (2.38)

Again, this is invariant under coordinate system
changes.

Zs = 17R(u)e (3.5)

is obtained by integrating over all physically distinct re-
alizations of the surface, which is specified by the vec-
tor R(u). This means we have to specify a gauge or
parametrization for R(u). Thus the measure BR(u) for
distinct surface configurations contains a Fadeev-Popov
determinant [22]. In addition, it in general contains a
factor to correct for the fact that different surface config-
urations arising from a fixed parametrization surface can
have difFerent areas [23].
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B. p-atic order can be decomposed into a regular longitudinal part,

As discussed in the preceding section, the complex
tangent-plane tensor 4z distinguishes a fIuid membrane
from one with p-atic tangent-plane order. Since Nz has
a fixed magnitude and there are no external fields align-
ing N„along a particular direction, the lowest nontrivial
contribution to the energy associated with Nz arises from
its grad. ients,

'Rg = Kp —d u~gg PD @„'Dp@„, (3.6)

where D is a covariant derivative. Using Eq. (2.19) and
Eq. (2.28), it is straightforward to show

D @„=i@(B0 —A )%„ (3.7)

and

Rg = —K d u~gg P(0 0 —A )(Op0 —Ap), (3.8)
2

where we set K = K„p. Equation (3.8) is the sim-
plest energy arising from p-atic order. It is rotationally
isotropic, and it describes correctly the lowest-order gra-
dient contribution to the energy for all p & 3. For p = 1
or p = 2, however, this energy should have anisotropic
contributions [24,25]. In this paper, we ignore these
anisotropies.

The p-atic order parameter 4'„canhave disclinations
of strength q = 27r(k/p) where k is an integer [26]. A
disclination at u = u with strength q gives rise to a
singular contribution 0""~ to 0 satisfying

'R~~ = —K d v,~gg 0~0'Bp0',
2

(3.13)

and a transverse part,

'R~ = —K d u~gg P(v —A )(vp —Ap),
2

(3.i4)

DR D0e P'"e P ', (3.15)

where y = yi, and N = N+ + N . 'R0 depends
on all of the disclination coordinates u + where v+
1, 2, . . . , N~, and

1
Tre — ) ~Ng+N, pg ~

N+, N

(3.16)

where it is understood that D (v —A ) = O.

It costs an energy e, (k) to create the core of a disclina-
tion of strength k. (We assume for the moment that the
core energies of the positive and negative disclinations
are the same. See, however, Ref. [14] and the summary
section. ) Thus, partition sums should be weighted by a
factor yk

——e ~"~"~ for each disclination of strength k.
Since e, (k) k, we may at low temperature restrict our
attention to configurations in which only configurations
of strength +1 appear. Let Ng be the number of discli-
nations of strength +1 and let u + be the coordinate of
the core of the disclination with strength +1 labeled by
v. The p-atic membrane partition function can then be
written as

du 8 0""~=q,
r

(3.9)

where I' is a contour enclosing u . Thus, in general 8 0 =
8 0' + v where 0' is nonsingular, v = 8 0""~, and

p p0 vp = n(u), (3.10)

where

1
n(u) = ) q 8(u —u ) (3.ii)

'Rs = —K d u~gg P(B 0'+ v —A )2

x(Bp0'+ vp —Ap)

HI/ + Rg)
(3.12)

is the disclination density. The vector v can always be
chosen so that it is purely transverse, so that D v = 0.
In the p-atic Hamiltonian, 8 0 always occurs in the com-
bination 6 0 —A . The spin-connection A can and will
in general have both a longitudinal and a transverse com-
ponent. However, one can always redefine 0' to include
the longitudinal part of A . This amounts to choosing
locally rotated orthonormal vectors eq(u) and e2(u) so
that D A = 0. Thus we may take both v and A to
be transverse and the p-atic Hamiltonian,

C. The Coulomb-gas model

The p-atic model of Eq. (3.15) can easily be converted
to a Coulomb-gas model using

p PB (vp —Ap) = n —S:—p, (3.17)

which follows from Eq. (2.17) and Eq. (3.10). The quan-
tity p = n —S is a "charge" density with contributions
arising both from disclinations and Gaussian curvature.
Equation (3.17) implies

v~ —A~ = —p~ Dp p~
P

Lg
(3.18)

where a is a molecular length. The Kronecker factor
8~ +~ „~in Tr„imposes the topological constraint [27]
that the total disclination strength on a surface with Eu-
ler characteristic y be equal to y. Thus, on a sphere with
y = 2, N+ + N = 2p. If p = 6, for example, there must
be 12 more positive than negative disclinations. On a
nearly Qat surface, the Coulomb interaction effectively re-
stricts K+ to equal K, and we use Eq. (3.16) with y = 0
even though y for an open surface is, strictly speaking,
equal to 1 [28].
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Z = Tr.yN Va. Vo'e-~"--~~]~-~"-, (3.19)

where

R, = —K d ud u'~gp(u)
~

—
I

~g'p(u')
2 &g) ..

(3.20)

is the Coulomb Hamiltonian associated with the charge p.
The longitudinal variable 0' appears only quadratically in

Q~~ and the trace over 0' can be done directly:

where Ag = D D = (1/~g)Ou~gg ~Op is the Lapla-
cian on a surface with metric tensor g p acting on a
scalar. Recall IEq. (2.13)] that p P rotates a vector by
vr/2 so that v —A is perpendicular to D/i( —Ag) p
and is thus manifestly transverse. Using Eq. (3.18) in
Eq. (3.14), we obtain

1
'Ht„-T ———K

2

T
247t

1 1= —K
2

d ud u'~gp(u) ]—
( 1 5

d ud u'~gS(u) i-
g) uu'

d ud u'~gS(u) ~—2 2 I (
&g) ..

(
d ud u'~gn(u) ~—

+g)
( 1 l

d ud u'~gn(u) ~—
+g)

V g'p(u')

~g'S(u')

~g'S(u')

~g'n(u')

~g'S(u')

= 'Rss + 'R„„+Ans (3.24)

K' = K —T/127r. (3.25)

is the "total" Coulomb Hamiltonian in which there are
two distinct charge densities, p and S, or, equivalently,
n and S. The coupling constant for Gaussian curvature
interactions in the absence of disclinations is

where

1
PR, I. =

~pl —pR
~~

—p RL,

2 1
d u~g-

24vr

(3.21)

d'ud'u'~g S (u)

This is the shifted coupling arising from the Liouville
term discussed in Refs. [8] and [9]. The coupling con-
stants for disclinations and between disclinations and
Gaussian curvature are not shifted by the Liouville term
and remain equal to K.

D. The sine-Gordon model

( 1 5
v g'S(u')

&g) ..
(3.22)

The Coulomb-gas model can be converted following
standard procedures into a sine-Gordon model. The first
step is to carry out a Hubbard-Stratonovich transforma-
tion on P'Rc ..

is the Liouville action [12,19] arising from the conformal
anomaly. The first term in thi. s expression is proportional
to the surface area and can be incorporated into the sur-
face tension energy '8 by shifting the surface tension
o. We assume, as discussed earlier, that the total sur-
face tension is zero. We will, therefore, ignore this term
in what follows. The second term can be viewed as a
Coulomb interaction for Gaussian curvature but with a
negative coupling constant, i.e. , an imaginary charge.

The Coulomb-gas partition function can thus be writ-
ten as

—pA g p'Rl. —1/(2@A) fd ups QB P i f d u~gpP

(3.26)

Z = Trvg ~R~y pR, /3'iii, ~ f d'uv g—(n ~)4—

(3.27)

where the Liouville factor e~ ~ is needed to ensure that
e P~~ be one when p = 0. Inserting this in Eq. (3.23),
we obtain

Z = Tr.yN z)H —p'R„—p'RL, —p R~ where

PRy = d u~gO $0 P (3.28)

where

N ~R —p'R„—p'R~ T (3.23) The only dependence on disclinations is now in the term
linear in n. Thus to carry out Tr, we need only to
evaluate

N ifd urn + g iVp+N
N+ —N»g

N+, N

2nz+(u)/p
~ j

V g —2vrvp(u)/p
Q )

e y
27r

= ). d2u~g
2V+ .'N G

N+, N

itup~ (2g/u ) f d u~gcos[2n. (d/p) —~]
27r

N+
i(2~ [y(u) /p] —~ I

I
d u~~ N

V —i j2m. [4 (u)/p] ~I
Q2

(3.29)
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Thus

p&— p+—+ impy (2y/a ) j d u~g cos[2s (g/p) —w] i—f d u~gSQ
27t

(3.30)

We can now change variables, letting p = (p j2~) ((t
' +

w). The term linear in the Gaussian curvature then be-
comes

i d —u~gS (~+ P ) = impy ——i2 p / ~ - p
27r 27r

d u~gSQ',

(3.31)

where we used Eq. (2.8) relating y to the integral of the
Gaussian curvature. Thus the w-dependent part of this
term exactly cancels the impy term arising from the in-
tegral representation of the Kronecker b function. The
integral over w in Eq. (3.30) is now trivial, and we obtain

V' t = o.pT. (4.1)

Here o sets the units of charge (for example, n = eo in
mks units). The displacement vector 'D = ea E', where
c is the dielectric constant, is controlled by the external
charge:

V' 0= V'
D//

——p, (4 2)

be concrete, p, could be the free charge at the metal
electrodes of a capacitor. The total charge density is

pT ——p+ p, . The electric field F is determined by the
total charge:

where

d u~gg Pc) $c)p(t)

d u~gcos (t —i2 p
27r

d'u~gSQ (3.33)

Vy VRe —i'~- e
—c, where O~~ is the longitudinal part of 'V. The electric po-

tential can be introduced in the usual way: Z = —V'Pz,
D~ = —'o. "Vg„and PT = P+ P„where —V'2P = ap
and —t72$, = np, .

The inverse longitudinal dielectric constant is obtained
by expanding the free energy to second order in P~~

is the sine-Gordon action on a fluctuating surface of ar-
bitrary genus. The erst two terms of this action are the
gradient and cosine energies present in a flat space. The
final term provides the principal coupling between P and
fluctuations in the metric. It is analogous to the dilaton
coupling [131 of string theory though here the coupling
constant is imaginary rather than real. Note that the Li-
ouville action is not explicitly present in Eq. (3.32). The
requirement that the cutoff P be applied in a covariant
fashion is, however, still present. Thus, if g = 0, the in-
tegral over P will yield the Liouville factor. When y is
not zero, care must be taken to implement any cutoffs in
integrals in a covariant fashion.

IV. THE DIELECTRIC CONSTANT AND
HEXATIC RIGIDITY

1 ]
2

d zd"x'equi '(x, x') VP, (x) V'P, (x').

(4 3)

$2+gd' gd t —iq (x—x')
6$, (x)8$, (x') '

(4 4)

where V = J d"x is the volume of the system. We can use

this formula to relate e (q) to correlations of the charge

density. The Coulomb Hamiltonian can be written as

A wave-number-dependent dielectric constant can be ob-
tained if

e~~ (x, x') is translationally invariant or by car-

rying out the usual Maxwell averaging procedure. The
result is

In the preceding section, we derived several equiva-
lent expressions for the partition function of a fluctuating
membrane with internal p-atic order. In this section, we
will derive an expression for the inverse dielectric con-
stant associated with the charge density p and show that
it is equivalent to the renormalized p-atic rigidity con-
trolling the gauge-invariant p-atic correlation function of
Eq. (2.31). We will begin by reviewing the derivation
of the longitudinal dielectric constant in flat space. We
will then derive the dielectric constant and renormalized
rigidities on fluctuating surfaces.

1 d d, ( 1" *"~'pT(x)
l

—
l

pT(x')
2 «') ..
2

= —n ' d"x(V'P, ) 2

+ dd~py, . (4 5)

Expanding T = —T ln e ~~ '+~~), where 'Ro is the non-
Coulombic contribution to the Hamiltonian to second or-
der in V'P, we obtain

A. Flat-space dielectric constant -1AX = —n ' d"x(V'(j& )2

Consider a system with an internal charge density p
and fixed or controllable external charge density p . To

""*&(x)&.(x')(p(x) p(x')) (4.6)
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.—, (q) =1—,C„(q),

where

C„(q)= — d"«'*'e "'" " '(I (x)~(x'))

(4 7)

(4.8)

sures position in the average plane of the membrane. In
this case P, (u) m P, (x) is a slowly varying function of x,
which, in the limit of G.xed charge density at membrane
boundaries, grows linearly with x.. The long-wavelength
dielectric constant for our nearly flat membrane can be
obtained using Eq. (4.4), where q is the Fourier variable
dual to position x, and Eq. (4.9) for 'R~. Using Eq. (4.9)
and expanding W to second order in P„weobtain

is the density correlation function. Equation (4.7) is the
well-known expression [31] relating e to the charge sus-
ceptibility y~~ = PC~~. In what follows, we will use the
notation introduced in Eq. (4.8) for arbitrary variables,

1 -14X = —K ' d u(~gg ~0 P Bpp, )

d'v'(V g~(x) V g'C (x'))4.(x)0.(x')

1
C~a(q) =

~B
d2*d'~'. -"l"-"'i(~(x)a(x')), (4.9)

and

(4.11)

where we have set d = 2 and V = A~.
(4.12)

B. Dielectric constant on a Auctuating membrane is the charge-density correlation function for

We can now determine the dielectric constant associ-
ated with the charge p = n —S on a fluctuating membrane
following exactly the procedures outlined in the preced-
ing subsection. We impose external charges p, to create
a constant slowly varying external potential P, . These
charges lead to a total charge density pT ——p+ p . They
should not, however, change the Gaussian curvature be-
cause otherwise they would change the Liouville energy.
Thus p, must arise from disclinations that we can, for
concreteness, place at the boundary of the membrane
like the charge on capacitor electrodes. In analogy with
R.at space, we can introduce external and induced electric
potentials P, and P satisfy —A~/ = p and A~/, = p, —
with PT ——P + P, the total potential. The Coulomb
Hamiltonian can then be written as

P =~go, (4.13)

K
(q) = 1 —,C--(q). (4 14)

Cpp(q) is the charge-density correlation function eval-
uated in the presence of all interactions, including the
Coulomb-like 'RL, . We will return at the end of this sec-
tion to its evaluation.

rather than p. p is in fact the efFective charge density for
the coarse-grained flat surface (with metric tensor equal
to unity) because the total charge in an area patch d x
should not change under coarse graining. The quantity
(~gg ~) is equal to 8 ~ as can be verified easily to lowest
order in T in the Monge gauge or more generally using
the conformal gauge [29,30]. Thus we have

1&c= —K
2

d'u~gg ~0 $,Ops,

+— d'u~ap0+
2

(4.10)
C. Hematic rigidity

We are interested in the long-wavelength dielectric con-
stant for our presumed macroscopically fiat (or nearly
flat) membrane. For this purpose it is most convenient
to use the Monge gauge in which u = x = (x, y) mea-

In this section we will show that the renormalized hex-
atic rigidity K~ is equal to o.'e~~ . To calculate K~, we

introduce a shift w in 8 0' via 8 0' ~ 6 0' + ~ in
Eq. (3.13) and evaluate the free energy to second order
in cu . Using Eq. (4.11), we obtain

K d ii( Jgg iv cd@) P-K d ii d B(~gD g ~gD, ~0 ~ ~p)2 2

——PK
2

d u d u'(~g(v —A )~g'(v~ —~~)cu ~p). (4.15)

As discussed previously, 0' decouples from other variables. For any given realization of the surface (00')
(TjK)(—K ). We can therefore combine the first two terms in Eq. (4.15) to obtain

d2iid2ii'(~g~ 'p ~q'cup) — pK d v d v (—v gvT~ V g vT~P)
2

(4.16)
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where D. The p-atic correlation function
I I

p p D D~
P~ I ~l g Pf

g

L)-I)('

)

8(u —u')

8(u —u')

~g
(4.17)

is the transverse projection operator and

vT ——v —A (4»)

DX = —K d u(~gg p0 $,03$,)
2

PK d—u d u'(~gp(x) ~g'p(x'))
2

x (b, (x)P, (x') . (4.19)

Setting e pc)pq), = cu& (8 p
—o) c)p/c) ), where 2 is the

coarse-grained w, we find

t9
&R =

A~ BM l9(d

K

K (4.2o)

is manifestly transverse from Eq. (3.18). Thus, as ex-
pected, LT depends only on the transverse part of w

A longitudinal function such as c) P, maintains its
form under coarse graining. A transverse function does
not because the direction of a transverse function de-

pends on the local value of the rotation matrix p &. Thus
to coarse grain our transverse function cu (x), we set it
equal to p I 03$, . In the Monge gauge c)pP, has the
same value regardless of the particular configuration of

I

the membrane. Then using p, p &
———b&, we obtain G (x x&) (e

—2P ([0'(x)—0'(x')] )s
p

I
ip J ds (v ——A )i

/R. ,v ) (4.23)

where ([0'(x) —0'(x')] )g is evaluated for a fixed metric
tensor g p determined by R, and

(A) „=Z'T„y 'DR " A (4.24)

To the order we are working, we can factorize G„(x)into
a "spin-wave" part arising from 0' and a transverse part:

Gp(x) = G, (x)G„(x), (4.25)

where

( )
—,' p' (([g' (x) —g' (x')]'), ) (4.26)

We have argued that the renormalized rigidity is de-
termined by the dielectric constant associated with p
rather than that associated with some other combina-
tion of the independent charge densities n and S. We
will now show that it is indeed this rigidity that controls
the long distance properties of the p-atic correlation func-
tion Gp(u, u'), [Eqs. (2.31) and (2.38)]. Our calculations
follow closely those in Ref. [32] for correlation functions
in Hat space. To keep things simple, we calculate only to
lowest order in height fluctuations in the Monge gauge.

As discussed in Sec. II, the angle 0 in Eq. (2.38) can
be broken up into a regular part and a singular part:

I

0(x) —0(x') = 0'(x) —0'(x') + f ds v . In addition, we
can always choose a gauge so that A is purely transverse.
In this case 0' decouples from other variables, and we
have

where AR is the base area and e~~
= e~ (q = 0). Because

I d xp = 0, Cpp(q) tends to zero as q ~ 0 in the ordered
phase. We can, therefore, de6.ne

and

( )
—

2 p ((&8„)) —
2 p g„(x)

) (4.27)

1
lim —Cpp(q) = B
q~0 q

1= lim —[Cpp(q) —Cpp(0)]
q~O q

I

where 40„=1' ds (v —A ) and the double brackets
in Eq. (4.26) refers to an average over 0 followed by an
average over R. In the Monge gauge, to the order we are
working,

1 1= lim-
q —+o q2 AB

x (p(x) p(x'))

2 I( zq (x—x')

where

([0'(x) —0'(x')]') g
= 2

K g(x —x'), (4.28)

(4.21) ~(x —x') =
I

(1) 1 /x —x'/
ln

27' a
(4.29)

KR=K —pK B. (4.22)

where in the final step we used the fact that (p(x) p(x'))
depends only on w —w' in translationally invariant sys-
tems. Thus

Thus

(4.3o)

To evaluate G„(x),we use Eq. (3.18) to lowest order in
the Monge gauge to obtain

Cpp(q) is derived in Eq. (4.8).
Ao„=~p (4.31)
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where

f(g) = ds e pc)pg(s —y).

Then using the Cauchy-Riemman relation,

e pclpg (x) = —0 g~ (x),
e pc)pgi (x) = c) g(x),

where gi (x) = (1/2ir) tan(y/x), we find

f(g) = —[g~(x' —y) —gi (x —y)]

G.(x —x') = d'gd'g'(p(y)S (y'))f(y)f(y')

(4.32)

(4.33)

(4.34)

expansion, we will require A@K/(/3e) = A(T/r)(K/K),
where A smaller than 1/(2vr), as well as (Pr) and
(PK) i to be small. Thus, we will not consider the limit
K ~ oo. We will. nonetheless, be able to explore a large
region of the phase diagram.

The evaluation of Cpp(q) is obtained most directly in
terms of diagrams. Figure 3 shows the basic ingredi-
ents of a diagrammatic perturbation theory: the height
propagator G~h(q) = (/3rq ), the three Coulomb in-
teractions [Eq. (3.24)] K'/q, K/q, and K/q coupling,
respectively, S to S, n to n and S to n, the n —n prop-
agator when A s is zero, and nonlinear vertices arising
from the curvature. The total Coulomb Hamiltonian of
Eq. (3.24) contains S —S and n —n terms and a part

1

2
d'gd'g'(p(y)p(y'))[f(y) —f(y')]'.

( 1 )'Hns = —K d urn I

—
l
~gS

&a)
(4.40)

(4.35)

Setting y = R + r/2 and y' = R —r/2, and expanding
in r, we obtain

G (x —x') = —— d r(p(r)p(0))r rp
2

x d BO f(R)c)pf(R) (4.36. )

coupling n to S. We will Erst calculate correlation func-
tions when 'H g is zero. Then we will calculate the ef-
fects of turning on Q s. If '8 s is zero, then C s where
S = ~gS is zero, and the Gaussian curvature correlation
function Css is simply that of a Coulomb gas with cou-
pling K'. It can be represented as a sum of polarization
bubbles shown in Fig. 4 linked by a Coulomb interaction
as shown in Fig. 5. The result is

Then using Eqs. (4.21), (4.34), (4.36), and V'&g(s —R) =
8(s —R), we And

Go P(q)
ss 1+ (K'/q2)P(q)

(4.41)

G (x —x') = 2B[g(x —x') —g(0)]
28 lx —x'l

ln
27' Q

(4.37)

To lowest order in h, , the Gaussian curvature is

S = —(7' h V' h —0,0, hc), 0, h),
2

(4.42)

where we have treated g(0) as a nondivergent constant
because (x —x') is restricted to be greater than n

Combining Eqs. (4.25), (4.27), (4.30), and (4.37), we
obtain

and, to lowest order in (/3r), 'P(q) is determined by
diagram (a) in Fig. 4:

with

G =l
l

p'/'pKl l-p-~/'
—p /2mpKR (4.38) (a) (c)

(PK~) ' = (/3K) '+ B. (4.39)

This equation agrees with Eq. (4.22) to lowest order in
B. (e)

E. Evaluation of the dielectric constant

As we discussed at the beginning of this section, the
correlation function Cpp(q) must be evaluated in the
presence of all interactions including that arising from
the Liouville term. In this subsection, we will derive a
general expression for Cpp(q), which we will evaluate in
the low-temperature, low-fugacity limit. We will also dis-
cuss effective Coulomb interactions. Both r and K have
units of energy. Thus, both (Pv) and (PK) i are unit-
less measures of temperature. In addition, either of these
quantities multiplied by any function of the ratio K/r is
also a measure of temperature. In our low-temperature

FIG. 3. Elements for constructing a diagrammatic pertur-
bation expansion for a Coulomb gas on a Huctuating mem-
brane: (a) The height propagator GRh, = 1/(Prq ), (b) the
height propagator with two gradients represented by the ver-
tical lines, (c) the bare vortex charge-density propagator C--
[Eq. (4.44)], (d) the Coulomb vertex K'/q in 'Rss, (e) the
Coulomb vertex —K/q in 'R s, (f) the Coulomb vertex K/q
in 'R, and (g) a nonlinear vertex from the curvature energy
[Eq. (3.2)].
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(c) (d)

FIG. 6. A representative additional diagram contributing
to 7 when 'R s is turned on. The expansion for C-- is still
given by Eq. (4.44) and Fig. 5.

(e)

FIG. 4. Diagrammatic contributions to the polarization
bubble 7 represented by the cross-hatched diagram to the
left of the equal sign. The components of these diagrams are
de6ned in Fig. 3. The leading-order contribution to 7 is
given by diagram (a). Diagram (e) is the first correction to 'P

arising from the ~g factors in the definition of 'P. The double
cross lines on the height propagators represent the gradients,
with appropriate symmetry, in the Gaussian curvature [Eq.
(4.42)].

1 1
+(q) =

2 (P )2

3
32vr (PK)

—2

d2k (q x k)~

(2vr )
2 k 4 (k + q) 4

(4.43)

Note that 'P(q) is proportional to q even though the
numerator in the integrand is proportional to q . There is
an infrared singularity in the integral over k that converts
the q to the q . Higher-order contributions to 'P are
shown in Figs. 4(b) —4(f). The contribution to P from
Fig. 4(b) is of order q PK/(PK), i.e. , of order PK/(PIr)
smaller than Eq. (4.43). The diagrams of Figs. 4(c) and
4(d) are smaller by another factor of PK/(Pv) . The
diagram in Fig. 4(e), which arises from the ~g factor and

nonlinear terms in S, is of order (Pv. ) times Eq. (4.43).
It, however, has an infrared divergence, which would have
to be handled with care if we wished to calculate to the
next order in. T The diagram . in Fig. 4(f) is of order
(pr. )

When '8 s = 0, the disclination correlation function
C- —(q) can be calculated as a power series in y. To lowest
order in T, we can replace ~g by 1 in n. Then to lowest
order in y,

1 1 x+8 x
( (q) (-q))

p 2
3 OD47t.
29q

d2
] ]

2 —2~/K

d"" + 0(y ). (4.45)

When Q s is turned on, there will be additional contri-
butions to the polarization bubble such as shown in Fig.
6. The correlation functions C

& Css an C - s can e
obtained from the diagrams in Fig. 7:

~0
C„-„-=

1 —(P K /q )C C
~0

SS
1 (P2K2/q4)Co Co

p
1+ (PK'/q') P —P'K27 C„'„'
PK
q2 I (P2K2/q4) Co Co

&ss =

(4.46)

(4.47)

(4.48)

In the limit of low temperature and low fuga"..ity, this

where Co - is given by Eq. (4.43) with 'P(q) corrected
by a contribution such as that in Fig. 6. Combining
Eqs. (4.47) and (4.48), we obtain the charge-density cor-
relation function determining K~..

Cpp(q) = C--(q) —2C s(q) + Csg(q)
C;(q) —2(PK/q')C;(q)Cga(q) + Css(q)

1 —(p'K'lq') C.';(q)C+~(q)-
'P(q) + C.'-;(q) (I —(P(2K —K')/q') P(q)1

1+ (pK/q') &(q) ((K'/K) —(pK/q') C.'-;(q)]
(4.49)

—pR,„—p'R g g —pA, „

where n(q) = (2vr/p) (e* i'"+ —e ' i "—). Therefore

(4.44)
(a)

(b)

~ ~ 0

FIG. 5. Diagrammatic representation of the full t - - prop-
agator when 'R ~ ——0.

(c)

FIG. 7. Diagrammatic expansion of (a) C- -, (b) Css, and
(c) C-s. The bubble is C-- represented in Fig. 5.
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reduces to

&.-a(~) —&(~)+ &;(~) l

' —', &(~)) +f PK

(4.50)
(PK~) ' = IPK(l)1 '+ „,y'(~) 3—2vrPK (5 1)

a renormalized K(l), and rescaling the second part by
r —+ re, we obtain

where 'P(q) is given by Eq. (4.43) and C„-—(q) by
Eq. (4.45). The second term in the coefficient of C„-„-
is of order PK/(PK) and will be neglected.

We ran now calculate the dielectric constant or renor-
malized rigidity to lowest order in temperature and fu-

gacity using Eqs. (4.21), (4.22), (4.43), (4.45) and (4.50).

d(pK) ' 47r

dy / z.PK
2 —— g.

dl ( p2

(5.2)

(5.3)

pKR = pK —(pK) y

where

3 (Kl
PK = PK ——

327i (K)

3—2vrPR (4.51)

(4.52)

Observe that the bending rigidity does not appear ex-
plicitly in these equations; it only appears via the depen-
dence of PK on K Thi.s suggests that there should be an
efI'ective theory for a flat membrane with a bare hexatic
rigidity equal to K = K —(3/32vr)(K/r) rather than K.
Indeed, if we integrate our height fluctuations to produce
an effective flat-space Hamiltonian via

we assume (3/327r)PK/(Pr) (( 1 so that

(PK) ' = (PK) '+ (P ) (4.53)

we obtain

@jeff —P'R„—P'Rg (5.4)

Thus, the equation for PK~ is identical to that for a rigid
flat membrane but with K replacing K. 'R, ir = —,'PK d'x(V'0) (5.5)

V. RENORMAI, IZATION Kg&ATIQNS

To determine the properties of the Kosterlitz-Thouless
transition on a fluctuating membrane, we need to deter-
mine the renormalization flow equations for v, K, and y.
Equation (4.51) for KR is identical to the equation for
KR on a Bat membrane l4] with K replaced by K. Flow
equations for K(l) and y(l) can be obtained in the usual
way [32] from Eq. (4.51). By breaking up the integral

I

f dr into f '
dr + f, dr, putting the erst part into

Thus, the fluctuating membrane behaves like a Hat mem-
brane with a hexatic rigidity K. Note that the renormal-
ized rigidity K appears in Eq. (5.5) because fluctuations
at all wave numbers q have been integrated out. If we

had calculated an efFective Hamiltonian by removiiig h(q)
for q within a shell A/b & q ( A, there would have been
no shift in K.

The renormalization of K can be calculated using Eqs.
(3.23) and (3.24). Diagrams contributing to the renor-
malized bending rigidity rR to lowest order in P are
shown in Fig. 8. They yield

dq 3 pK' A
dq 3 ~'y' (pK')' f dq~

q 4n 4pr I& q 47r p2 -4pr i I,-. q )
3 PK'3= pr. — 1—4' 4pK p

3 7rsy' (PK')' ( dr

4 ' 4p
(5.6)

where L is the linear dimension of the membrane,
which we take to be infinite, and A = I/a. We can
now follow exactly the same procedure to obtain the re-
cursion relation for v we used to obtain those for K and
y. To lowest order in (Pv), we can replace K' by K.
We break the integral f into two parts, and rescale to
obtain

This equation was derived from the low-order diagrams
shown in Fig. 8 in which the Coulomb energy K/q is

treated as a perturbation. One can also structure a per-
turbation theory in which the Coulomb propagator K'/q

dpK 3 ( pK)
4p~)

(c)

FIG. 8. Diagrams fur the bending rigidity r .
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coupling S to S [Eq. (3.24)] is replaced by K'/eII ggq
where

e '
(q) = 1 —,Cps (q) —,&- - + &„-s (5.8)

as shown in Fig. 9. Similar expressions can be derived for
the efFective Coulomb potentials coupling n to n and n to
S. In this scheme, Figs. 8(b) and 8(c) are replaced by Fig.
9(a). In addition, there are higher-order diagrams such
as those shown in Fig. 9(b) . These diagrams have two
or more loops and are dificult to treat using our naive
renormalization scheme. In the companion paper [15], we

employ a controlled regularization scheme to treat these
graphs using the sine-Gordon Hamiltonian. It shows that
K should be replaced by K in Eq. (5.7) . Thus we have

(a)

0

3 ( PK1—
4&~)

(5.9)

2 2

PK y* = 0, Pr.* = P = . (5.10)

The renormaliz ation flow equations now dep end on K
and not on K . They also do not contain a term prop or-
tional to y . The derivation of the latter result will be
discussed i n more detail in the companion paper on the
sine- Gordon theory.

Equations (5.2), (5.3), and (5.9) define renormalization
flows for fluctuating hexatic membranes . They have a
fixed point at

(b)

FIG. 10. (a) Renormalization flows in the xy plane. These
are identical to the order of our calculations to those of the
flat space xy model. The separatrix AO is the critical line.
(b) Flows in the zy plane. They are similar to those in the
xy plane.

PK = PK (1 —x), Pr. = Pr.*
( 1 —z ) . (5.11)

Then

We can obtain equations in the vicinity of this fixed point
by defining

I
I
I
I
I
l

I 'f

I I 1

I
I
I
I

dx
dl

87t- y
dy

2xy (5.12)
I P

dz 3 X Z

dl 2p2 1 —z
(5.13) (a)

The flow lines for these equations are shown in Figs . 10
and Fig. 11. Figure 10(a) shows flows in the xy plane,
which are identical to those in fiat space [4]. Figure 10(b)
show s flows in the yz plane, which are similar to those in
the xy plane. Figure 11(a) shows flows in the (PK)
(Pr) plane. As in previous treatments [8], there is a
fixed line in this plane at Pr, = PK/4 (x = z), and the
crinkled-to-crumpled transition occurs at PK = PK in-
dependent of Pr, and the Kosterlitz- Thouless transition

(b)

(a) (b)

FIG. 9. Diagrams contributing to r in terms of the screened
Coulomb propagator (represented by the double-dashed line)
R /(cII ssg ) defined in Eq. (5.8).

FIG. 11. (a) Renormalization flows in the xz plane. The
transition from the crinkled to the crumpled phase takes
place at x = 0 independent of z (i.e., independent of PK),
in agreement with previous calculations I,9]. (b) Flows in the
(PR') (Pr) plane. Here, -there is a transition from the
crinkled to the crumpled phase as K is decreased.
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„=ae (5.14)

where l' is determined by

p~(l*) = pK*[1 —z(l')] = o, (5.15)

i.e. , by z(l*) = 1. Integration of Eqs. (5.12) and (5.13)
yield z(l) and thus („.Equation (5.13) for z is a nonlinear
and cannot be determined analytically. We can, however,
obtain a very good estimate of („when („)(KT, where

a exp(b/~T —TKT
~

l ) is the Kosterlitz-Thouless
correlation length. The latter length is gKT = ae ', where
PK(lo) = 0 or x(lo) = 1. The recursion relation, Eq.
(5.9) for z(l) is only valid for K ) 0. When K 1 0,
we approach a fluid phase with recursion relations for
v. determined by r alone. We, therefore, assume that
x(l) = 0 for l ) lo. Then

occurs at x = 0 independent of z.
The separatrix AO in Fig. 10(a) is the transition

line dividing the crinkled hexatic phase from the melted
crumpled phase. Systems whose initial values of x and y
lie below and to the left of the separatrix flow to the low-
temperature crinkled hexatic phase; points above and to
the right of the separatrix flow away to the crumpled
fluid. The initial value of x is xo ——1 —K/K, which
increases with decreasing PK = PK —(3/327t)(K/K)
Decreasing the bending rigidity v decreases K and even-
tually drives x to the right of the separatrix. Thus, there
will be a transition from the crinkled to the crumpled
phase as I- is decreased. An alternative way to see this
is to use K rather than K as the independent variable.
To do this, we define K(l) to satisfy Eq. (4.52) with K
and r replaced, respectively, by K(l) and K(l). Flows in
the ([PK(l)], [Pv(l)] ) plane are shown in Fig. 11(b).
The vertical transition line in the ([PK(l)], [Pr(l)] )
plane is now curved and crosses the (PK) = 0 axis at
a finite value of (Pr) . Points to the left and below the
separatrix flow to the crinkled Bxed line. Points outside
it flow to the crumpled. phase.

In deriving our recursion relations, we restricted our-
selves to (Pv), (PK), and P K/(Pv) ( 2vr. Thus,
our calculations, stri'ctly speaking, only apply below the
curves OA in Figs. 2 and 11(b). The flows in Fig. 11 we
calculated for p = 1. Figure 2 shows flows for the physi-
cally more interesting case of p = 6. Our approximation
applies to a considerable region around the fixed point
P Higher-ord. er terms in (Pv) and PK/(Pv) would
have to be included to get an accurate picture of what
happens above the curve OA. Is seems likely to us, how-
ever, that these higher-order terms will not lead to any
qualitative modifications to Fig. 2. For any finite value of
K and v, the crinkled-to-crumpled transition is gov-
erned by the fixed point P. For infinite hexatic rigidity,
K = 0, the transition is controlled by difFerent physics,
probably analogous to that of tethered membranes [10].
There could, of course, be some phase boundary at large
P K/(Pr) separating K = oo-like behavior from finite-K
behavior, but we d.o not see any particular reason why
this should be so.

The persistence length in the fluid phase is

dz

dl

3
2p2' l ) lo. (5.10)

This equation can be integrated subject to the bound-
ary condition that z(lo) be the value of z(l) at l = lo
determined by Eqs. (5.2) and (5.11). Thus,

3
z(l) = z(l(1) +,{l —lo), {5.17)

l* = lo + 2p [1 —z(lo)]/3, and

l p 4m@K(lp)/3 (5.18)

where we used Pv(lo) = p [1 —z(lo)]/(27r). This expres-
sion is to be compared with the result (~ = ae4 ~"ls for a
pure fluid membrane. It is what one would naively have
expected. The microscopic length a is replaced by the
KT coherence length (KT, and r at length scale a is re-
placed by v at a length scale (KT. Equation (5.18) for

is valid provided („&(KT (or l* & lo). Near the KT
critical point, this inequality may not be satisfied.

VI. REVIEW AND DISCUSSION

We have investigated the Kosterlitz- Thouless tran-
sition on fluctuating hexatic membranes. We devel-
oped three equivalent Hamiltonians for describing these
membranes: the hexatic elastic Hamiltonian expressed
in terms of gradients of the hexatic angle variable, a
Coulomb-gas Hamiltonian, and a sine-Gordon Hamilto-
nian. The Coulomb gas is characterized by Gaussian
curvature and disclination charge densities, which in-
teract via potentials partially determined by the Liou-
ville action arising froin a covariant cutofI'. The sine-
Gordon Hamiltonian has a linear coupling between the
sine-Gordon Beld and Gaussian curvature. We showed
that height fluctuations, when integrated over all wave
number, soften the hexatic stifFness K. As a result, the
disclination melting transition from the hexatic crinkled
phase to the fluid crumpled phase is brought about both
by increasing temperature and by decreasing the bending
rigidity v. We derived renormalization-group recursion
relations for K, v, and the disclination fugacity y that
explicitly verify this. In a Ref. [15], we provide an al-
ternative derivation of these recursion relations using the
sine- Gordon Hamiltonian.

Though the picture we present of the Kosterlitz-
Thouless transition from the hexatic crinkled phase to
the crumpled fluid phase makes a great deal of sense,
it does leave some incompletely answered or unanswered
questions. First, we believe that the nature of shape
fluctuation in the crinkled phase is not completely re-
solved. It is generally believed [8] that the crinkled phase
is characterized by power-law correlations in layer nor-
mals: {N(x) . N(0)) ]x~ ", where 1l = 2T/(7rK). This
result is obtained via exponentiation of the expansion

{N(x) . N(o) ) = 1 —-', {[V'h(x) —Vh(0)] )

ln(]xi/a)
T

27t K
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using r = K/4. The exponentiation of this series has
not been explicitly justified with, for example, a calcu-
lation of second-order terms in (T/v) ln(x/a). It is in-
teresting to note that the de Gennes —Taupin persistence
length [33] (~T = ae "I beyond which a fluid mem-
brane is crumpled was calculated using Eq. (6.1) and
setting (N(x) N(0)) = 0. This observation would sug-
gest that the possibility that the crinkled phase is in fact
crumpled, but with a longer persistence length than the
fluid phase, cannot be ruled out.

Second, we have in our calculations imposed a con-
straint of charge neutrality. In flat membranes (i.e. ,
films), this constraint is imposed by the prohibitive en-
ergy cost of having excess charge of either sign. We
believe that there is a similar energy cost for breaking
charge neutrality in free membranes, which are not con-
strained to be flat, though the situation here is more com-
plicated. Nelson [14] has pointed out that the plus-minus
symmetry present in flat membranes is broken in free
membranes. Membranes with a single disclination un-
dergo a mechanical buckling transition from a flat config-
uration to a cone configuration for a positive disclination
or a saddle configuration for a negative disclination [34].
The energy of the cone is lower than that of the saddle,
though both energies are proportional to In(R/a), where
B is the linear dimension of the membrane. Does this
asymmetry modify the picture presented in this paper?
We believe not. A free membrane will choose configura-
tions that will minimize its free energy. Any configura-

tion, whether flat or buckled, with an excess of one sign of
charge will have a contribution to its energy proportional
to In(R/a). Charge neutral configurations, on the other
hand, have energies that are finite in the B m oo limit.
Thus, there is a prohibitive energy cost in both flat and
free membranes to the violation of charge neutrality. The
shape of a membrane near the core of positive and nega-
tive disclination may nonetheless difI'er and lead to differ-
ent fugacities y+ and y . We generalize our treatment to
include this possibility in Ref. [15]. The results are that
the ratio of the two fugacities is a marginal variable. In
the ordered phase, both y+ and y scale to zero, and the
KT transition to the disordered phase is not afI'ected. In
the disordered phase, both fugacities grow with a fixed
ratio. A more complete treatment of Gaussian curvature
will be needed to interpret this result.
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